示例#1
0
def image_fftw(grids, nthread=1, wisdom=None, axes=(1, 2)):
    """ Plan pyfftw inverse fft and run it on input grids.
    Allows fft on 1d (time, npix) or 2d (time, npixx, npixy) grids.
    axes refers to dimensions of fft, so (1, 2) will do 2d fft on
    last two axes of (time, npixx, nipxy) data, while (1) will do
    1d fft on last axis of (time, npix) data.
    Returns recentered fftoutput for each integration.
    """

    if wisdom is not None:
        logger.debug('Importing wisdom...')
        pyfftw.import_wisdom(wisdom)

    logger.debug("Starting pyfftw ifft2")
    images = np.zeros_like(grids)

#    images = pyfftw.interfaces.numpy_fft.ifft2(grids, auto_align_input=True,
#                                               auto_contiguous=True,
#                                               planner_effort='FFTW_MEASURE',
#                                               overwrite_input=True,
#                                               threads=nthread)
#    nints, npixx, npixy = images.shape
#
#   return np.fft.fftshift(images.real, (npixx//2, npixy//2))

    fft_obj = pyfftw.FFTW(grids, images, axes=axes, direction="FFTW_BACKWARD")
    fft_obj.execute()

    logger.debug('Recentering fft output...')

    return np.fft.fftshift(images.real, axes=axes)
示例#2
0
文件: fast_fft.py 项目: zpincus/zplib
def store_plan_hints(filename, locking=True, reload_first=True):
    """Store data about the best FFT plans for this computer.

    FFT planning can take quite a while. After planning, the knowledge about
    the best plan for a given computer and given transform parameters can be
    written to disk so that the next time, planning can make use of that
    knowledge.

    Parameters:
        filename: file to write hints to.
        locking: if True, attempt to acquire an exclusive lock before writing
            which can otherwise cause problems if multiple processes are
            attempting to write to the same plan hints file.
        reload_first: if True, if the file exists, load the plan hints before
            storing them back. Safer in a multi-process setting where the hints
            may be written by a different process.

    """
    filename = pathlib.Path(filename)
    if not filename.exists():
        filename.touch() # can't open a file for read/write updating if it doesn't exist...
    with filename.open('r+b') as f:
        if locking:
            import fcntl
            fcntl.flock(f, fcntl.LOCK_EX)
        if reload_first:
            try:
                pyfftw.import_wisdom(pickle.load(f))
            except:
                pass
            f.seek(0)
        pickle.dump(pyfftw.export_wisdom(), f)
        if locking:
            fcntl.flock(f, fcntl.LOCK_UN)
示例#3
0
 def _loadwisdom(self, infile):
     if infile is None:
         return
     try:
         pyfftw.import_wisdom(pickle.load(open(infile, "rb")))
     except (IOError, TypeError) as e:
         self._savewisdom(infile)
示例#4
0
 def load_wisdom(self):
     for name in ('wisdom32', 'wisdom64'):
         path = getattr(self, f"_{name}_path")
         if Path(path).is_file():
             with open(path, 'rb') as f:
                 setattr(self, f"_{name}", f.read())
     pyfftw.import_wisdom((self._wisdom64, self._wisdom32, b''))
示例#5
0
 def load_wisdom():
     if os.path.exists(WISDOMFILE):
         try:
             with open(WISDOMFILE, 'rb') as f:
                 pyfftw.import_wisdom(pickle.load(f))
         except:
             logger.exception('Error loading wisdom')
示例#6
0
 def __init__(self,
              n = 1364,
              N = 2048,
              iter0 = 138000,
              nfiles = 64,
              fft_threads = 32,
              out_threads = 4,
              src_dir = './',
              dst_dir = './',
              src_format = 'K{0:0>6}QNP{1:0>3}',
              dst_format = 'RMHD_{0}_t{1:0>4x}_z{2:0>7x}'):
     self.src_format = src_format
     self.dst_format = dst_format
     self.src_dir = src_dir
     self.dst_dir = dst_dir
     self.n = n
     self.N = N
     self.iter0 = iter0
     self.nfiles = nfiles
     self.kdata = pyfftw.n_byte_align_empty(
             (self.N//2+1, 2, self.N, self.N),
             pyfftw.simd_alignment,
             dtype = np.complex64)
     self.rrdata = pyfftw.n_byte_align_empty(
             (self.N, self.N, self.N, 2),
             pyfftw.simd_alignment,
             dtype = np.float32)
     self.rzdata = pyfftw.n_byte_align_empty(
             ((self.N//8) * (self.N//8) * (self.N//8),
              8*8*8*2),
             pyfftw.simd_alignment,
             dtype = np.float32)
     if type(self.dst_dir) == type([]):
         self.zdir = np.array(
             range(0,
                   self.rzdata.shape[0],
                   self.rzdata.shape[0] // len(self.dst_dir)))
     self.cubbies_per_file = self.rzdata.shape[0] // self.nfiles
     if (os.path.isfile('fftw_wisdom.pickle.gz')):
         pyfftw.import_wisdom(
             pickle.load(gzip.open('fftw_wisdom.pickle.gz', 'rb')))
     print('about to initialize the fftw plan, which can take a while')
     self.plan = pyfftw.FFTW(
             self.kdata.transpose(3, 2, 0, 1), self.rrdata,
             axes = (0, 1, 2),
             direction = 'FFTW_BACKWARD',
             flags = ('FFTW_MEASURE',
                      'FFTW_DESTROY_INPUT'),
             threads = fft_threads)
     print('finalized fftw initialization')
     bla = pyfftw.export_wisdom()
     pickle.dump(bla, gzip.open('fftw_wisdom.pickle.gz', 'wb'))
     self.fft_threads = fft_threads
     self.out_threads = out_threads
     self.shuffle_lib = np.ctypeslib.load_library(
         'libzshuffle.so',
         os.path.abspath(os.path.join(
             os.path.expanduser('~'), 'repos/RMHD_converter/C-shuffle')))
     return None
示例#7
0
def load_wisdom(filenames=default_filenames):
    allwisdom = []
    for fn in filenames:
        f = open(fn, 'r')
        allwisdom.append(f.read())
        f.close()

    pyfftw.import_wisdom(tuple(allwisdom))
示例#8
0
def load_wisdom(filenames=default_filenames):
    allwisdom = []
    for fn in filenames:
        f=open(fn,'r')
        allwisdom.append(f.read())
        f.close()
    
    pyfftw.import_wisdom(tuple(allwisdom))
    def __init__(self, qs, L=15, ncol = 1, low_ring=True, fourier=False, threads=1,
                 import_wisdom=False, wisdom_file='./fftw_wisdom.npy'):

        # numerical factor of sqrt(pi) in the Mellin transform
        # if doing integral in fourier space get in addition a factor of 2 pi / (2pi)^3
        if not fourier:
            self.sqrtpi = np.sqrt(np.pi)
        else:
            self.sqrtpi = np.sqrt(np.pi) / (2*np.pi**2)
        
        self.q = qs
        self.L = L
        self.ncol = ncol
        
        self.Nx = len(qs)
        self.Delta = np.log(qs[-1]/qs[0])/(self.Nx-1)
        
        # zero pad the arrays to the preferred length format for ffts, 2^N
        self.N = 2**(int(np.ceil(np.log2(self.Nx))) + 1)
        self.Npad = self.N - self.Nx
        self.ii_l = self.Npad - self.Npad//2 # left and right indices sandwiching the padding
        self.ii_r = self.N - self.Npad//2
        
        # Set up FFTW objects:
        if import_wisdom:
            pyfftw.import_wisdom(tuple(np.load(wisdom_file)))
        
        self.fks = pyfftw.empty_aligned((self.ncol,self.N//2 + 1), dtype='complex128')
        self.fs  = pyfftw.empty_aligned((self.ncol,self.N), dtype='float64')
        
        pyfftw.config.NUM_THREADS = threads
        self.fft_object = pyfftw.FFTW(self.fs, self.fks, direction='FFTW_FORWARD',threads=threads)
        self.ifft_object = pyfftw.FFTW(self.fks, self.fs, direction='FFTW_BACKWARD',threads=threads)
        
        # Set up the FFTLog kernels u_m up to, but not including, L
        ms = np.arange(0, self.N//2+1)
        self.ydict = {}; self.udict = {}; self.qdict= {}
        
        if low_ring:
            for ll in range(L):
                q = max(0, 1.5 - ll)
                lnxy = self.Delta/np.pi * np.angle(self.UK(ll,q+1j*np.pi/self.Delta)) #ln(xmin*ymax)
                ys = np.exp( lnxy - self.Delta) * qs/ (qs[0]*qs[-1])
                us = self.UK(ll, q + 2j * np.pi / self.N / self.Delta * ms) \
                        * np.exp(-2j * np.pi * lnxy / self.N / self.Delta * ms)
                us[self.N//2] = us[self.N//2].real # manually impose low ring

                self.ydict[ll] = ys; self.udict[ll] = us; self.qdict[ll] = q
        
        else:
            # if not low ring then just set x_min * y_max = 1
            for ll in range(L):
                q = max(0, 1.5 - ll)
                ys = np.exp(-self.Delta) * qs / (qs[0]*qs[-1])
                us = self.UK(ll, q + 2j * np.pi / self.N / self.Delta * ms)
                us[self.N//2] = us[self.N//2].real # manually impose low ring

                self.ydict[ll] = ys; self.udict[ll] = us; self.qdict[ll] = q
示例#10
0
	def load_wisdom(self,path_wisdom=None):
		if path_wisdom is not None:
			self.attrs['path_wisdom'] = path_wisdom
		path_wisdom = self.attrs['path_wisdom'].format(self.Nmesh,self.attrs['nthreads'])
		if os.path.isfile(path_wisdom):
			self.logger.info('Reading wisdom from {}.'.format(path_wisdom))
			wisdom = open(path_wisdom,'r')
                	pyfftw.import_wisdom(json.load(wisdom))
			wisdom.close()
示例#11
0
文件: dense.py 项目: silx-kit/dynamix
def import_wisdom(basedir):
    w = []
    for i in range(3):  # always 3 ?
        fname = path.join(basedir, "wis%d.dat" % i)
        if not (path.isfile(fname)):
            raise RuntimeError("Could find wisdom file %s" % fname)
        with open(fname, "rb") as fid:
            w.append(fid.read())
    pyfftw.import_wisdom(w)
示例#12
0
 def load(cls):
     try:
         import pickle
         with pyfs.aopen(cls.paths[0], 'rb') as src:
             wisdom = pickle.load(src)
         print(wisdom)
         pyfftw.import_wisdom(wisdom)
     except pyfs.errors.FileNotFoundError:
         pass
示例#13
0
 def _loadwisdom(self, infile):
     if infile is None:
         return
     try:
         pyfftw.import_wisdom(pickle.load(open(infile, 'rb')))
     except (IOError, TypeError) as e:
         self._savewisdom(infile)
     except EOFError as e:
         pass  # file exists but is empty from another FFT being run
示例#14
0
 def __init__(self,
              n=1364,
              N=2048,
              iter0=138000,
              nfiles=64,
              fft_threads=32,
              out_threads=4,
              src_dir='./',
              dst_dir='./',
              src_format='K{0:0>6}QNP{1:0>3}',
              dst_format='RMHD_{0}_t{1:0>4x}_z{2:0>7x}'):
     self.src_format = src_format
     self.dst_format = dst_format
     self.src_dir = src_dir
     self.dst_dir = dst_dir
     self.n = n
     self.N = N
     self.iter0 = iter0
     self.nfiles = nfiles
     self.kdata = pyfftw.n_byte_align_empty(
         (self.N // 2 + 1, 2, self.N, self.N),
         pyfftw.simd_alignment,
         dtype=np.complex64)
     self.rrdata = pyfftw.n_byte_align_empty((self.N, self.N, self.N, 2),
                                             pyfftw.simd_alignment,
                                             dtype=np.float32)
     self.rzdata = pyfftw.n_byte_align_empty(
         ((self.N // 8) * (self.N // 8) * (self.N // 8), 8 * 8 * 8 * 2),
         pyfftw.simd_alignment,
         dtype=np.float32)
     if type(self.dst_dir) == type([]):
         self.zdir = np.array(
             range(0, self.rzdata.shape[0],
                   self.rzdata.shape[0] // len(self.dst_dir)))
     self.cubbies_per_file = self.rzdata.shape[0] // self.nfiles
     if (os.path.isfile('fftw_wisdom.pickle.gz')):
         pyfftw.import_wisdom(
             pickle.load(gzip.open('fftw_wisdom.pickle.gz', 'rb')))
     print('about to initialize the fftw plan, which can take a while')
     self.plan = pyfftw.FFTW(self.kdata.transpose(3, 2, 0, 1),
                             self.rrdata,
                             axes=(0, 1, 2),
                             direction='FFTW_BACKWARD',
                             flags=('FFTW_MEASURE', 'FFTW_DESTROY_INPUT'),
                             threads=fft_threads)
     print('finalized fftw initialization')
     bla = pyfftw.export_wisdom()
     pickle.dump(bla, gzip.open('fftw_wisdom.pickle.gz', 'wb'))
     self.fft_threads = fft_threads
     self.out_threads = out_threads
     self.shuffle_lib = np.ctypeslib.load_library(
         'libzshuffle.so',
         os.path.abspath(
             os.path.join(os.path.expanduser('~'),
                          'repos/RMHD_converter/C-shuffle')))
     return None
示例#15
0
 def load_wisdom(self):
     try:
         with open(_wisdom_filename(), 'rb') as fin:
             wisdom = pickle.load(fin)
             pyfftw.import_wisdom(wisdom)
         return True
     except IOError:
         sys.stderr.write('WARNING: No wisdom file {}. This may take a '
                          'while ...\n'.format(_wisdom_filename()))
         return False
示例#16
0
文件: fft.py 项目: scorelab/focus
 def load_wisdom(self):
     try:
         with open(_wisdom_filename(), 'rb') as fin:
             wisdom = pickle.load(fin)
             pyfftw.import_wisdom(wisdom)
         return True
     except IOError:
         sys.stderr.write('WARNING: No wisdom file {}. This may take a '
                          'while ...\n'.format(_wisdom_filename()))
         return False
示例#17
0
def load_wisdom(wisdomfile):
    """
    Prime FFTW with knowledge of which FFTs are best on this machine by
    loading 'wisdom' from the file ``wisdomfile``
    """
    if wisdomfile is None:
        return

    try:
        pyfftw.import_wisdom(pickle.load(open(wisdomfile, 'rb')))
    except (IOError, TypeError) as e:
        log.warn("No wisdom present, generating some at %r" % wisdomfile)
        save_wisdom(wisdomfile)
示例#18
0
文件: fast_fft.py 项目: zpincus/zplib
def load_plan_hints(filename, locking=True):
    """Load data about the best FFT plans for this computer.

    FFT planning can take quite a while. After planning, the knowledge about
    the best plan for a given computer and given transform parameters can be
    written to disk so that the next time, planning can make use of that
    knowledge.

    Parameters:
        filename: file to read hints from.
        locking: if True, attempt to acquire an exclusive lock before reading
            which can otherwise cause problems if multiple processes are
            attempting to write to the same plan hints file.

    Returns True if plan hints were successfully loaded.

    """
    with open(filename, 'rb') as f:
        if locking:
            import fcntl
            fcntl.flock(f, fcntl.LOCK_EX)
        loaded = pyfftw.import_wisdom(pickle.load(f))
        if locking:
            fcntl.flock(f, fcntl.LOCK_UN)
        return all(loaded)
示例#19
0
def image_fftw(grids, nthread=1, wisdom=None):
    """ Plan pyfftw ifft2 and run it on uv grids (time, npixx, npixy)
    Returns time images.
    """

    if wisdom:
        logger.debug('Importing wisdom...')
        pyfftw.import_wisdom(wisdom)

    images = pyfftw.interfaces.numpy_fft.ifft2(grids, auto_align_input=True,
                                               auto_contiguous=True,
                                               planner_effort='FFTW_MEASURE',
                                               threads=nthread)

    npixx, npixy = images[0].shape

    return recenter(images.real, (npixx//2, npixy//2))
示例#20
0
def _load_wisdom():
    """ Loads the 3 wisdom files. """
    global _is_fftw_wisdom_loaded
    if _is_fftw_wisdom_loaded:
        return

    def load(filename):
        try:
            with open(filename, 'rb') as f:
                wisdom = f.read()
        except IOError:
            wisdom = b''
        return wisdom

    wisdom = [load(f) for f in FFTW_WISDOM_FILES]
    pyfftw.import_wisdom(wisdom)
    _is_fftw_wisdom_loaded = True
示例#21
0
def _load_wisdom():
    """ Loads the 3 wisdom files. """
    global _is_fftw_wisdom_loaded
    if _is_fftw_wisdom_loaded:
        return

    def load(filename):
        try:
            with open(filename, 'rb') as f:
                wisdom = f.read()
        except IOError:
            wisdom = b''
        return wisdom

    wisdom = [load(f) for f in FFTW_WISDOM_FILES]
    pyfftw.import_wisdom(wisdom)
    _is_fftw_wisdom_loaded = True
示例#22
0
文件: ell_mat.py 项目: carronr/LensIt
 def __init__(self,
              ellmat,
              filt_func=lambda ell: ell > 0,
              num_threads=4,
              flags_init=('FFTW_MEASURE', )):
     super(ffs_alm_pyFFTW, self).__init__(ellmat, filt_func=filt_func)
     # FIXME : This can be tricky in in hybrid MPI-OPENMP
     # Builds FFTW Wisdom :
     wisdom_fname = self.ell_mat.lib_dir + '/FFTW_wisdom_%s_%s.npy' % (
         num_threads, ''.join(flags_init))
     if not os.path.exists(wisdom_fname):
         print "++ ffs_alm_pyFFTW :: building and caching FFTW wisdom, this might take a little while..."
         if pbs.rank == 0:
             inpt = pyfftw.empty_aligned(self.ell_mat.shape,
                                         dtype='float64')
             oupt = pyfftw.empty_aligned(self.ell_mat.rshape,
                                         dtype='complex128')
             fft = pyfftw.FFTW(inpt,
                               oupt,
                               axes=(0, 1),
                               direction='FFTW_FORWARD',
                               flags=flags_init,
                               threads=num_threads)
             ifft = pyfftw.FFTW(oupt,
                                inpt,
                                axes=(0, 1),
                                direction='FFTW_BACKWARD',
                                flags=flags_init,
                                threads=num_threads)
             wisdom = pyfftw.export_wisdom()
             np.save(wisdom_fname, wisdom)
             del inpt, oupt, fft, ifft
         pbs.barrier()
     pyfftw.import_wisdom(np.load(wisdom_fname))
     # print "++ ffs_alm_pyFFTW :: loaded widsom ", wisdom_fname
     self.flags = (
         'FFTW_WISDOM_ONLY',
     )  # This will make the code crash if arrays are not properly aligned.
     # self.flags = ('FFTW_MEASURE',)
     self.threads = num_threads
示例#23
0
    def test_import(self):

        forget_wisdom()

        self.generate_wisdom()

        after_wisdom = export_wisdom()

        forget_wisdom()
        before_wisdom = export_wisdom()

        success = import_wisdom(after_wisdom)

        self.compare(before_wisdom, after_wisdom)

        self.assertEqual(success, tuple([x in _supported_types for x in ['64', '32', 'ld']]))
示例#24
0
    def test_import(self):

        forget_wisdom()

        self.generate_wisdom()

        after_wisdom = export_wisdom()

        forget_wisdom()
        before_wisdom = export_wisdom()

        success = import_wisdom(after_wisdom)

        for n in range(0,2):
            self.assertNotEqual(before_wisdom[n], after_wisdom[n])

        self.assertEqual(success, (True, True, True))
示例#25
0
    def test_import(self):

        forget_wisdom()

        self.generate_wisdom()

        after_wisdom = export_wisdom()

        forget_wisdom()
        before_wisdom = export_wisdom()

        success = import_wisdom(after_wisdom)

        for n in range(0,2):
            self.assertNotEqual(before_wisdom[n], after_wisdom[n])

        self.assertEqual(success, (True, True, True))
示例#26
0
    def test_import(self):

        forget_wisdom()

        self.generate_wisdom()

        after_wisdom = export_wisdom()

        forget_wisdom()
        before_wisdom = export_wisdom()

        success = import_wisdom(after_wisdom)

        self.compare(before_wisdom, after_wisdom)

        self.assertEqual(
            success,
            tuple([x in _supported_types for x in ['64', '32', 'ld']]))
示例#27
0
 def load_plan(self, plan_filename, verbose=True, return_all=False):
     if not (self.use_fftw): raise RuntimeError("FFTW is not used")
     try:
         np.load(plan_filename)
     except IOError:
         print(
             "Error: could not read file %s for some reason (possibly permission denied)"
             % plan_filename)
         if return_all: return (False, False, False)
         else: return
     res = pyfftw.import_wisdom(np.load(plan_filename)["plan"])
     if return_all: return res
     elif verbose:  # interpret the result
         st = "" if res[0] else "was not"
         print("Double precision plan %s imported" % st)
         st = "" if res[1] else "was not"
         print("Single precision plan %s imported" % st)
         st = "" if res[2] else "was not"
         print("Long double precision plan %s imported" % st)
示例#28
0
文件: utils.py 项目: embray/poppy
def fftw_load_wisdom(filename=None):
    """ Read accumulated FFTW wisdom previously saved in previously saved in a file 

    By default this file will be in the user's astropy configuration directory.
    (Another location could be chosen - this is simple and works easily cross-platform.)
    
    Parameters
    ------------
    filename : string, optional
        Filename to use (instead of the default, poppy_fftw_wisdom.txt)
    """
 
    import os
    from astropy import config
    try:
        import pyfftw
    except:
        return # FFTW is not present, therefore this is a null op

    if filename is None:
        filename=os.path.join( config.get_config_dir(), "poppy_fftw_wisdom.txt")
 
    if not os.path.exists(filename): return # gracefully ignore the case of lacking wisdom yet.

    _log.debug("Trying to reload wisdom from file "+filename)
    try:
        lines = open(filename,'r').readlines()
        # the first four lines are comments and should be ignored.
        wisdom = [lines[i].replace(r'\n', '\n') for i in [4,5,6]]
        wisdom = tuple(wisdom)
    except:
        _log.debug("ERROR - wisdom tuple could not be loaded from file :"+filename)
        return False

    success = pyfftw.import_wisdom(wisdom)
    _log.debug("Reloaded double precision wisdom: "+str(success[0]))
    _log.debug("Reloaded single precision wisdom: "+str(success[1]))
    _log.debug("Reloaded longdouble precision wisdom: "+str(success[2]))
    
    return True
示例#29
0
def fftw_load_wisdom(filename=None):
    """ Read accumulated FFTW wisdom previously saved in previously saved in a file 

    By default this file will be in the user's astropy configuration directory.
    (Another location could be chosen - this is simple and works easily cross-platform.)
    
    Parameters
    ------------
    filename : string, optional
        Filename to use (instead of the default, poppy_fftw_wisdom.txt)
    """
 
    import os
    from astropy import config
    try:
        import pyfftw
    except:
        return # FFTW is not present, therefore this is a null op

    if filename is None:
        filename=os.path.join( config.get_config_dir(), "poppy_fftw_wisdom.txt")
 
    if not os.path.exists(filename): return # gracefully ignore the case of lacking wisdom yet.

    _log.debug("Trying to reload wisdom from file "+filename)
    try:
        lines = open(filename,'r').readlines()
        # the first four lines are comments and should be ignored.
        wisdom = [lines[i].replace(r'\n', '\n') for i in [4,5,6]]
        wisdom = tuple(wisdom)
    except:
        _log.debug("ERROR - wisdom tuple could not be loaded from file :"+filename)
        return False

    success = pyfftw.import_wisdom(wisdom)
    _log.debug("Reloaded double precision wisdom: "+str(success[0]))
    _log.debug("Reloaded single precision wisdom: "+str(success[1]))
    _log.debug("Reloaded longdouble precision wisdom: "+str(success[2]))
    
    return True
示例#30
0
def lens_glm_GLth_sym_timed(spin,
                            dlm,
                            glm,
                            lmax_target,
                            nband=16,
                            facres=0,
                            clm=None,
                            olm=None,
                            rotpol=True):
    """
    Same as lens_alm but lens simultnously a North and South colatitude band,
    to make profit of the symmetries of the spherical harmonics.
    """
    assert spin >= 0, spin
    times = {}
    t0 = time.time()
    tGL, wg = gauleg.get_xgwg(lmax_target + 2)
    times['GL points and weights'] = time.time() - t0
    target_nt = 3**1 * 2**(11 + facres
                           )  # on one hemisphere (0.87 arcmin spacing)
    th1s = np.arange(nband) * (np.pi * 0.5 / nband)
    th2s = np.concatenate((th1s[1:], [np.pi * 0.5]))
    Nt = target_nt / nband
    tGL = np.arccos(tGL)
    tGL = np.sort(tGL)
    wg = wg[np.argsort(tGL)]
    times['pol. rot.'] = 0.
    times['vtm2defl2ang'] = 0.
    times['vtmdefl'] = 0.

    def coadd_times(tim):
        for _k, _t in tim.iteritems():
            if _k not in times:
                times[_k] = _t
            else:
                times[_k] += _t

    shapes = []
    shapes_d = []

    tGLNs = []
    tGLSs = []
    wgs = []
    # Collects (Nt,Nphi) per band and prepare wisdom
    wisdomhash = str(lmax_target) + '_' + str(nband) + '_' + str(facres +
                                                                 1000) + '.npy'
    assert os.path.exists(
        os.path.dirname(os.path.realpath(__file__)) + '/pyfftw_cache/')
    t0 = time.time()
    print "building and caching FFTW wisdom, this might take a while"
    for ib, th1, th2 in zip(range(nband), th1s, th2s):
        Np = get_Nphi(th1,
                      th2,
                      facres=facres,
                      target_amin=60. * 90. /
                      target_nt)  # same spacing as theta grid
        Np_d = min(get_Nphi(th1, th2, target_amin=180. * 60. / lmax_target),
                   2 * lmax_target)  #Equator point density
        pixN, = np.where((tGL >= th1) & (tGL <= th2))
        pixS, = np.where((tGL >= (np.pi - th2)) & (tGL <= (np.pi - th1)))
        assert np.all(pixN[::-1] == len(tGL) - 1 -
                      pixS), 'symmetry of GL points'
        shapes_d.append((len(pixN), Np_d))
        shapes.append((Nt, Np))
        tGLNs.append(tGL[pixN])
        tGLSs.append(tGL[pixS])
        wgs.append(np.concatenate([wg[pixN], wg[pixS]]))
        print "BAND %s in %s. deflection    (%s x %s) pts " % (ib, nband,
                                                               len(pixN), Np_d)
        print "               interpolation (%s x %s) pts " % (Nt, Np)
        #==== For each block we have the following ffts:
        # (Np_d) complex to complex (deflection map) BACKWARD (vtm2map)
        # (Nt,Np) complex to complex (bicubic prefiltering) BACKWARD (vt2mmap) (4 threads)
        # (Nt) complex to complex (bicubic prefiltering) FORWARD (vt2map)
        # (Np_d) complex to complex  FORWARD (map2vtm)
        # Could rather do a try with FFTW_WISDOM_ONLY
        if not os.path.exists(
                os.path.dirname(os.path.realpath(__file__)) +
                '/pyfftw_cache/' + wisdomhash):
            a = pyfftw.empty_aligned(Np_d, dtype='complex128')
            b = pyfftw.empty_aligned(Np_d, dtype='complex128')
            fft = pyfftw.FFTW(a, b, direction='FFTW_FORWARD', threads=1)
            fft = pyfftw.FFTW(a, b, direction='FFTW_BACKWARD', threads=1)
            a = pyfftw.empty_aligned(Nt, dtype='complex128')
            b = pyfftw.empty_aligned(Nt, dtype='complex128')
            fft = pyfftw.FFTW(a, b, direction='FFTW_FORWARD', threads=1)
            a = pyfftw.empty_aligned((Nt, Np), dtype='complex128')
            b = pyfftw.empty_aligned((Nt, Np), dtype='complex128')
            fft = pyfftw.FFTW(a,
                              b,
                              direction='FFTW_BACKWARD',
                              axes=(0, 1),
                              threads=4)

    if not os.path.exists(
            os.path.dirname(os.path.realpath(__file__)) + '/pyfftw_cache/' +
            wisdomhash):
        np.save(
            os.path.dirname(os.path.realpath(__file__)) + '/pyfftw_cache/' +
            wisdomhash, pyfftw.export_wisdom())
    pyfftw.import_wisdom(
        np.load(
            os.path.dirname(os.path.realpath(__file__)) + '/pyfftw_cache/' +
            wisdomhash))
    shts.PYFFTWFLAGS = ['FFTW_WISDOM_ONLY']
    times['pyfftw_caches'] = time.time() - t0
    print "Total number of interpo points: %s = %s ** 2" % (np.sum(
        [np.prod(s)
         for s in shapes]), np.sqrt(1. * np.sum([np.prod(s) for s in shapes])))
    print "Total number of deflect points: %s = %s ** 2" % (np.sum([
        np.prod(s) for s in shapes_d
    ]), np.sqrt(1. * np.sum([np.prod(s) for s in shapes_d])))

    glmout = np.zeros(shts.util.lmax2nlm(lmax_target), dtype=np.complex)
    clmout = np.zeros(shts.util.lmax2nlm(lmax_target), dtype=np.complex)
    for ib, th1, th2 in zip(range(nband), th1s, th2s):

        Nt_d, Np_d = shapes_d[ib]
        Nt, Np = shapes[ib]

        t0 = time.time()
        vtm_def = shts.vlm2vtm_sym(1, _th2colat(tGLNs[ib]),
                                   shts.util.alm2vlm(dlm, clm=olm))
        times['vtmdefl'] += time.time() - t0

        #==== gettting deflected positions
        # NB: forward slice to keep theta -> pi - theta correspondance.
        t0 = time.time()
        dmapN = shts.vtm2map(1, vtm_def[:Nt_d, :], Np_d).flatten()
        dmapS = shts.vtm2map(1, vtm_def[slice(Nt_d, 2 * Nt_d), :],
                             Np_d).flatten()

        told = np.outer(tGLNs[ib], np.ones(Np_d)).flatten()
        phiold = np.outer(np.ones(Nt_d),
                          np.arange(Np_d) * (2. * np.pi / Np_d)).flatten()

        tnewN, phinewN = _buildangles((told, phiold), dmapN.real, dmapN.imag)
        tnewS, phinewS = _buildangles(((np.pi - told)[::-1], phiold),
                                      dmapS.real, dmapS.imag)
        del vtm_def
        times['vtm2defl2ang'] += time.time() - t0

        #===== Adding a 10 pixels buffer for new angles to be safely inside interval.
        # th1,th2 is mapped onto pi - th2,pi -th1 so we need to make sure to cover both buffers
        matnewN = np.max(tnewN)
        mitnewN = np.min(tnewN)
        matnewS = np.max(tnewS)
        mitnewS = np.min(tnewS)

        buffN = 10 * (matnewN - mitnewN) / (Nt - 1) / (1. - 2. * 10. /
                                                       (Nt - 1))
        buffS = 10 * (matnewS - mitnewS) / (Nt - 1) / (1. - 2. * 10. /
                                                       (Nt - 1))
        _thup = min(np.pi - (matnewS + buffS), mitnewN - buffN)
        _thdown = max(np.pi - (mitnewS - buffS), matnewN + buffN)

        #==== these are the theta and limits. It is ok to go negative or > 180

        dphi_patch = (2. * np.pi) / Np * max(np.sin(_thup), np.sin(_thdown))
        dth_patch = (_thdown - _thup) / (Nt - 1)

        print 'input t1,t2 %.3f %.3f in degrees' % (_thup / np.pi * 180,
                                                    _thdown / np.pi * 180.)
        print 'North %.3f and South %.3f buffers in amin' % (
            buffN / np.pi * 180 * 60, buffS / np.pi * 180. * 60.)
        print "cell (theta,phi) in amin (%.3f,%.3f)" % (
            dth_patch / np.pi * 60. * 180, dphi_patch / np.pi * 60. * 180)

        if spin == 0:
            lenN, lenS, tim = lens_band_sym_timed(glm,
                                                  _thup,
                                                  _thdown,
                                                  Nt, (tnewN, phinewN),
                                                  (tnewS, phinewS),
                                                  Nphi=Np)
            ret = np.zeros((2 * Nt_d, Np_d), dtype=complex)
            ret[:Nt_d, :] = lenN.reshape((Nt_d, Np_d))
            ret[Nt_d:, :] = lenS.reshape((Nt_d, Np_d))
            vtm = shts.map2vtm(spin, lmax_target, ret)
            glmout -= shts.vtm2tlm_sym(
                np.concatenate([tGLNs[ib], tGLSs[ib]]),
                vtm * np.outer(wgs[ib], np.ones(vtm.shape[1])))
        else:
            assert 0, 'fix this'
            lenNR, lenNI, lenSR, lenSI, tim = gclm2lensmap_symband_timed(
                spin,
                glm,
                _thup,
                _thdown,
                Nt, (tnewN, phinewN), (tnewS, phinewS),
                Nphi=Nphi,
                clm=clm)
            retN = (lenNR + 1j * lenNI).reshape((len(pixN), Np_d))
            retS = (lenSR + 1j * lenSI).reshape((len(pixN), Np_d))
            glm, clm = shts.util.vlm2alm(
                shts.vtm2vlm(spin, tGL,
                             vtm * np.outer(wg, np.ones(vtm.shape[1]))))
            t0 = time.time()
            if rotpol and spin > 0:
                ret[pixN, :] *= polrot(spin, retN.flatten(), tnewN, dmapN.real,
                                       dmapN.imag)
                ret[pixS, :] *= polrot(spin, retS.flatten(), tnewS, dmapS.real,
                                       dmapS.imag)
                times['pol. rot.'] += time.time() - t0
        coadd_times(tim)

    t0 = time.time()
    print "STATS for lmax tlm %s lmax dlm %s" % (hp.Alm.getlmax(
        glm.size), hp.Alm.getlmax(dlm.size))
    tot = 0.
    for _k, _t in times.iteritems():
        print '%20s: %.2f' % (_k, _t)
        tot += _t
    print "%20s: %2.f sec." % ('tot', tot)
    return glmout, clmout, ret
示例#31
0
 def load_wisdom(self, wisdom_file=DEFAULT_WISDOM_FILE):
     """Load saved FFTW wisdom from file."""
     with open(wisdom_file, 'rb') as f:
         wisdom = cPickle.load(f)
         pyfftw.import_wisdom(wisdom)
示例#32
0
def pyFFTWPlanner( realMage, fouMage=None, wisdomFile = None, effort = 'FFTW_MEASURE', n_threads = None, doForward = True, doReverse = True ):
    """
    Appends an FFTW plan for the given realMage to a text file stored in the same
    directory as RAMutil, which can then be loaded in the future with pyFFTWLoadWisdom.
    
    NOTE: realMage should be typecast to 'complex64' normally.
    
    NOTE: planning pickle files are hardware dependant, so don't copy them from one 
    machine to another. wisdomFile allows you to specify a .pkl file with the wisdom
    tuple written to it.  The wisdomFile is never updated, whereas the default 
    wisdom _is_ updated with each call. For multiprocessing, it's important to 
    let FFTW generate its plan from an ideal processor state.
    
    TODO: implement real, half-space fourier transforms rfft2 and irfft2 as built
    """
    
    import pyfftw
    import pickle
    import os.path
    from multiprocessing import cpu_count
    
    utilpath = os.path.dirname(os.path.realpath(__file__))
    
    # First import whatever we already have
    if wisdomFile is None:
        wisdomFile = os.path.join( utilpath, "pyFFTW_wisdom.pkl" )


    if os.path.isfile(wisdomFile):
        try:
            fh = open( wisdomFile, 'rb')
        except:
            print( "Util: pyFFTW wisdom plan file: " + str(wisdomFile) + " invalid/unreadable" )
            
        try:
            pyfftw.import_wisdom( pickle.load( fh ) )
        except: 
            # THis is not normally a problem, it might be empty?
            print( "Util: pickle failed to import FFTW wisdom" )
            pass
        try:
            fh.close()
        except: 
            pass

    else:
        # Touch the file
        os.umask(0000) # Everyone should be able to delete scratch files
        with open( wisdomFile, 'wb') as fh:
            pass
    
        # I think the fouMage array has to be smaller to do the real -> complex FFT?
    if fouMage is None:
        if realMage.dtype.name == 'float32':
            print( "pyFFTW is recommended to work on purely complex data" )
            fouShape = realMage.shape
            fouShape.shape[-1] = realMage.shape[-1]//2 + 1
            fouDtype =  'complex64'
            fouMage = np.empty( fouShape, dtype=fouDtype )
        elif realMage.dtype.name == 'float64': 
            print( "pyFFTW is recommended to work on purely complex data" )
            fouShape = realMage.shape
            fouShape.shape[-1] = realMage.shape[-1]//2 + 1
            fouDtype = 'complex128'
            fouMage = np.empty( fouShape, dtype=fouDtype )
        else: # Assume dtype is complexXX
            fouDtype = realMage.dtype.name
            fouMage = np.zeros( realMage.shape, dtype=fouDtype )
            
    if n_threads is None:
        n_threads = cpu_count()
    print( "FFTW using " + str(n_threads) + " threads" )
    
    if bool(doForward):
        #print( "Planning forward pyFFTW for shape: " + str( realMage.shape ) )
        FFT2 = pyfftw.builders.fft2( realMage, planner_effort=effort, 
                                    threads=n_threads, auto_align_input=True )
    else:
        FFT2 = None
    if bool(doReverse):
        #print( "Planning reverse pyFFTW for shape: " + str( realMage.shape ) )
        IFFT2 = pyfftw.builders.ifft2( fouMage, planner_effort=effort, 
                                      threads=n_threads, auto_align_input=True )
    else: 
        IFFT2 = None

    # Setup so that we can call .execute on each one without re-copying arrays
    # if FFT2 is not None and IFFT2 is not None:
    #    FFT2.update_arrays( FFT2.get_input_array(), IFFT2.get_input_array() )
    #    IFFT2.update_arrays( IFFT2.get_input_array(), FFT2.get_input_array() )
    # Something is different in the builders compared to FFTW directly. 
    # Can also repeat this for pyfftw.builders.rfft2 and .irfft2 if desired, but 
    # generally it seems slower.
    # Opening a file for writing is supposed to truncate it
    # if bool(savePlan):
    #if wisdomFile is None:
    # with open( utilpath + "/pyFFTW_wisdom.pkl", 'wb') as fh:
    with open( wisdomFile, 'wb' ) as fh:
        pickle.dump( pyfftw.export_wisdom(), fh )
            
    return FFT2, IFFT2
示例#33
0
def pyfftw_call(array_in, array_out, direction='forward', axes=None,
                halfcomplex=False, **kwargs):
    """Calculate the DFT with pyfftw.

    The discrete Fourier (forward) transform calcuates the sum::

        f_hat[k] = sum_j( f[j] * exp(-2*pi*1j * j*k/N) )

    where the summation is taken over all indices
    ``j = (j[0], ..., j[d-1])`` in the range ``0 <= j < N``
    (component-wise), with ``N`` being the shape of the input array.

    The output indices ``k`` lie in the same range, except
    for half-complex transforms, where the last axis ``i`` in ``axes``
    is shortened to ``0 <= k[i] < floor(N[i]/2) + 1``.

    In the backward transform, sign of the the exponential argument
    is flipped.

    Parameters
    ----------
    array_in : `numpy.ndarray`
        Array to be transformed
    array_out : `numpy.ndarray`
        Output array storing the transformed values, may be aliased
        with ``array_in``.
    direction : {'forward', 'backward'}, optional
        Direction of the transform
    axes : int or sequence of ints, optional
        Dimensions along which to take the transform. ``None`` means
        using all axes and is equivalent to ``np.arange(ndim)``.
    halfcomplex : bool, optional
        If ``True``, calculate only the negative frequency part along the
        last axis. If ``False``, calculate the full complex FFT.
        This option can only be used with real input data.

    Other Parameters
    ----------------
    fftw_plan : ``pyfftw.FFTW``, optional
        Use this plan instead of calculating a new one. If specified,
        the options ``planning_effort``, ``planning_timelimit`` and
        ``threads`` have no effect.
    planning_effort : str, optional
        Flag for the amount of effort put into finding an optimal
        FFTW plan. See the `FFTW doc on planner flags
        <http://www.fftw.org/fftw3_doc/Planner-Flags.html>`_.
        Available options: {'estimate', 'measure', 'patient', 'exhaustive'}
        Default: 'estimate'
    planning_timelimit : float or ``None``, optional
        Limit planning time to roughly this many seconds.
        Default: ``None`` (no limit)
    threads : int, optional
        Number of threads to use.
        Default: Number of CPUs if the number of data points is larger
        than 4096, else 1.
    normalise_idft : bool, optional
        If ``True``, the result of the backward transform is divided by
        ``1 / N``, where ``N`` is the total number of points in
        ``array_in[axes]``. This ensures that the IDFT is the true
        inverse of the forward DFT.
        Default: ``False``
    import_wisdom : filename or file handle, optional
        File to load FFTW wisdom from. If the file does not exist,
        it is ignored.
    export_wisdom : filename or file handle, optional
        File to append the accumulated FFTW wisdom to

    Returns
    -------
    fftw_plan : ``pyfftw.FFTW``
        The plan object created from the input arguments. It can be
        reused for transforms of the same size with the same data types.
        Note that reuse only gives a speedup if the initial plan
        used a planner flag other than ``'estimate'``.
        If ``fftw_plan`` was specified, the returned object is a
        reference to it.

    Notes
    -----
    * The planning and direction flags can also be specified as
      capitalized and prepended by ``'FFTW_'``, i.e. in the original
      FFTW form.
    * For a ``halfcomplex`` forward transform, the arrays must fulfill
      ``array_out.shape[axes[-1]] == array_in.shape[axes[-1]] // 2 + 1``,
      and vice versa for backward transforms.
    * All planning schemes except ``'estimate'`` require an internal copy
      of the input array but are often several times faster after the
      first call (measuring results are cached). Typically,
      'measure' is a good compromise. If you cannot afford the copy,
      use ``'estimate'``.
    * If a plan is provided via the ``fftw_plan`` parameter, no copy
      is needed internally.
    """
    import pickle

    if not array_in.flags.aligned:
        raise ValueError('input array not aligned')

    if not array_out.flags.aligned:
        raise ValueError('output array not aligned')

    if axes is None:
        axes = tuple(range(array_in.ndim))

    axes = normalized_axes_tuple(axes, array_in.ndim)

    direction = _flag_pyfftw_to_odl(direction)
    fftw_plan_in = kwargs.pop('fftw_plan', None)
    planning_effort = _flag_pyfftw_to_odl(
        kwargs.pop('planning_effort', 'estimate')
    )
    planning_timelimit = kwargs.pop('planning_timelimit', None)
    threads = kwargs.pop('threads', None)
    normalise_idft = kwargs.pop('normalise_idft', False)
    wimport = kwargs.pop('import_wisdom', '')
    wexport = kwargs.pop('export_wisdom', '')

    # Cast input to complex if necessary
    array_in_copied = False
    if is_real_dtype(array_in.dtype) and not halfcomplex:
        # Need to cast array_in to complex dtype
        array_in = array_in.astype(complex_dtype(array_in.dtype))
        array_in_copied = True

    # Do consistency checks on the arguments
    _pyfftw_check_args(array_in, array_out, axes, halfcomplex, direction)

    # Import wisdom if possible
    if wimport:
        try:
            with open(wimport, 'rb') as wfile:
                wisdom = pickle.load(wfile)
        except IOError:
            wisdom = []
        except TypeError:  # Got file handle
            wisdom = pickle.load(wimport)

        if wisdom:
            pyfftw.import_wisdom(wisdom)

    # Copy input array if it hasn't been done yet and the planner is likely
    # to destroy it. If we already have a plan, we don't have to worry.
    planner_destroys = _pyfftw_destroys_input(
        [planning_effort], direction, halfcomplex, array_in.ndim)
    must_copy_array_in = fftw_plan_in is None and planner_destroys

    if must_copy_array_in and not array_in_copied:
        plan_arr_in = np.empty_like(array_in)
        flags = [_flag_odl_to_pyfftw(planning_effort), 'FFTW_DESTROY_INPUT']
    else:
        plan_arr_in = array_in
        flags = [_flag_odl_to_pyfftw(planning_effort)]

    if fftw_plan_in is None:
        if threads is None:
            if plan_arr_in.size <= 4096:  # Trade-off wrt threading overhead
                threads = 1
            else:
                threads = cpu_count()

        fftw_plan = pyfftw.FFTW(
            plan_arr_in, array_out, direction=_flag_odl_to_pyfftw(direction),
            flags=flags, planning_timelimit=planning_timelimit,
            threads=threads, axes=axes)
    else:
        fftw_plan = fftw_plan_in

    fftw_plan(array_in, array_out, normalise_idft=normalise_idft)

    if wexport:
        try:
            with open(wexport, 'ab') as wfile:
                pickle.dump(pyfftw.export_wisdom(), wfile)
        except TypeError:  # Got file handle
            pickle.dump(pyfftw.export_wisdom(), wexport)

    return fftw_plan
示例#34
0
                if(line.startswith(" ") or line.startswith(")")):
                    wisdom_tuple[-1] += line  # append to string
                else:
                    wisdom_tuple.append(line)

            wisdom = wisdom_tuple  # override

    return wisdom


# if configured to use centuries of fftw wisdom, read the fftw oracle of
# delphi (i.e. the wisdom file) - do this on import:
if(wisdom_file is not None):
    wisdom = read_wisdom()
    if(wisdom is not None):
        pyfftw.import_wisdom(wisdom)

pyfftw_simd_alignment = pyfftw.simd_alignment
pyfftw.interfaces.cache.enable()
pyfftw.interfaces.cache.set_keepalive_time(300)  # keep cache alive for 300 sec
# TODO: make this a configurable parameter?


def get_num_threads():
    """Get number of threads from environment variable.

    Returns
    -------
    num_threads : int
        $TFFTW_NUM_THREADS if set, 1 otherwise.
    """
    def __init__(self, **kwargs):
        """
        The following parameters are to be specified
            X_gridDIM - the coordinate grid size
            X_amplitude - maximum value of the coordinates
            P_gridDIM - the momentum grid size
            P_amplitude - maximum value of the momentum
            V(self, x) - potential energy (as a function) may depend on time
            diff_V(self, x) (optional) - the derivative of the potential energy for the Ehrenfest theorem calculations
            K(self, p) - the kinetic energy (as a function) may depend on time
            diff_K(self, p) (optional) - the derivative of the kinetic energy for the Ehrenfest theorem calculations
            dt - time step
            t (optional) - initial value of time (default t = 0)

            alpha (optional) - the absorbing boundary smoothing parameter.
                    If not specified, absorbing boundary not used.

            FFTW settings (for details see https://hgomersall.github.io/pyFFTW/pyfftw/pyfftw.html#pyfftw.FFTW)
            ffw_flags (optional) - a list of strings and is a subset of the flags that FFTW allows for the planners
            fftw_threads (optional) - how many threads to use when invoking FFTW, with a default of 1
            fftw_wisdom (optionla) - a tuple of strings returned by pyfftw.export_wisdom() for efficient simulations
        """

        # save all attributes
        for name, value in kwargs.items():
            # if the value supplied is a function, then dynamically assign it as a method;
            # otherwise bind it a property
            if isinstance(value, FunctionType):
                setattr(self, name, MethodType(value, self, self.__class__))
            else:
                setattr(self, name, value)

        # Check that all attributes were specified
        try:
            self.X_gridDIM
        except AttributeError:
            raise AttributeError("Coordinate grid size (X_gridDIM) was not specified")

        assert self.X_gridDIM % 2 == 0, "Coordinate grid size (X_gridDIM) must be even"

        try:
            self.P_gridDIM
        except AttributeError:
            raise AttributeError("Momentum grid size (P_gridDIM) was not specified")

        assert self.P_gridDIM % 2 == 0, "Momentum grid size (P_gridDIM) must be even"

        try:
            self.X_amplitude
        except AttributeError:
            raise AttributeError("Coordinate grid range (X_amplitude) was not specified")

        try:
            self.P_amplitude
        except AttributeError:
            raise AttributeError("Momentum grid range (P_amplitude) was not specified")

        try:
            self.V
        except AttributeError:
            raise AttributeError("Potential energy (V) was not specified")

        try:
            self.K
        except AttributeError:
            raise AttributeError("Momentum dependence (K) was not specified")

        try:
            self.dt
        except AttributeError:
            raise AttributeError("Time-step (dt) was not specified")

        try:
            self.t
        except AttributeError:
            print("Warning: Initial time (t) was not specified, thus it is set to zero.")
            self.t = 0.

        ##########################################################################################
        #
        # Generating grids
        #
        ##########################################################################################

        # get coordinate and momentum step sizes
        self.dX = 2. * self.X_amplitude / self.X_gridDIM
        self.dP = 2. * self.P_amplitude / self.P_gridDIM

        # coordinate grid
        self.X = np.linspace(-self.X_amplitude, self.X_amplitude - self.dX, self.X_gridDIM)
        self.X = self.X[np.newaxis, :]

        # Lambda grid (variable conjugate to the coordinate)
        self.Lambda = np.fft.fftfreq(self.X_gridDIM, self.dX / (2 * np.pi))

        # take only first half, as required by the real fft
        self.Lambda = self.Lambda[:(1 + self.X_gridDIM // 2)]
        #
        self.Lambda = self.Lambda[np.newaxis, :]

        # momentum grid
        self.P = np.linspace(-self.P_amplitude, self.P_amplitude - self.dP, self.P_gridDIM)
        self.P = self.P[:, np.newaxis]

        # Theta grid (variable conjugate to the momentum)
        self.Theta = np.fft.fftfreq(self.P_gridDIM, self.dP / (2 * np.pi))

        # take only first half, as required by the real fft
        self.Theta = self.Theta[:(1 + self.P_gridDIM // 2)]
        #
        self.Theta = self.Theta[:, np.newaxis]

        ##########################################################################################
        #
        # Pre-calculate absorbing boundary
        #
        ##########################################################################################

        # auxiliary grids
        X_minus = self.X - 0.5 * self.Theta
        X_plus = self.X + 0.5 * self.Theta

        try:
            self.alpha
            # if user specified  the absorbing boundary smoothing parameter (alpha)
            # then generate the absorbing boundary

            xmin = min(X_minus.min(), X_plus.min())
            xmax = max(X_minus.max(), X_plus.max())

            self.abs_boundary = np.sin(np.pi * (X_plus - xmin) / (xmax - xmin))
            self.abs_boundary *= np.sin(np.pi * (X_minus - xmin) / (xmax - xmin))

            np.abs(self.abs_boundary, out=self.abs_boundary)
            self.abs_boundary **= abs(self.alpha * self.dt)

        except AttributeError:
            # if the absorbing boundary smoothing parameter was not specified
            # then we should not use the absorbing boundary
            self.abs_boundary = 1

        ##########################################################################################
        #
        # Pre-calculate exponents
        #
        ##########################################################################################

        try:
            # Cache the potential energy exponent, if the potential is time independent
            self._expV = np.exp(-self.dt * 0.5j * (self.V(X_minus) - self.V(X_plus)))

            # Apply absorbing boundary
            self._expV *= self.abs_boundary

            # Dynamically assign the method self.get_exp_v(t) to access the cached exponential
            self.get_exp_v = MethodType(lambda self, t: self._expV, self, self.__class__)

        except TypeError:
            # If exception is generated, then the potential is time-dependent and caching is not possible,
            # thus, dynamically assign the method self.get_exp_v(t) to recalculate the exponent for every t

            self.X_minus = X_minus
            self.X_plus = X_plus

            def get_exp_v(self, t):
                result = -self.dt * 0.5j * (self.V(self.X_minus, t) - self.V(self.X_plus, t))
                np.exp(result, out=result)
                # Apply absorbing boundary
                result *= self.abs_boundary
                return result

            self.get_exp_v = MethodType(get_exp_v, self, self.__class__)

        ##########################################################################################

        try:
            # Cache the kinetic energy exponent, if the potential is time independent
            self._expK = np.exp(
                -self.dt * 1j * (self.K(self.P + 0.5 * self.Lambda) - self.K(self.P - 0.5 * self.Lambda))
            )

            # Dynamically assign the method self.get_exp_k(t) to access the cached exponential
            self.get_exp_k = MethodType(lambda self, t: self._expK, self, self.__class__)

        except TypeError:
            # If exception is generated, then the kinetic term is time-dependent and caching is not possible,
            # thus, dynamically assign the method self.get_exp_k(t) to recalculate the exponent for every t

            self.P_minus = self.P - 0.5 * self.Lambda
            self.P_plus = self.P + 0.5 * self.Lambda

            def get_exp_k(self, t):
                result = -self.dt * 1j * (self.K(self.P_plus, t) - self.K(self.P_minus, t))
                np.exp(result, out=result)
                return result

            self.get_exp_k = MethodType(get_exp_k, self, self.__class__)

        ##########################################################################################
        #
        #   Ehrenfest theorems (optional)
        #
        ##########################################################################################

        try:
            # Check whether the necessary terms are specified to calculate the Ehrenfest theorems

            # Pre-calculate RHS if time independent (using similar ideas as in self.get_exp_v above)
            try:
                self._diff_V = self.diff_V(self.X)
                self.get_diff_v = MethodType(lambda self, t: self._diff_V, self, self.__class__)
            except TypeError:
                self.get_diff_v = MethodType(
                    lambda self, t: self.diff_V(self.X, t), self, self.__class__
                )

            # Pre-calculate RHS if time independent (using similar ideas as in self.get_exp_v above)
            try:
                self._diff_K = self.diff_K(self.P)
                self.get_diff_k = MethodType(lambda self, t: self._diff_K, self, self.__class__)
            except TypeError:
                self.get_diff_k = MethodType(
                    lambda self, t: self.diff_K(self.P, t), self, self.__class__
                )

            # Pre-calculate the potential and kinetic energies for
            # calculating the expectation value of Hamiltonian
            try:
                self._V = self.V(self.X)
                self.get_v = MethodType(lambda self, t: self._V, self, self.__class__)
            except TypeError:
                self.get_v = MethodType(lambda self, t: self.V(self.X, t), self, self.__class__)

            try:
                self._K = self.K(self.P)
                self.get_k = MethodType(lambda self, t: self._K, self, self.__class__)
            except TypeError:
                self.get_k = MethodType(lambda self, t: self.K(self.P, t), self, self.__class__)

            # Lists where the expectation values of X and P
            self.X_average = []
            self.P_average = []

            # Lists where the right hand sides of the Ehrenfest theorems for X and P
            self.X_average_RHS = []
            self.P_average_RHS = []

            # List where the expectation value of the Hamiltonian will be calculated
            self.hamiltonian_average = []

            # Flag requesting tha the Ehrenfest theorem calculations
            self.isEhrenfest = True

        except AttributeError:
            # Since self.diff_V and self.diff_K are not specified,
            # the Ehrenfest theorem will not be calculated
            self.isEhrenfest = False

        ##########################################################################################
        #
        #   FTTW set-up
        #
        ##########################################################################################

        # Check for FFTW flags
        try:
            self.ffw_flags
        except AttributeError:
            # otherwise assign some default values
            self.ffw_flags = ('FFTW_ESTIMATE',)

        # Allow to destroy data in input arrays during FFT to speed up calculations
        self.ffw_flags = self.ffw_flags + ('FFTW_DESTROY_INPUT',)

        # Number of threads used for FFTW
        try:
            self.fftw_threads
        except AttributeError:
            self.fftw_threads = 1

        # load FFTW wisdom, if provided
        try:
            pyfftw.import_wisdom(self.fftw_wisdom)
        except AttributeError:
            pass

        # allocate memory for the Wigner function
        self.wignerfunction = pyfftw.empty_aligned((self.P.size, self.X.size), dtype=np.float)

        ##########################################################################################
        #
        # allocate memory for the wigner function in the theta x and p lambda representations
        # by reusing the memory
        #
        ##########################################################################################

        # find sizes of each representations
        size_theta_x = self.Theta.size * self.X.size
        size_p_lambda = self.P.size * self.Lambda.size

        if size_theta_x > size_p_lambda:
            # since theta x representation requires more memory, allocate it
            self.wigner_theta_x = pyfftw.empty_aligned((self.Theta.size, self.X.size), dtype=np.complex)
            # for p lambda representation uses a smaller subspace
            self.wigner_p_lambda = np.frombuffer(self.wigner_theta_x, dtype=np.complex, count=size_p_lambda)
            self.wigner_p_lambda = self.wigner_p_lambda.reshape((self.P.size, self.Lambda.size))
        else:
            # since  p lambda representation requires more memory, allocate it
            self.wigner_p_lambda = pyfftw.empty_aligned((self.P.size, self.Lambda.size), dtype=np.complex)
            # for theta x representation uses a smaller subspace
            self.wigner_theta_x = np.frombuffer(self.wigner_p_lambda, dtype=np.complex, count=size_theta_x)
            self.wigner_theta_x = self.wigner_theta_x.reshape((self.Theta.size, self.X.size))

        ##########################################################################################

        # plan the FFT for the  p x -> theta x transform
        self.p2theta_transform = pyfftw.FFTW(
            self.wignerfunction, self.wigner_theta_x,
            axes=(0,),
            direction='FFTW_FORWARD',
            flags=self.ffw_flags,
            threads=self.fftw_threads
        )

        # plan the FFT for the theta x -> p x  transform
        self.theta2p_transform = pyfftw.FFTW(
            self.wigner_theta_x, self.wignerfunction,
            axes=(0,),
            direction='FFTW_BACKWARD',
            flags=self.ffw_flags,
            threads=self.fftw_threads
        )

        # plan the FFT for the p x  ->  p lambda transform
        self.x2lambda_transform = pyfftw.FFTW(
            self.wignerfunction, self.wigner_p_lambda,
            axes=(1,),
            direction='FFTW_FORWARD',
            flags=self.ffw_flags,
            threads=self.fftw_threads
        )

        # plan the FFT for the p lambda  ->  p x transform
        self.lambda2x_transform = pyfftw.FFTW(
            self.wigner_p_lambda, self.wignerfunction,
            axes=(1,),
            direction='FFTW_BACKWARD',
            flags=self.ffw_flags,
            threads=self.fftw_threads
        )
示例#36
0
    def iterate(self, iloop, save_wisdom=1):
        cat = self.cat
        ran = self.ran
        smooth = self.smooth
        binsize = self.binsize
        beta = self.beta
        bias = self.bias
        f = self.f
        nbins = self.nbins

        #-- Creating arrays for FFTW
        if iloop == 0:
            delta = pyfftw.empty_aligned((nbins, nbins, nbins),
                                         dtype='complex128')
            deltak = pyfftw.empty_aligned((nbins, nbins, nbins),
                                          dtype='complex128')
            psi_x = pyfftw.empty_aligned((nbins, nbins, nbins),
                                         dtype='complex128')
            psi_y = pyfftw.empty_aligned((nbins, nbins, nbins),
                                         dtype='complex128')
            psi_z = pyfftw.empty_aligned((nbins, nbins, nbins),
                                         dtype='complex128')
            #delta = N.zeros((nbins, nbins, nbins), dtype='complex128')
            #deltak= N.zeros((nbins, nbins, nbins), dtype='complex128')
            #psi_x = N.zeros((nbins, nbins, nbins), dtype='complex128')
            #psi_y = N.zeros((nbins, nbins, nbins), dtype='complex128')
            #psi_z = N.zeros((nbins, nbins, nbins), dtype='complex128')

            print('Allocating randoms in cells...')
            deltar = self.allocate_gal_cic(ran)
            print('Smoothing...')
            deltar = gaussian_filter(deltar, smooth / binsize)

            #-- Initialize FFT objects and load wisdom if available
            wisdomFile = "wisdom." + str(nbins) + "." + str(self.nthreads)
            if os.path.isfile(wisdomFile):
                print('Reading wisdom from ', wisdomFile)
                g = open(wisdomFile, 'r')
                wisd = json.load(g)
                pyfftw.import_wisdom(wisd)
                g.close()
            print('Creating FFTW objects...')
            fft_obj = pyfftw.FFTW(delta,
                                  delta,
                                  axes=[0, 1, 2],
                                  threads=self.nthreads)
            ifft_obj = pyfftw.FFTW(deltak, psi_x, axes=[0, 1, 2], \
                                   threads=self.nthreads, \
                                   direction='FFTW_BACKWARD')
        else:
            delta = self.delta
            deltak = self.deltak
            deltar = self.deltar
            psi_x = self.psi_x
            psi_y = self.psi_y
            psi_z = self.psi_z
            fft_obj = self.fft_obj
            ifft_obj = self.ifft_obj

        #fft_obj = pyfftw.FFTW(delta, delta, threads=self.nthreads, axes=[0, 1, 2])
        #-- Allocate galaxies and randoms to grid with CIC method
        #-- using new positions
        print('Allocating galaxies in cells...')
        deltag = self.allocate_gal_cic(cat)
        print('Smoothing...')
        deltag = gaussian_filter(deltag, smooth / binsize)

        print('Computing fluctuations...')
        delta[:] = deltag - self.alpha * deltar
        w = N.where(deltar > self.ran_min)
        delta[w] = delta[w] / (self.alpha * deltar[w])
        w2 = N.where((deltar <= self.ran_min))
        delta[w2] = 0.
        w3 = N.where(delta > N.percentile(delta[w].ravel(), 99))
        delta[w3] = 0.
        del (w)
        del (w2)
        del (w3)
        del (deltag)

        print('Fourier transforming delta field...')
        norm_fft = 1.  #binsize**3
        fft_obj(input_array=delta, output_array=delta)
        #delta = pyfftw.builders.fftn(\
        #                delta, axes=[0, 1, 2], \
        #                threads=self.nthreads, overwrite_input=True)()

        #-- delta/k**2
        k = fftfreq(self.nbins, d=binsize) * 2 * N.pi
        delta /= k[:, None, None]**2 + k[None, :, None]**2 + k[None,
                                                               None, :]**2
        delta[0, 0, 0] = 1

        #-- Estimating the IFFT in Eq. 12 of Burden et al. 2015
        print('Inverse Fourier transforming to get psi...')
        norm_ifft = 1.  #(k[1]-k[0])**3/(2*N.pi)**3*nbins**3

        deltak[:] = delta * -1j * k[:, None, None] / bias
        ifft_obj(input_array=deltak, output_array=psi_x)
        deltak[:] = delta * -1j * k[None, :, None] / bias
        ifft_obj(input_array=deltak, output_array=psi_y)
        deltak[:] = delta * -1j * k[None, None, :] / bias
        ifft_obj(input_array=deltak, output_array=psi_z)

        #psi_x = pyfftw.builders.ifftn(\
        #                delta*-1j*k[:, None, None]/bias, \
        #                axes=[0, 1, 2], \
        #                threads=self.nthreads, overwrite_input=True)().real
        #psi_y = pyfftw.builders.ifftn(\
        #                delta*-1j*k[None, :, None]/bias, \
        #                axes=[0, 1, 2], \
        #                threads=self.nthreads, overwrite_input=True)().real
        #psi_z = pyfftw.builders.ifftn(\
        #                delta*-1j*k[None, None, :]/bias, \
        #                axes=[0, 1, 2], \
        #                threads=self.nthreads, overwrite_input=True)().real
        #psi_x = ifftn(-1j*delta*k[:, None, None]/bias).real*norm_ifft
        #psi_y = ifftn(-1j*delta*k[None, :, None]/bias).real*norm_ifft
        #psi_z = ifftn(-1j*delta*k[None, None, :]/bias).real*norm_ifft

        #-- removing RSD from galaxies
        shift_x, shift_y, shift_z =  \
                self.get_shift(cat, psi_x.real, psi_y.real, psi_z.real, \
                               use_newpos=True)
        for i in range(10):
            print(shift_x[i], shift_y[i], shift_z[i], cat.x[i])

        #-- for first loop need to approximately remove RSD component
        #-- from Psi to speed up calculation
        #-- first loop so want this on original positions (cp),
        #-- not final ones (np) - doesn't actualy matter
        if iloop == 0:
            psi_dot_rhat = (shift_x*cat.x + \
                            shift_y*cat.y + \
                            shift_z*cat.z ) /cat.dist
            shift_x -= beta / (1 + beta) * psi_dot_rhat * cat.x / cat.dist
            shift_y -= beta / (1 + beta) * psi_dot_rhat * cat.y / cat.dist
            shift_z -= beta / (1 + beta) * psi_dot_rhat * cat.z / cat.dist
        #-- remove RSD from original positions (cp) of
        #-- galaxies to give new positions (np)
        #-- these positions are then used in next determination of Psi,
        #-- assumed to not have RSD.
        #-- the iterative procued then uses the new positions as
        #-- if they'd been read in from the start
        psi_dot_rhat = (shift_x * cat.x + shift_y * cat.y +
                        shift_z * cat.z) / cat.dist
        cat.newx = cat.x + f * psi_dot_rhat * cat.x / cat.dist
        cat.newy = cat.y + f * psi_dot_rhat * cat.y / cat.dist
        cat.newz = cat.z + f * psi_dot_rhat * cat.z / cat.dist

        self.deltar = deltar
        self.delta = delta
        self.deltak = deltak
        self.psi_x = psi_x
        self.psi_y = psi_y
        self.psi_z = psi_z
        self.fft_obj = fft_obj
        self.ifft_obj = ifft_obj

        #-- save wisdom
        wisdomFile = "wisdom." + str(nbins) + "." + str(self.nthreads)
        if iloop == 0 and save_wisdom and not os.path.isfile(wisdomFile):
            wisd = pyfftw.export_wisdom()
            f = open(wisdomFile, 'w')
            json.dump(wisd, f)
            f.close()
            print('Wisdom saved at', wisdomFile)
示例#37
0
def pyfftw_call(array_in, array_out, direction='forward', axes=None,
                halfcomplex=False, **kwargs):
    """Calculate the DFT with pyfftw.

    The discrete Fourier (forward) transform calcuates the sum::

        f_hat[k] = sum_j( f[j] * exp(-2*pi*1j * j*k/N) )

    where the summation is taken over all indices
    ``j = (j[0], ..., j[d-1])`` in the range ``0 <= j < N``
    (component-wise), with ``N`` being the shape of the input array.

    The output indices ``k`` lie in the same range, except
    for half-complex transforms, where the last axis ``i`` in ``axes``
    is shortened to ``0 <= k[i] < floor(N[i]/2) + 1``.

    In the backward transform, sign of the the exponential argument
    is flipped.

    Parameters
    ----------
    array_in : `numpy.ndarray`
        Array to be transformed
    array_out : `numpy.ndarray`
        Output array storing the transformed values, may be aliased
        with ``array_in``.
    direction : {'forward', 'backward'}
        Direction of the transform
    axes : int or sequence of ints, optional
        Dimensions along which to take the transform. ``None`` means
        using all axes and is equivalent to ``np.arange(ndim)``.
    halfcomplex : bool, optional
        If ``True``, calculate only the negative frequency part along the
        last axis. If ``False``, calculate the full complex FFT.
        This option can only be used with real input data.

    Other Parameters
    ----------------
    fftw_plan : ``pyfftw.FFTW``, optional
        Use this plan instead of calculating a new one. If specified,
        the options ``planning_effort``, ``planning_timelimit`` and
        ``threads`` have no effect.
    planning_effort : {'estimate', 'measure', 'patient', 'exhaustive'}
        Flag for the amount of effort put into finding an optimal
        FFTW plan. See the `FFTW doc on planner flags
        <http://www.fftw.org/fftw3_doc/Planner-Flags.html>`_.
        Default: 'estimate'
    planning_timelimit : float or ``None``, optional
        Limit planning time to roughly this many seconds.
        Default: ``None`` (no limit)
    threads : int, optional
        Number of threads to use.
        Default: Number of CPUs if the number of data points is larger
        than 4096, else 1.
    normalise_idft : bool, optional
        If ``True``, the result of the backward transform is divided by
        ``1 / N``, where ``N`` is the total number of points in
        ``array_in[axes]``. This ensures that the IDFT is the true
        inverse of the forward DFT.
        Default: ``False``
    import_wisdom : filename or file handle, optional
        File to load FFTW wisdom from. If the file does not exist,
        it is ignored.
    export_wisdom : filename or file handle, optional
        File to append the accumulated FFTW wisdom to

    Returns
    -------
    fftw_plan : ``pyfftw.FFTW``
        The plan object created from the input arguments. It can be
        reused for transforms of the same size with the same data types.
        Note that reuse only gives a speedup if the initial plan
        used a planner flag other than ``'estimate'``.
        If ``fftw_plan`` was specified, the returned object is a
        reference to it.

    Notes
    -----
    * The planning and direction flags can also be specified as
      capitalized and prepended by ``'FFTW_'``, i.e. in the original
      FFTW form.
    * For a ``halfcomplex`` forward transform, the arrays must fulfill
      ``array_out.shape[axes[-1]] == array_in.shape[axes[-1]] // 2 + 1``,
      and vice versa for backward transforms.
    * All planning schemes except ``'estimate'`` require an internal copy
      of the input array but are often several times faster after the
      first call (measuring results are cached). Typically,
      'measure' is a good compromise. If you cannot afford the copy,
      use ``'estimate'``.
    * If a plan is provided via the ``fftw_plan`` parameter, no copy
      is needed internally.
    """
    import pickle

    if not array_in.flags.aligned:
        raise ValueError('input array not aligned')

    if not array_out.flags.aligned:
        raise ValueError('output array not aligned')

    if axes is None:
        axes = tuple(range(array_in.ndim))

    axes = normalized_axes_tuple(axes, array_in.ndim)

    direction = _pyfftw_to_local(direction)
    fftw_plan_in = kwargs.pop('fftw_plan', None)
    planning_effort = _pyfftw_to_local(kwargs.pop('planning_effort',
                                                  'estimate'))
    planning_timelimit = kwargs.pop('planning_timelimit', None)
    threads = kwargs.pop('threads', None)
    normalise_idft = kwargs.pop('normalise_idft', False)
    wimport = kwargs.pop('import_wisdom', '')
    wexport = kwargs.pop('export_wisdom', '')

    # Cast input to complex if necessary
    array_in_copied = False
    if is_real_dtype(array_in.dtype) and not halfcomplex:
        # Need to cast array_in to complex dtype
        array_in = array_in.astype(complex_dtype(array_in.dtype))
        array_in_copied = True

    # Do consistency checks on the arguments
    _pyfftw_check_args(array_in, array_out, axes, halfcomplex, direction)

    # Import wisdom if possible
    if wimport:
        try:
            with open(wimport, 'rb') as wfile:
                wisdom = pickle.load(wfile)
        except IOError:
            wisdom = []
        except TypeError:  # Got file handle
            wisdom = pickle.load(wimport)

        if wisdom:
            pyfftw.import_wisdom(wisdom)

    # Copy input array if it hasn't been done yet and the planner is likely
    # to destroy it. If we already have a plan, we don't have to worry.
    planner_destroys = _pyfftw_destroys_input(
        [planning_effort], direction, halfcomplex, array_in.ndim)
    must_copy_array_in = fftw_plan_in is None and planner_destroys

    if must_copy_array_in and not array_in_copied:
        plan_arr_in = np.empty_like(array_in)
        flags = [_local_to_pyfftw(planning_effort), 'FFTW_DESTROY_INPUT']
    else:
        plan_arr_in = array_in
        flags = [_local_to_pyfftw(planning_effort)]

    if fftw_plan_in is None:
        if threads is None:
            if plan_arr_in.size <= 4096:  # Trade-off wrt threading overhead
                threads = 1
            else:
                threads = cpu_count()

        fftw_plan = pyfftw.FFTW(
            plan_arr_in, array_out, direction=_local_to_pyfftw(direction),
            flags=flags, planning_timelimit=planning_timelimit,
            threads=threads, axes=axes)
    else:
        fftw_plan = fftw_plan_in

    fftw_plan(array_in, array_out, normalise_idft=normalise_idft)

    if wexport:
        try:
            with open(wexport, 'ab') as wfile:
                pickle.dump(pyfftw.export_wisdom(), wfile)
        except TypeError:  # Got file handle
            pickle.dump(pyfftw.export_wisdom(), wexport)

    return fftw_plan
示例#38
0
    def __init__(self, **kwargs):
        """
        The following parameters must be specified
            X_gridDIM - specifying the grid size
            X_amplitude - maximum value of the coordinates
            V - potential energy (as a string to be evaluated by numexpr)
            K - momentum dependent part of the hamiltonian (as a string to be evaluated by numexpr)

            A - a coordinate dependent Lindblad dissipator (as a string to be evaluated by numexpr)
            RHS_P_A (optional) -- the correction to the second Ehrenfest theorem due to A

            B - a momentum dependent Lindblad dissipator (as a string to be evaluated by numexpr)
            RHS_X_B (optional) -- the correction to the first Ehrenfest theorem due to B

            diff_V (optional) -- the derivative of the potential energy for the Ehrenfest theorem calculations
            diff_K (optional) -- the derivative of the kinetic energy for the Ehrenfest theorem calculations
            t (optional) - initial value of time
            abs_boundary (optional) -- absorbing boundary (as a string to be evaluated by numexpr)
        """

        # save all attributes
        for name, value in kwargs.items():
            # if the value supplied is a function, then dynamically assign it as a method;
            # otherwise bind it a property
            if isinstance(value, FunctionType):
                setattr(self, name, MethodType(value, self, self.__class__))
            else:
                setattr(self, name, value)

        # Check that all attributes were specified
        try:
            # make sure self.X_gridDIM has a value of power of 2
            assert 2 ** int(np.log2(self.X_gridDIM)) == self.X_gridDIM, \
                "A value of the grid size (X_gridDIM) must be a power of 2"
        except AttributeError:
            raise AttributeError("Grid size (X_gridDIM) was not specified")

        try:
            self.X_amplitude
        except AttributeError:
            raise AttributeError("Coordinate range (X_amplitude) was not specified")

        try:
            self.V
        except AttributeError:
            raise AttributeError("Potential energy (V) was not specified")

        try:
            self.K
        except AttributeError:
            raise AttributeError("Momentum dependence (K) was not specified")

        try:
            self.A
        except AttributeError:
            self.A = self.RHS_P_A = "0."
            print("Warning: Coordinate dependent Lindblad dissipator (A) was not specified so it is set to zero")

        try:
            self.B
        except AttributeError:
            self.B = self.RHS_X_B = "0."
            print("Warning: Momentum dependent Lindblad dissipator (B) was not specified so it is set to zero")

        try:
            self.dt
        except AttributeError:
            raise AttributeError("Time-step (dt) was not specified")

        try:
            self.t
        except AttributeError:
            print("Warning: Initial time (t) was not specified, thus it is set to zero.")
            self.t = 0.

        try:
            self.abs_boundary
        except AttributeError:
            print("Warning: Absorbing boundary (abs_boundary) was not specified, thus it is turned off")
            self.abs_boundary = "1."

        ########################################################################################
        #
        #   Initialize Fourier transform for efficient calculations
        #
        ########################################################################################

        # Load FFTW wisdom if saved before
        try:
            with open('fftw_wisdom', 'rb') as f:
                pyfftw.import_wisdom(pickle.load(f))

            print("\nFFTW wisdom has been loaded\n")
        except IOError:
            pass

        # allocate the array for density matrix
        self.rho = pyfftw.empty_aligned((self.X_gridDIM, self.X_gridDIM), dtype=np.complex)

        #  FFTW settings to achive good performace. For details see
        # https://hgomersall.github.io/pyFFTW/pyfftw/pyfftw.html#pyfftw.FFTW
        fftw_flags = ('FFTW_MEASURE','FFTW_DESTROY_INPUT')

        # how many threads to use for parallelized calculation of FFT.
        # Use the same number of threads as in numexpr
        fftw_nthreads = ne.nthreads

        # Create plan to pefrom FFT over the zeroth axis. It is equivalent to
        #   fftpack.fft(self.rho, axis=0, overwrite_x=True)
        self.rho_fft_ax0 = pyfftw.FFTW(
            self.rho, self.rho,
            axes=(0,),
            direction='FFTW_FORWARD',
            flags=fftw_flags,
            threads=fftw_nthreads
        )

        self.rho_fft_ax1 = pyfftw.FFTW(
            self.rho, self.rho,
            axes=(1,),
            direction='FFTW_FORWARD',
            flags=fftw_flags,
            threads=fftw_nthreads
        )

        self.rho_ifft_ax0 = pyfftw.FFTW(
            self.rho, self.rho,
            axes=(0,),
            direction='FFTW_BACKWARD',
            flags=fftw_flags,
            threads=fftw_nthreads
        )

        self.rho_ifft_ax1 = pyfftw.FFTW(
            self.rho, self.rho,
            axes=(1,),
            direction='FFTW_BACKWARD',
            flags=fftw_flags,
            threads=fftw_nthreads
        )

        # Save FFTW wisdom
        with open('fftw_wisdom', 'wb') as f:
            pickle.dump(pyfftw.export_wisdom(), f)

        ########################################################################################

        # get coordinate step size
        self.dX = 2. * self.X_amplitude / self.X_gridDIM

        # generate coordinate range
        k = np.arange(self.X_gridDIM)
        self.k = k[:, np.newaxis]
        self.k_prime = k[np.newaxis, :]

        X = (k - self.X_gridDIM / 2) * self.dX
        self.X = X[:, np.newaxis]
        self.X_prime = X[np.newaxis, :]

        # generate momentum range
        self.dP = np.pi / self.X_amplitude
        P = (k - self.X_gridDIM / 2) * self.dP
        self.P = P[:, np.newaxis]
        self.P_prime = P[np.newaxis, :]

        # allocate an axillary array needed for propagation
        self.expV = np.zeros_like(self.rho)

        # construct the coordinate dependent phase containing the dissipator as well as coherent propagator
        phase_X = "1j * (({V_X_prime}) - ({V_X})) " \
                  "+ ({A_X}) * conj({A_X_prime}) - 0.5 * abs({A_X}) ** 2 - 0.5 * abs({A_X_prime}) ** 2".format(
                V_X_prime=self.V.format(X="X_prime"),
                V_X=self.V.format(X="X"),
                A_X_prime=self.A.format(X="X_prime"),
                A_X=self.A.format(X="X"),
        )

        # numexpr code to calculate (-)**(k + k_prime) * exp(0.5 * dt * F)
        self.code_expV = "(%s) * (%s) * (-1) ** (k + k_prime) * exp(0.5 * dt * (%s))" % (
            self.abs_boundary.format(X="X"), self.abs_boundary.format(X="X_prime"), phase_X
        )

        # construct the coordinate dependent phase containing the dissipator as well as coherent propagator
        phase_P = "1j * (({K_P_prime}) - ({K_P})) " \
                  "+ ({B_P}) * conj({B_P_prime}) - 0.5 * abs({B_P}) ** 2 - 0.5 * abs({B_P_prime}) ** 2".format(
                K_P_prime=self.K.format(P="P_prime"),
                K_P=self.K.format(P="P"),
                B_P_prime=self.B.format(P="P_prime"),
                B_P=self.B.format(P="P"),
        )

        # numexpr code to calculate rho * exp(1j * dt * K)
        self.code_expK = "rho * exp(dt * (%s))" % phase_P


        # Check whether the necessary terms are specified to calculate the first-order Ehrenfest theorems
        try:
            # Allocate a copy of the wavefunction for storing the density matrix in the momentum representation
            self.rho_p = pyfftw.empty_aligned(self.rho.shape, dtype=self.rho.dtype)

            # Create FFT plans to operate on self.rho_p
            self.rho_p_fft_ax0 = pyfftw.FFTW(
                self.rho_p, self.rho_p,
                axes=(0,),
                direction='FFTW_FORWARD',
                flags=fftw_flags,
                threads=fftw_nthreads
            )

            self.rho_p_ifft_ax1 = pyfftw.FFTW(
                self.rho_p, self.rho_p,
                axes=(1,),
                direction='FFTW_BACKWARD',
                flags=fftw_flags,
                threads=fftw_nthreads
            )

            # numexpr codes to calculate the First Ehrenfest theorems
            self.code_V_average = "sum((%s) * density)" % self.V.format(X="X")
            self.code_K_average = "sum((%s) * density)" % self.K.format(P="P")

            self.code_X_average = "sum(X * density)"
            self.code_P_average = "sum(P * density)"

            self.code_P_average_RHS = "sum((-(%s) + (%s)) * density)" % (
                self.diff_V.format(X="X"), self.RHS_P_A.format(X="X")
            )

            self.code_X_average_RHS = "sum(((%s) + (%s)) * density)" % (
                self.diff_K.format(P="P"), self.RHS_X_B.format(P="P")
            )

            # Lists where the expectation values of X and P
            self.X_average = []
            self.P_average = []

            # Lists where the right hand sides of the Ehrenfest theorems for X and P
            self.X_average_RHS = []
            self.P_average_RHS = []

            # List where the expectation value of the Hamiltonian will be calculated
            self.hamiltonian_average = []

            # Flag requesting tha the Ehrenfest theorem calculations
            self.isEhrenfest = True
        except AttributeError:
            # Since self.diff_V and self.diff_K are not specified,
            # the first Ehrenfest theorem will not be calculated
            self.isEhrenfest = False
# load tools for creating animation
import sys
import matplotlib

if sys.platform == 'darwin':
    # only for MacOS
    matplotlib.use('TKAgg')

import matplotlib.animation
import matplotlib.pyplot as plt

# Load FFTW wisdom if saved before
try:
    with open('fftw_wisdom', 'rb') as f:
        pyfftw.import_wisdom(pickle.load(f))

    print("\nFFTW wisdom has been loaded\n")
except IOError:
    pass

##########################################################################################
#
#   Parameters of quantum systems
#
##########################################################################################
sys_params = dict(
    t=0.,
    dt=0.01,

    X_gridDIM=512,
示例#40
0
 def load_wisdom(self, wisdom_file=DEFAULT_WISDOM_FILE):
   """Load saved FFTW wisdom from file."""
   with open(wisdom_file, 'rb') as f:
     wisdom = cPickle.load(f)
     pyfftw.import_wisdom(wisdom)
示例#41
0
 def import_wisdom(self):
     try:
         wis = pickle.load(open(MyFFTW._WISDOM_FILE,"r"))
         pyfftw.import_wisdom(wis)
     except Exception as e :
         print e
示例#42
0
    def iterate(self, iloop, save_wisdom=1, verbose=1):
        dat = self.dat
        ran = self.ran
        smooth = self.smooth
        binsize = self.binsize
        beta = self.beta
        bias = self.bias
        f = self.f
        nbins = self.nbins

        print("Loop %d" % iloop)
        #-- Creating arrays for FFTW
        if iloop == 0:
            delta = pyfftw.empty_aligned((nbins, nbins, nbins),
                                         dtype='complex128')
            deltak = pyfftw.empty_aligned((nbins, nbins, nbins),
                                          dtype='complex128')
            rho = pyfftw.empty_aligned((nbins, nbins, nbins),
                                       dtype='complex128')
            rhok = pyfftw.empty_aligned((nbins, nbins, nbins),
                                        dtype='complex128')
            psi_x = pyfftw.empty_aligned((nbins, nbins, nbins),
                                         dtype='complex128')
            psi_y = pyfftw.empty_aligned((nbins, nbins, nbins),
                                         dtype='complex128')
            psi_z = pyfftw.empty_aligned((nbins, nbins, nbins),
                                         dtype='complex128')

            #-- Initialize FFT objects and load wisdom if available
            wisdom_file = "wisdom." + str(nbins) + "." + str(
                self.nthreads) + '.npy'
            if os.path.isfile(wisdom_file):
                print('Reading wisdom from ', wisdom_file)
                wisd = tuple(np.load(wisdom_file))
                print('Status of importing wisdom', pyfftw.import_wisdom(wisd))
                sys.stdout.flush()
            print('Creating FFTW objects...')
            fft_obj = pyfftw.FFTW(delta,
                                  delta,
                                  axes=[0, 1, 2],
                                  threads=self.nthreads)
            ifft_obj = pyfftw.FFTW(deltak, psi_x, axes=[0, 1, 2], \
                                   threads=self.nthreads, \
                                   direction='FFTW_BACKWARD')
            kr = fftfreq(nbins, d=binsize) * 2 * np.pi * self.smooth
            norm = np.exp(-0.5 * (  kr[:, None, None] ** 2 \
                                  + kr[None, :, None] ** 2 \
                                  + kr[None, None, :] ** 2))

            if verbose:
                print('Allocating randoms...')
                sys.stdout.flush()
            deltar = np.zeros((nbins, nbins, nbins), dtype='float64')
            fastmodules.allocate_gal_cic(deltar, ran.x, ran.y, ran.z, ran.we,
                                         ran.size, self.xmin, self.ymin,
                                         self.zmin, self.box, nbins, 1)
            if verbose:
                print('Smoothing...')
                sys.stdout.flush()
            #  We do the smoothing via FFTs rather than scipy's gaussian_filter
            #  because if using several threads for pyfftw it is much faster this way
            #  (if only using 1 thread gains are negligible)
            rho = deltar + 0.0j
            fft_obj(input_array=rho, output_array=rhok)
            fastmodules.mult_norm(rhok, rhok, norm)
            ifft_obj(input_array=rhok, output_array=rho)
            deltar = rho.real

        else:
            delta = self.delta
            deltak = self.deltak
            deltar = self.deltar
            rho = self.rho
            rhok = self.rhok
            psi_x = self.psi_x
            psi_y = self.psi_y
            psi_z = self.psi_z
            fft_obj = self.fft_obj
            ifft_obj = self.ifft_obj
            norm = self.norm

        #fft_obj = pyfftw.FFTW(delta, delta, threads=self.nthreads, axes=[0, 1, 2])
        #-- Allocate galaxies and randoms to grid with CIC method
        #-- using new positions
        if verbose:
            print('Allocating galaxies in cells...')
            sys.stdout.flush()
        deltag = np.zeros((nbins, nbins, nbins), dtype='float64')
        fastmodules.allocate_gal_cic(deltag, dat.newx, dat.newy, dat.newz,
                                     dat.we, dat.size, self.xmin, self.ymin,
                                     self.zmin, self.box, nbins, 1)
        #deltag = self.allocate_gal_cic(dat)
        if verbose:
            print('Smoothing...')
            sys.stdout.flush()
        #deltag = gaussian_filter(deltag, smooth/binsize)
        ##-- Smoothing via FFTs
        rho = deltag + 0.0j
        fft_obj(input_array=rho, output_array=rhok)
        fastmodules.mult_norm(rhok, rhok, norm)
        ifft_obj(input_array=rhok, output_array=rho)
        deltag = rho.real

        if verbose:
            print('Computing density fluctuations, delta...')
            sys.stdout.flush()
        # normalize using the randoms, avoiding possible divide-by-zero errors
        fastmodules.normalize_delta_survey(delta, deltag, deltar, self.alpha,
                                           self.ran_min)
        del (deltag)  # deltag no longer required anywhere

        if verbose:
            print('Fourier transforming delta field...')
        sys.stdout.flush()
        fft_obj(input_array=delta, output_array=delta)
        ## -- delta/k**2
        k = fftfreq(self.nbins, d=binsize) * 2 * np.pi
        fastmodules.divide_k2(delta, delta, k)

        # now solve the basic building block: IFFT[-i k delta(k)/(b k^2)]
        if verbose:
            print('Inverse Fourier transforming to get psi...')
        sys.stdout.flush()
        fastmodules.mult_kx(deltak, delta, k, bias)
        ifft_obj(input_array=deltak, output_array=psi_x)
        fastmodules.mult_ky(deltak, delta, k, bias)
        ifft_obj(input_array=deltak, output_array=psi_y)
        fastmodules.mult_kz(deltak, delta, k, bias)
        ifft_obj(input_array=deltak, output_array=psi_z)

        # from grid values of Psi_est = IFFT[-i k delta(k)/(b k^2)], compute the values at the galaxy positions
        if verbose:
            print('Calculating shifts...')
        sys.stdout.flush()
        shift_x, shift_y, shift_z = self.get_shift(dat.newx, dat.newy,
                                                   dat.newz, psi_x.real,
                                                   psi_y.real, psi_z.real)

        #-- for first loop need to approximately remove RSD component
        #-- from Psi to speed up calculation
        #-- first loop so want this on original positions (cp),
        #-- not final ones (np) - doesn't actualy matter
        if iloop == 0:
            psi_dot_rhat = (shift_x*dat.x + \
                            shift_y*dat.y + \
                            shift_z*dat.z ) /dat.dist
            shift_x -= beta / (1 + beta) * psi_dot_rhat * dat.x / dat.dist
            shift_y -= beta / (1 + beta) * psi_dot_rhat * dat.y / dat.dist
            shift_z -= beta / (1 + beta) * psi_dot_rhat * dat.z / dat.dist

        #-- remove RSD from original positions (cp) of
        #-- galaxies to give new positions (np)
        #-- these positions are then used in next determination of Psi,
        #-- assumed to not have RSD.
        #-- the iterative procued then uses the new positions as
        #-- if they'd been read in from the start
        psi_dot_rhat = (shift_x * dat.x + shift_y * dat.y +
                        shift_z * dat.z) / dat.dist
        dat.newx = dat.x + f * psi_dot_rhat * dat.x / dat.dist
        dat.newy = dat.y + f * psi_dot_rhat * dat.y / dat.dist
        dat.newz = dat.z + f * psi_dot_rhat * dat.z / dat.dist

        if verbose:
            print(
                'Debug: first 10 x,y,z shifts and old and new observer distances'
            )
            for i in range(10):
                oldr = np.sqrt(dat.x[i]**2 + dat.y[i]**2 + dat.z[i]**2)
                newr = np.sqrt(dat.newx[i]**2 + dat.newy[i]**2 +
                               dat.newz[i]**2)
                print('%.3f %.3f %.3f %.3f %.3f' %
                      (shift_x[i], shift_y[i], shift_z[i], oldr, newr))

        self.deltar = deltar
        self.delta = delta
        self.deltak = deltak
        self.rho = rho
        self.rhok = rhok
        self.psi_x = psi_x
        self.psi_y = psi_y
        self.psi_z = psi_z
        self.fft_obj = fft_obj
        self.ifft_obj = ifft_obj
        self.norm = norm

        #-- save wisdom
        wisdom_file = "wisdom." + str(nbins) + "." + str(
            self.nthreads) + '.npy'
        if iloop == 0 and save_wisdom and not os.path.isfile(wisdom_file):
            wisd = pyfftw.export_wisdom()
            np.save(wisdom_file, wisd)
            print('Wisdom saved at', wisdom_file)
示例#43
0
dampingFunction = UtilityFunctions.TanhDamping(max_XY).unscaledFunction()
damping = dampingFunction(x, y)
# Set up arrays to store the density
# First two dimensions are spatial, third is time
# density = np.zeros(x.shape + tuple([N_TIMESTEPS]))

# Set up fft and inverse fft
# NOTE: psi must be initialised to psi0 *after* the plan is created. Creation of
# the plan may erase the contents of psi!
#
# When we call fft_object(), psi will be replaced with the fft of psi. The same
# is true for ifft_object
# Optimal alignment for the CPU
if len(sys.argv) > 1:
    f = open(sys.argv[1])
    importStatus = pyfftw.import_wisdom(json.load(f))
    if not np.array(importStatus).all():
        raise IOError("Wisdom not correctly loaded")
if len(sys.argv) > 2:
    N_THREADS = int(sys.argv[2])
else:
    N_THREADS = 2
print("N threads: %d" % N_THREADS)
al = pyfftw.simd_alignment
psi = pyfftw.n_byte_align_empty((N, N), al, 'complex128')
flag = 'FFTW_PATIENT'
fft_object = pyfftw.FFTW(psi, psi, flags=[flag], axes=(0, 1), threads=N_THREADS)
ifft_object = pyfftw.FFTW(psi, psi, flags=[flag], axes=(0, 1),
                          threads=N_THREADS, direction='FFTW_BACKWARD')

# copy psi0 into psi. To be safe about keeping the alignment of psi, set all the
                if (line.startswith(" ") or line.startswith(")")):
                    wisdom_tuple[-1] += line  # append to string
                else:
                    wisdom_tuple.append(line)

            wisdom = wisdom_tuple  # override

    return wisdom


# if configured to use centuries of fftw wisdom, read the fftw oracle of
# delphi (i.e. the wisdom file) - do this on import:
if (wisdom_file is not None):
    wisdom = read_wisdom()
    if (wisdom is not None):
        pyfftw.import_wisdom(wisdom)

pyfftw_simd_alignment = pyfftw.simd_alignment
pyfftw.interfaces.cache.enable()
pyfftw.interfaces.cache.set_keepalive_time(300)  # keep cache alive for 300 sec
# TODO: make this a configurable parameter?


def get_num_threads():
    """Get number of threads from environment variable.

    Returns
    -------
    num_threads : int
        $TFFTW_NUM_THREADS if set, 1 otherwise.
    """
    def __init__(self, **kwargs):
        """
        The following parameters must be specified
            X_gridDIM - specifying the grid size
            X_amplitude - maximum value of the coordinates
            V - potential energy (as a string to be evaluated by numexpr)
            K - momentum dependent part of the hamiltonian (as a string to be evaluated by numexpr)

            A - a coordinate dependent Lindblad dissipator (as a string to be evaluated by numexpr)
            RHS_P_A (optional) -- the correction to the second Ehrenfest theorem due to A

            B - a momentum dependent Lindblad dissipator (as a string to be evaluated by numexpr)
            RHS_X_B (optional) -- the correction to the first Ehrenfest theorem due to B

            diff_V (optional) -- the derivative of the potential energy for the Ehrenfest theorem calculations
            diff_K (optional) -- the derivative of the kinetic energy for the Ehrenfest theorem calculations
            t (optional) - initial value of time
            abs_boundary (optional) -- absorbing boundary (as a string to be evaluated by numexpr)
        """

        # save all attributes
        for name, value in kwargs.items():
            # if the value supplied is a function, then dynamically assign it as a method;
            if isinstance(value, FunctionType):
                setattr(self, name, MethodType(value, self))
            # otherwise bind it as a property
            else:
                setattr(self, name, value)

        # Check that all attributes were specified
        try:
            # make sure self.X_gridDIM has a value of power of 2
            assert 2 ** int(np.log2(self.X_gridDIM)) == self.X_gridDIM, \
                "A value of the grid size (X_gridDIM) must be a power of 2"
        except AttributeError:
            raise AttributeError("Grid size (X_gridDIM) was not specified")

        try:
            self.X_amplitude
        except AttributeError:
            raise AttributeError("Coordinate range (X_amplitude) was not specified")

        try:
            self.V
        except AttributeError:
            raise AttributeError("Potential energy (V) was not specified")

        try:
            self.K
        except AttributeError:
            raise AttributeError("Momentum dependence (K) was not specified")

        try:
            self.A
        except AttributeError:
            self.A = self.RHS_P_A = "0."
            warnings.warn("coordinate dependent Lindblad dissipator (A) was not specified so it is set to zero")

        try:
            self.B
        except AttributeError:
            self.B = self.RHS_X_B = "0."
            warnings.warn("momentum dependent Lindblad dissipator (B) was not specified so it is set to zero")

        try:
            self.dt
        except AttributeError:
            raise AttributeError("Time-step (dt) was not specified")

        try:
            self.t
        except AttributeError:
            warnings.warn("initial time (t) was not specified, thus it is set to zero.")
            self.t = 0.

        try:
            self.abs_boundary
        except AttributeError:
            warnings.warn("absorbing boundary (abs_boundary) was not specified, thus it is turned off")
            self.abs_boundary = "1."

        ########################################################################################
        #
        #   Initialize Fourier transform for efficient calculations
        #
        ########################################################################################

        # Load FFTW wisdom if saved before
        try:
            with open('fftw_wisdom', 'rb') as f:
                pyfftw.import_wisdom(pickle.load(f))

            print("\nFFTW wisdom has been loaded\n")
        except IOError:
            pass

        # allocate the array for density matrix
        self.rho = pyfftw.empty_aligned((self.X_gridDIM, self.X_gridDIM), dtype=np.complex)

        #  FFTW settings to achive good performace. For details see
        # https://hgomersall.github.io/pyFFTW/pyfftw/pyfftw.html#pyfftw.FFTW
        fftw_flags = ('FFTW_MEASURE','FFTW_DESTROY_INPUT')

        # how many threads to use for parallelized calculation of FFT.
        # Use the same number of threads as in numexpr
        fftw_nthreads = ne.nthreads

        # Create plan to pefrom FFT over the zeroth axis. It is equivalent to
        #   fftpack.fft(self.rho, axis=0, overwrite_x=True)
        self.rho_fft_ax0 = pyfftw.FFTW(
            self.rho, self.rho,
            axes=(0,),
            direction='FFTW_FORWARD',
            flags=fftw_flags,
            threads=fftw_nthreads
        )

        self.rho_fft_ax1 = pyfftw.FFTW(
            self.rho, self.rho,
            axes=(1,),
            direction='FFTW_FORWARD',
            flags=fftw_flags,
            threads=fftw_nthreads
        )

        self.rho_ifft_ax0 = pyfftw.FFTW(
            self.rho, self.rho,
            axes=(0,),
            direction='FFTW_BACKWARD',
            flags=fftw_flags,
            threads=fftw_nthreads
        )

        self.rho_ifft_ax1 = pyfftw.FFTW(
            self.rho, self.rho,
            axes=(1,),
            direction='FFTW_BACKWARD',
            flags=fftw_flags,
            threads=fftw_nthreads
        )

        # Save FFTW wisdom
        with open('fftw_wisdom', 'wb') as f:
            pickle.dump(pyfftw.export_wisdom(), f)

        ########################################################################################

        # get coordinate step size
        self.dX = 2. * self.X_amplitude / self.X_gridDIM

        # generate coordinate range
        k = np.arange(self.X_gridDIM)
        self.k = k[:, np.newaxis]
        self.k_prime = k[np.newaxis, :]

        X = (k - self.X_gridDIM / 2) * self.dX
        self.X = X[:, np.newaxis]
        self.X_prime = X[np.newaxis, :]

        # generate momentum range
        self.dP = np.pi / self.X_amplitude
        P = (k - self.X_gridDIM / 2) * self.dP
        self.P = P[:, np.newaxis]
        self.P_prime = P[np.newaxis, :]

        # allocate an axillary array needed for propagation
        self.expV = np.zeros_like(self.rho)

        # construct the coordinate dependent phase containing the dissipator as well as coherent propagator
        phase_X = "1j * (({V_X_prime}) - ({V_X})) " \
                  "+ ({A_X}) * conj({A_X_prime}) - 0.5 * abs({A_X}) ** 2 - 0.5 * abs({A_X_prime}) ** 2".format(
                V_X_prime=self.V.format(X="X_prime"),
                V_X=self.V.format(X="X"),
                A_X_prime=self.A.format(X="X_prime"),
                A_X=self.A.format(X="X"),
        )

        # numexpr code to calculate (-)**(k + k_prime) * exp(0.5 * dt * F)
        self.code_expV = "(%s) * (%s) * (-1) ** (k + k_prime) * exp(0.5 * dt * (%s))" % (
            self.abs_boundary.format(X="X"), self.abs_boundary.format(X="X_prime"), phase_X
        )

        # construct the coordinate dependent phase containing the dissipator as well as coherent propagator
        phase_P = "1j * (({K_P_prime}) - ({K_P})) " \
                  "+ ({B_P}) * conj({B_P_prime}) - 0.5 * abs({B_P}) ** 2 - 0.5 * abs({B_P_prime}) ** 2".format(
                K_P_prime=self.K.format(P="P_prime"),
                K_P=self.K.format(P="P"),
                B_P_prime=self.B.format(P="P_prime"),
                B_P=self.B.format(P="P"),
        )

        # numexpr code to calculate rho * exp(1j * dt * K)
        self.code_expK = "rho * exp(dt * (%s))" % phase_P


        # Check whether the necessary terms are specified to calculate the first-order Ehrenfest theorems
        try:
            # Allocate a copy of the wavefunction for storing the density matrix in the momentum representation
            self.rho_p = pyfftw.empty_aligned(self.rho.shape, dtype=self.rho.dtype)

            # Create FFT plans to operate on self.rho_p
            self.rho_p_fft_ax0 = pyfftw.FFTW(
                self.rho_p, self.rho_p,
                axes=(0,),
                direction='FFTW_FORWARD',
                flags=fftw_flags,
                threads=fftw_nthreads
            )

            self.rho_p_ifft_ax1 = pyfftw.FFTW(
                self.rho_p, self.rho_p,
                axes=(1,),
                direction='FFTW_BACKWARD',
                flags=fftw_flags,
                threads=fftw_nthreads
            )

            # numexpr codes to calculate the First Ehrenfest theorems
            self.code_V_average = "sum((%s) * density)" % self.V.format(X="X")
            self.code_K_average = "sum((%s) * density)" % self.K.format(P="P")

            self.code_X_average = "sum(X * density)"
            self.code_P_average = "sum(P * density)"

            self.code_P_average_RHS = "sum((-(%s) + (%s)) * density)" % (
                self.diff_V.format(X="X"), self.RHS_P_A.format(X="X")
            )

            self.code_X_average_RHS = "sum(((%s) + (%s)) * density)" % (
                self.diff_K.format(P="P"), self.RHS_X_B.format(P="P")
            )

            # Lists where the expectation values of X and P
            self.X_average = []
            self.P_average = []

            # Lists where the right hand sides of the Ehrenfest theorems for X and P
            self.X_average_RHS = []
            self.P_average_RHS = []

            # List where the expectation value of the Hamiltonian will be calculated
            self.hamiltonian_average = []

            # Flag requesting tha the Ehrenfest theorem calculations
            self.isEhrenfest = True
        except AttributeError:
            # Since self.diff_V and self.diff_K are not specified,
            # the first Ehrenfest theorem will not be calculated
            self.isEhrenfest = False
示例#46
0
文件: hilbert.py 项目: trigrass2/TART
def hilbert_fftw(s, debug=False, dtype = 'complex64'):
  ''' fftw drop replacement for scipy_fftpack.hilbert
  beware of sign of returned seq. is '-'

  http://au.mathworks.com/help/signal/ref/hilbert.html
  The analytic signal for a sequence x has a one-sided Fourier transform. That is, the transform vanishes for negative frequencies. To approximate the analytic signal, hilbert calculates the FFT of the input sequence, replaces those FFT coefficients that correspond to negative frequencies with zeros, and calculates the inverse FFT of the result.

  In detail, hilbert uses a four-step algorithm:

  It calculates the FFT of the input sequence, storing the result in a vector x.
  It creates a vector h whose elements h(i) have the values:
  1 for i = 1, (n/2)+1
  2 for i = 2, 3, ... , (n/2)
  0 for i = (n/2)+2, ... , n
  It calculates the element-wise product of x and h.
  It calculates the inverse FFT of the sequence obtained in step 3 and returns the first n elements of the result.
  This algorithm was first introduced in [2]. The technique assumes that the input signal, x, is a finite block of data. This assumption allows the function to remove the spectral redundancy in x exactly. Methods based on FIR filtering can only approximate the analytic signal, but they have the advantage that they operate continuously on the data. See Single-Sideband Amplitude Modulation for another example of a Hilbert transform computed with an FIR filter.'''

  n = len(s)
  pyfftw.interfaces.cache.enable()
  pyfftw.interfaces.cache.set_keepalive_time(50.0)
  align = pyfftw.simd_alignment

  write_wisdom=False
  try:
    wisdom = pickle.load( open( "wisdom_hilbert.wis", "rb" ) )
    pyfftw.import_wisdom(wisdom)
  except:
    write_wisdom = True
    print 'no wisdom file'

  fft_in = pyfftw.empty_aligned(n, dtype=dtype, n=align)
  fft_out = pyfftw.empty_aligned(n, dtype=dtype, n=align)
  ifft_in = pyfftw.empty_aligned(n, dtype=dtype, n=align)
  ifft_out = pyfftw.empty_aligned(n, dtype=dtype, n=align)
  fft_machine = pyfftw.FFTW(fft_in, fft_out, direction='FFTW_FORWARD', flags=('FFTW_ESTIMATE',), threads=8)
  ifft_machine = pyfftw.FFTW(ifft_in, ifft_out, direction='FFTW_BACKWARD', flags=('FFTW_ESTIMATE',), threads=8)

  if write_wisdom:
    wisdom = pyfftw.export_wisdom()
    pickle.dump( wisdom, open( "wisdom_hilbert.wis", "wb" ) )

  s_0 = time.time()
  fft_in[:] = s
  S = fft_machine()
  if debug:
    print 'fft', time.time()-s_0

  s_1 = time.time()
  h = np.zeros(n)
  h[0] = 1.
  h[n/2] = 1.
  h[1:n/2] = 2.
  if debug:
    print 'setup', time.time()-s_1
  s_2 = time.time()
  ifft_in[:] = h*S
  ret = ifft_machine()
  if debug:
    print 'ifft', time.time()-s_2
  return -ret[:n].imag
示例#47
0
fourier method
"""
from __future__ import division
from UtilityFunctions import TanhDamping
import numpy as np
import pyfftw
import json
import os
from copy import deepcopy

WISDOM_LOCATION = os.path.join(os.path.expanduser('~'), '.wisdom', 'wisdom')
FLAG = 'FFTW_PATIENT'
# Load wisdom?
try:
    wisdomFile = open(WISDOM_LOCATION, 'r+')
    importStatus = pyfftw.import_wisdom(json.load(wisdomFile))
    print "Wisdom found"
    if not np.array(importStatus).all():
        print "Wisdom not loaded correctly"
        # raise Warning("Wisdom not loaded correctly.")
    wisdomFile.close()
except IOError:
    print "Wisdom not present"
    # raise Warning("Wisdom not present.")

# TODO: Equations should be defined without the i
# TODO: Allow us to specify whether fields should be complex
# TODO: Account for discrepancy between D(k^2) and D(\nabla^2)


class Equation(object):
示例#48
0
def suns_online_track(filename_video, filename_CNN, Params_pre, Params_post, dims, \
        frames_init, merge_every, batch_size_init=1, useSF=True, useTF=True, useSNR=True, \
        med_subtract=False, update_baseline=False, \
        useWT=False, prealloc=True, display=True, useMP=True, p=None):
    '''The complete SUNS online procedure with tracking.
        It uses the trained CNN model from "filename_CNN" and the optimized hyper-parameters in "Params_post"
        to process the video "Exp_ID" in "dir_video"

    Inputs: 
        filename_video (str): The path of the file of the input raw video.
            The file must be a ".h5" file, with dataset "mov" being the input video (shape = (T0,Lx0,Ly0)).
        filename_CNN (str): The path of the trained CNN model. 
        Params_pre (dict): Parameters for pre-processing.
            Params_pre['gauss_filt_size'] (float): The standard deviation of the spatial Gaussian filter in pixels
            Params_pre['Poisson_filt'] (1D numpy.ndarray of float32): The temporal filter kernel
            Params_pre['num_median_approx'] (int): Number of frames used to compute 
                the median and median-based standard deviation
            Params_pre['nn'] (int): Number of frames at the beginning of the video to be processed.
                The remaining video is not considered a part of the input video.
        Params_post (dict): Parameters for post-processing.
            Params_post['minArea']: Minimum area of a valid neuron mask (unit: pixels).
            Params_post['avgArea']: The typical neuron area (unit: pixels).
            Params_post['thresh_pmap']: The probablity threshold. Values higher than thresh_pmap are active pixels. 
                It is stored in uint8, so it should be converted to float32 before using.
            Params_post['thresh_mask']: Threashold to binarize the real-number mask.
            Params_post['thresh_COM0']: Threshold of COM distance (unit: pixels) used for the first COM-based merging. 
            Params_post['thresh_COM']: Threshold of COM distance (unit: pixels) used for the second COM-based merging. 
            Params_post['thresh_IOU']: Threshold of IOU used for merging neurons.
            Params_post['thresh_consume']: Threshold of consume ratio used for merging neurons.
            Params_post['cons']: Minimum number of consecutive frames that a neuron should be active for.
        dims (tuplel of int, shape = (2,)): lateral dimension of the raw video.
        frames_init (int): Number of frames used for initialization.
        merge_every (int): SUNS online merge the newly segmented frames every "merge_every" frames.
        batch_size_init (int, default to 1): batch size of CNN inference for initialization frames.
        useSF (bool, default to True): True if spatial filtering is used.
        useTF (bool, default to True): True if temporal filtering is used.
        useSNR (bool, default to True): True if pixel-by-pixel SNR normalization filtering is used.
        med_subtract (bool, default to False): True if the spatial median of every frame is subtracted before temporal filtering.
            Can only be used when spatial filtering is not used. 
        update_baseline (bool, default to False): True if the median and median-based std is updated every "frames_init" frames.
        useWT (bool, default to False): Indicator of whether watershed is used. 
        prealloc (bool, default to True): True if pre-allocate memory space for large variables. 
            Achieve faster speed at the cost of higher memory occupation.
        display (bool, default to True): Indicator of whether to show intermediate information
        useMP (bool, defaut to True): indicator of whether multiprocessing is used to speed up. 
        p (multiprocessing.Pool, default to None): 

    Outputs:
        Masks (3D numpy.ndarray of bool, shape = (n,Lx0,Ly0)): the final segmented masks. 
        Masks_2 (scipy.csr_matrix of bool, shape = (n,Lx0*Ly0)): the final segmented masks in the form of sparse matrix. 
        time_total (list of float, shape = (3,)): the total time spent 
            for initalization, online processing, and total processing
        time_frame (list of float, shape = (3,)): the average time spent on every frame
            for initalization, online processing, and total processing
    '''
    if display:
        start = time.time()
    (Lx, Ly) = dims
    # zero-pad the lateral dimensions to multiples of 8, suitable for CNN
    rowspad = math.ceil(Lx / 8) * 8
    colspad = math.ceil(Ly / 8) * 8
    dimspad = (rowspad, colspad)

    Poisson_filt = Params_pre['Poisson_filt']
    gauss_filt_size = Params_pre['gauss_filt_size']
    nn = Params_pre['nn']
    leng_tf = Poisson_filt.size
    leng_past = 2 * leng_tf  # number of past frames stored for temporal filtering
    list_time_per = np.zeros(nn)

    # Load CNN model
    fff = get_shallow_unet()
    fff.load_weights(filename_CNN)
    # run CNN inference once to warm up
    init_imgs = np.zeros((batch_size_init, rowspad, colspad, 1),
                         dtype='float32')
    init_masks = np.zeros((batch_size_init, rowspad, colspad, 1),
                          dtype='uint8')
    fff.evaluate(init_imgs, init_masks, batch_size=batch_size_init)
    del init_imgs, init_masks

    # load optimal post-processing parameters
    minArea = Params_post['minArea']
    avgArea = Params_post['avgArea']
    # thresh_pmap = Params_post['thresh_pmap']
    thresh_mask = Params_post['thresh_mask']
    # thresh_COM0 = Params_post['thresh_COM0']
    # thresh_COM = Params_post['thresh_COM']
    thresh_IOU = Params_post['thresh_IOU']
    thresh_consume = Params_post['thresh_consume']
    # cons = Params_post['cons']
    # thresh_pmap_float = (Params_post['thresh_pmap']+1.5)/256
    thresh_pmap_float = (Params_post['thresh_pmap'] +
                         1) / 256  # for published version

    # Spatial filtering preparation
    if useSF == True:
        # lateral dimensions slightly larger than the raw video but faster for FFT
        rows1 = cv2.getOptimalDFTSize(rowspad)
        cols1 = cv2.getOptimalDFTSize(colspad)

        # if the learned 2D and 3D wisdom files have been saved, load them.
        # Otherwise, learn wisdom later
        Length_data2 = str((rows1, cols1))
        cc2 = load_wisdom_txt('wisdom\\' + Length_data2)

        Length_data3 = str((frames_init, rows1, cols1))
        cc3 = load_wisdom_txt('wisdom\\' + Length_data3)
        if cc3:
            pyfftw.import_wisdom(cc3)

        # mask for spatial filter
        mask2 = plan_mask2(dims, (rows1, cols1), gauss_filt_size)
        # FFT planning
        (bb, bf, fft_object_b,
         fft_object_c) = plan_fft(frames_init, (rows1, cols1), prealloc)
    else:
        (mask2, bf, fft_object_b, fft_object_c) = (None, None, None, None)
        bb = np.zeros((frames_init, rowspad, colspad), dtype='float32')

    # Temporal filtering preparation
    frames_initf = frames_init - leng_tf + 1
    if useTF == True:
        if prealloc:
            # past frames stored for temporal filtering
            past_frames = np.ones((leng_past, rowspad, colspad),
                                  dtype='float32')
        else:
            past_frames = np.zeros((leng_past, rowspad, colspad),
                                   dtype='float32')
    else:
        past_frames = None

    if prealloc:  # Pre-allocate memory for some future variables
        med_frame2 = np.ones((rowspad, colspad, 2), dtype='float32')
        video_input = np.ones((frames_initf, rowspad, colspad),
                              dtype='float32')
        pmaps_b_init = np.ones((frames_initf, Lx, Ly), dtype='uint8')
        frame_SNR = np.ones(dimspad, dtype='float32')
        pmaps_b = np.ones(dims, dtype='uint8')
        if update_baseline:
            video_tf_past = np.ones((frames_init, rowspad, colspad),
                                    dtype='float32')
    else:
        med_frame2 = np.zeros((rowspad, colspad, 2), dtype='float32')
        video_input = np.zeros((frames_initf, rowspad, colspad),
                               dtype='float32')
        pmaps_b_init = np.zeros((frames_initf, Lx, Ly), dtype='uint8')
        frame_SNR = np.zeros(dimspad, dtype='float32')
        pmaps_b = np.zeros(dims, dtype='uint8')
        if update_baseline:
            video_tf_past = np.zeros((frames_init, rowspad, colspad),
                                     dtype='float32')

    if display:
        time_init = time.time()
        print('Parameter initialization time: {} s'.format(time_init - start))

    # %% Load raw video
    h5_img = h5py.File(filename_video, 'r')
    video_raw = np.array(h5_img['mov'])
    h5_img.close()
    nframes = video_raw.shape[0]
    nframesf = nframes - leng_tf + 1
    bb[:, :Lx, :Ly] = video_raw[:frames_init]
    if display:
        time_load = time.time()
        print('Load data: {} s'.format(time_load - time_init))

    # %% Actual processing starts after the video is loaded into memory
    # Initialization using the first "frames_init" frames
    print('Initialization of algorithms using the first {} frames'.format(
        frames_init))
    if display:
        start_init = time.time()
    med_frame3, segs_all, recent_frames = init_online(
        bb, dims, video_input, pmaps_b_init, fff, thresh_pmap_float, Params_post, \
        med_frame2, mask2, bf, fft_object_b, fft_object_c, Poisson_filt, \
        useSF=useSF, useTF=useTF, useSNR=useSNR, med_subtract=med_subtract, \
        useWT=useWT, batch_size_init=batch_size_init, p=p)
    if useTF == True:
        past_frames[:leng_tf] = recent_frames
    tuple_temp = merge_complete(segs_all[:frames_initf], dims, Params_post)

    # Initialize Online track variables
    (Masksb_temp, masks_temp, times_temp, area_temp,
     have_cons_temp) = tuple_temp
    # list of previously found neurons that satisfy consecutive frame requirement
    Masks_cons = select_cons(tuple_temp)
    # sparse matrix of previously found neurons that satisfy consecutive frame requirement
    Masks_cons_2D = sparse.vstack(Masks_cons)
    # indices of previously found neurons that satisfy consecutive frame requirement
    ind_cons = have_cons_temp.nonzero()[0]
    segs0 = segs_all[0]  # segs of initialization frames
    # segs if no neurons are found
    segs_empty = (segs0[0][0:0], segs0[1][0:0], segs0[2][0:0], segs0[3][0:0])
    # Number of previously found neurons that satisfy consecutive frame requirement
    N1 = len(Masks_cons)
    # list of "segs" for neurons that are not previously found
    list_segs_new = []
    # list of newly segmented masks for old neurons (segmented in previous frames)
    list_masks_old = [[] for _ in range(N1)]
    # list of the newly active indices of frames of old neurons
    times_active_old = [[] for _ in range(N1)]
    # True if the old neurons are active in the previous frame
    active_old_previous = np.zeros(N1, dtype='bool')

    if display:
        end_init = time.time()
        time_init = end_init - start_init
        time_frame_init = time_init / (frames_initf) * 1000
        print('Initialization time: {:6f} s, {:6f} ms/frame'.format(
            time_init, time_frame_init))

    if display:
        start_online = time.time()
    # Spatial filtering preparation for online processing.
    # Attention: this part counts to the total time
    if useSF:
        if cc2:
            pyfftw.import_wisdom(cc2)
        (bb, bf, fft_object_b, fft_object_c) = plan_fft2((rows1, cols1))
    else:
        (bf, fft_object_b, fft_object_c) = (None, None, None)
        bb = np.zeros(dimspad, dtype='float32')

    print('Start frame by frame processing')
    # %% Online processing for the following frames
    current_frame = leng_tf + 1
    t_merge = frames_initf
    for t in range(frames_initf, nframesf):
        if display:
            start_frame = time.time()
        # load the current frame
        bb[:Lx, :Ly] = video_raw[t + leng_tf - 1]
        bb[Lx:, :] = 0
        bb[:, Ly:] = 0

        # PreProcessing
        frame_SNR, frame_tf = preprocess_online(bb, dimspad, med_frame3, frame_SNR, \
            past_frames[current_frame-leng_tf:current_frame], mask2, bf, fft_object_b, fft_object_c, \
            Poisson_filt, useSF=useSF, useTF=useTF, useSNR=useSNR, \
            med_subtract=med_subtract, update_baseline=update_baseline)

        if update_baseline:
            t_past = (t - frames_initf) % frames_init
            video_tf_past[t_past] = frame_tf
            if t_past == frames_init - 1:
                # update median and median-based standard deviation every "frames_init" frames
                if useSNR:
                    med_frame3 = SNR_normalization(video_tf_past,
                                                   med_frame2,
                                                   (rowspad, colspad),
                                                   1,
                                                   display=False)
                else:
                    med_frame3 = median_normalization(video_tf_past,
                                                      med_frame2,
                                                      (rowspad, colspad),
                                                      1,
                                                      display=False)

        # CNN inference
        frame_prob = CNN_online(frame_SNR, fff, dims)

        # first step of post-processing
        segs = separate_neuron_online(frame_prob, pmaps_b, thresh_pmap_float,
                                      minArea, avgArea, useWT)

        active_old = np.zeros(
            N1, dtype='bool'
        )  # True if the old neurons are active in the current frame
        masks_t, neuronstate_t, cents_t, areas_t = segs
        N2 = neuronstate_t.size
        if N2:  # Try to merge the new masks to old neurons
            new_found = np.zeros(N2, dtype='bool')
            for n2 in range(N2):
                masks_t2 = masks_t[n2]
                cents_t2 = np.round(cents_t[n2, 1]) * Ly + np.round(cents_t[n2,
                                                                            0])
                # If a new masks belongs to an old neuron, the COM of the new mask must be inside the old neuron area.
                # Select possible old neurons that the new mask can merge to
                possible_masks1 = Masks_cons_2D[:, cents_t2].nonzero()[0]
                IOUs = np.zeros(len(possible_masks1))
                areas_t2 = areas_t[n2]
                for (ind, n1) in enumerate(possible_masks1):
                    # Calculate IoU and consume ratio to determine merged neurons
                    area_i = Masks_cons[n1].multiply(masks_t2).nnz
                    area_temp1 = area_temp[n1]
                    area_u = area_temp1 + areas_t2 - area_i
                    IOU = area_i / area_u
                    consume = area_i / min(area_temp1, areas_t2)
                    contain = (IOU >= thresh_IOU) or (consume >=
                                                      thresh_consume)
                    if contain:  # merging criterion satisfied
                        IOUs[ind] = IOU
                num_contains = IOUs.nonzero()[0].size
                if num_contains:  # The new mask can merge to one of the old neurons.
                    # If there are multiple candicates, choose the one with the highest IoU
                    belongs = possible_masks1[IOUs.argmax()]
                    # merge the mask and active frame index
                    list_masks_old[belongs].append(masks_t2)
                    times_active_old[belongs].append(t + frames_initf)
                    # This old neurons is active in the current frame
                    active_old[belongs] = True
                else:  # The new mask can not merge to any old neuron.
                    new_found[n2] = True

            if np.any(
                    new_found
            ):  # There are some new masks that can not merge to old neurons
                segs_new = (masks_t[new_found], neuronstate_t[new_found],
                            cents_t[new_found], areas_t[new_found])
            else:  # All masks already merged to old neurons
                segs_new = segs_empty

        else:  # No neurons fould in the current frame
            segs_new = segs
        list_segs_new.append(segs_new)

        if (t + 1 - t_merge) != merge_every or t == (nframesf - 1):
            # Update the old neurons with new appearances in the current frame.
            if t < (nframesf - 1):
                # True if the neurons are active in the previous frame but not active in the current frame
                inactive = np.logical_and(
                    active_old_previous,
                    np.logical_not(active_old)).nonzero()[0]
            else:  # last frame
                # All active neurons should be updated, so they are treated as inactive in the next frame
                inactive = active_old_previous.nonzero()[0]

            # Update the indicators of the previous frame using the current frame
            active_old_previous = active_old.copy()
            for n1 in inactive:
                # merge new active frames to existing active frames for already found neurons
                # n1 is the index in the old neurons that satisfy consecutive frame requirement.
                # n10 is the index in all old neurons.
                n10 = ind_cons[n1]
                # Add all the new masks to the overall real-number masks
                mask_update = masks_temp[n10] + sum(list_masks_old[n1])
                masks_temp[n10] = mask_update
                # Add indices of active frames
                times_add = np.unique(np.array(times_active_old[n1]))
                times_temp[n10] = np.hstack([times_temp[n10], times_add])
                # reset lists used to store the information from new frames related to old neurons
                list_masks_old[n1] = []
                times_active_old[n1] = []
                # update the binary masks and areas
                Maskb_update = mask_update >= mask_update.max() * thresh_mask
                Masksb_temp[n10] = Maskb_update
                Masks_cons[n1] = Maskb_update
                area_temp[n10] = Maskb_update.nnz
            if inactive.size:
                Masks_cons_2D = sparse.vstack(Masks_cons)

        if (t + 1 - t_merge) == merge_every or t == (nframesf - 1):
            if t < (nframesf - 1):
                # delay merging new frame to next frame by assuming all the neurons active in the previous frame
                # are still active in the current frame, to reserve merging time for new neurons
                active_old_previous = np.logical_or(active_old_previous,
                                                    active_old)

            # merge new neurons with old masks that do not satisfy consecutive frame requirement
            tuple_temp = (Masksb_temp, masks_temp, times_temp, area_temp,
                          have_cons_temp)
            # merge the remaining new masks from the most recent "merge_every" frames
            tuple_add = merge_complete(list_segs_new, dims, Params_post)
            (Masksb_add, masks_add, times_add, area_add,
             have_cons_add) = tuple_add
            # update the indices of active frames
            times_add = [x + merge_every for x in times_add]
            tuple_add = (Masksb_add, masks_add, times_add, area_add,
                         have_cons_add)
            # merge the remaining new masks with the existing masks that do not satisfy consecutive frame requirement
            tuple_temp = merge_2_nocons(tuple_temp, tuple_add, dims,
                                        Params_post)

            (Masksb_temp, masks_temp, times_temp, area_temp,
             have_cons_temp) = tuple_temp
            # Update the indices of old neurons that satisfy consecutive frame requirement
            ind_cons_new = have_cons_temp.nonzero()[0]
            for (ind, ind_cons_0) in enumerate(ind_cons_new):
                if ind_cons_0 not in ind_cons:
                    # update lists used to store the information from new frames related to old neurons
                    if ind_cons_0 > ind_cons.max():
                        list_masks_old.append([])
                        times_active_old.append([])
                    else:
                        list_masks_old.insert(ind, [])
                        times_active_old.insert(ind, [])

            # Update the list of previously found neurons that satisfy consecutive frame requirement
            Masks_cons = select_cons(tuple_temp)
            Masks_cons_2D = sparse.vstack(Masks_cons)
            N1 = len(Masks_cons)
            list_segs_new = []
            # Update whether the old neurons are active in the previous frame
            active_old_previous = np.zeros_like(have_cons_temp)
            active_old_previous[ind_cons] = active_old
            active_old_previous = active_old_previous[ind_cons_new]
            ind_cons = ind_cons_new
            t_merge += merge_every

        current_frame += 1
        # Update the stored latest frames when it runs out: move them "leng_tf" ahead
        if current_frame > leng_past:
            current_frame = leng_tf + 1
            past_frames[:leng_tf] = past_frames[-leng_tf:]
        if display:
            end_frame = time.time()
            list_time_per[t] = end_frame - start_frame
        if t % 1000 == 0:
            print('{} frames has been processed'.format(t))

    Masks_cons = select_cons(tuple_temp)
    # final result. Masks_2 is a 2D sparse matrix of the segmented neurons
    if len(Masks_cons):
        Masks_2 = sparse.vstack(Masks_cons)
    else:
        Masks_2 = sparse.csc_matrix((0, dims[0] * dims[1]))

    if display:
        end_online = time.time()
        time_online = end_online - start_online
        time_frame_online = time_online / (nframesf - frames_initf) * 1000
        print('Online time: {:6f} s, {:6f} ms/frame'.format(
            time_online, time_frame_online))

    # Save total processing time, and average processing time per frame
    if display:
        end_final = time.time()
        time_all = end_final - start_init
        time_frame_all = time_all / nframes * 1000
        print('Total time: {:6f} s, {:6f} ms/frame'.format(
            time_all, time_frame_all))
        time_total = np.array([time_init, time_online, time_all])
        time_frame = np.array(
            [time_frame_init, time_frame_online, time_frame_all])
    else:
        time_total = np.zeros((3, ))
        time_frame = np.zeros((3, ))

    # convert to a 3D array of the segmented neurons
    Masks = np.reshape(Masks_2.toarray(),
                       (Masks_2.shape[0], Lx, Ly)).astype('bool')
    return Masks, Masks_2, time_total, time_frame
示例#49
0
    def __init__(self, spatialGrid, kGrid, damping='default',
                 FFTW_METHOD='FFTW_PATIENT', N_THREADS=6):
        """
        Initialise an instance of a GPESolver.

        Parameters:

            spatialGrid: A tuple (x, y) representing the spatial grid that the
            simulation will be performed on. This grid should be scaled to units
            of the characteristic length defined in ParameterContainer.

            kGrid: A tuple (k_x, k_y) representing the k-space grid
            corresponding to the (x, y) grid. The scaling of this grid should
            correspond to that of the (x, y) grid. That is, it should be scaled
            to units of the inverse of the characterestic length defined in
            ParameterContainer.

            damping: The damping method to use in order to suppress the implicit
            periodic boundary conditions. Default is a tanh function that
            drops from 1.0 to 0 over the last 10% of each dimension. Presently,
            the only other option is "None", which means no damping, and hence
            periodic boundary conditions


            FFTW_METHOD: The method for FFTW to use when planning the transforms
            FFTW_PATIENT, FFTW_EXHAUSTIVE and FFTW_MEASURE will result in
            faster transforms, but may take a significant amount of time to plan

            N_THREADS: The number of threads for FFTW to use. Currently 2
            threads seems to give the lowest time per step (8 core computer).
            Increasing this may greatly increase the time that FFTW requires to
            plan the transforms.
        """

        # Load any existing wisdom
        try:
            wisdomFile = open(WISDOM_LOCATION, 'r+')
            importStatus = pyfftw.import_wisdom(json.load(wisdomFile))
            print "Wisdom found"
            if not np.array(importStatus).all():
                print "Wisdom not loaded correctly"
                # raise Warning("Wisdom not loaded correctly.")
            wisdomFile.close()
        except IOError:
            print "Wisdom not present"
            # raise Warning("Wisdom not present.")

        self.x, self.y = spatialGrid
        self.kx, self.ky = kGrid
        self.K = self.kx ** 2 + self.ky ** 2
        # This is already scaled because we obtained it from the scaled grid.
        self.max_XY = np.abs(self.x[-1, -1])
        self.N = self.x.shape[0]
        self.N_THREADS = N_THREADS
        self.time = 0
        # TODO: Allow for rectangular grids.
        assert self.x.shape == self.y.shape, "Spatial grids are not the same\
               shape"
        assert self.kx.shape == self.ky.shape, "k grids are not the same shape"
        assert self.x.shape == self.kx.shape, "Spatial grids are not the same\
               shape as k grid"
        assert self.x.shape == (self.N, self.N), 'Grid must be square.'

        if damping == 'default':
            tanhDamping = UtilityFunctions.RadialTanhDamping(self.max_XY)
            # We can use the unscaled function here because max_XY is already
            # scaled.
            # A damping mask
            self.damping = tanhDamping.unscaledFunction()(self.x, self.y)

        # Set up fftw objects
        # Optimal alignment for this CPU
        self.al = pyfftw.simd_alignment
        self.psi = pyfftw.n_byte_align_empty((self.N, self.N), self.al,
                                             'complex128')
        flag = FFTW_METHOD
        self.fft_object = pyfftw.FFTW(self.psi, self.psi, flags=[flag],
                                      axes=(0, 1), threads=N_THREADS)
        self.ifft_object = pyfftw.FFTW(self.psi, self.psi, flags=[flag],
                                       axes=(0, 1), threads=N_THREADS,
                                       direction='FFTW_BACKWARD')

        # Save pyfftw's newfound wisdom
        f = open(WISDOM_LOCATION, 'w+')
        json.dump(pyfftw.export_wisdom(), f)
        f.close()