示例#1
0
def pandas_udaf():
    env = StreamExecutionEnvironment.get_execution_environment()
    env.set_parallelism(1)
    t_env = StreamTableEnvironment.create(stream_execution_environment=env)

    # define the source with watermark definition
    ds = env.from_collection(
        collection=[
            (Instant.of_epoch_milli(1000), 'Alice', 110.1),
            (Instant.of_epoch_milli(4000), 'Bob', 30.2),
            (Instant.of_epoch_milli(3000), 'Alice', 20.0),
            (Instant.of_epoch_milli(2000), 'Bob', 53.1),
            (Instant.of_epoch_milli(5000), 'Alice', 13.1),
            (Instant.of_epoch_milli(3000), 'Bob', 3.1),
            (Instant.of_epoch_milli(7000), 'Bob', 16.1),
            (Instant.of_epoch_milli(10000), 'Alice', 20.1)
        ],
        type_info=Types.ROW([Types.INSTANT(), Types.STRING(), Types.FLOAT()]))

    table = t_env.from_data_stream(
        ds,
        Schema.new_builder()
              .column_by_expression("ts", "CAST(f0 AS TIMESTAMP_LTZ(3))")
              .column("f1", DataTypes.STRING())
              .column("f2", DataTypes.FLOAT())
              .watermark("ts", "ts - INTERVAL '3' SECOND")
              .build()
    ).alias("ts, name, price")

    # define the sink
    t_env.create_temporary_table(
        'sink',
        TableDescriptor.for_connector('print')
                       .schema(Schema.new_builder()
                               .column('name', DataTypes.STRING())
                               .column('total_price', DataTypes.FLOAT())
                               .column('w_start', DataTypes.TIMESTAMP_LTZ())
                               .column('w_end', DataTypes.TIMESTAMP_LTZ())
                               .build())
                       .build())

    @udaf(result_type=DataTypes.FLOAT(), func_type="pandas")
    def mean_udaf(v):
        return v.mean()

    # define the tumble window operation
    table = table.window(Tumble.over(lit(5).seconds).on(col("ts")).alias("w")) \
                 .group_by(table.name, col('w')) \
                 .select(table.name, mean_udaf(table.price), col("w").start, col("w").end)

    # submit for execution
    table.execute_insert('sink') \
         .wait()
示例#2
0
def tumble_window_demo():
    env = StreamExecutionEnvironment.get_execution_environment()
    env.set_parallelism(1)
    t_env = StreamTableEnvironment.create(stream_execution_environment=env)

    # define the source with watermark definition
    ds = env.from_collection(
        collection=[
            (Instant.of_epoch_milli(1000), 'Alice', 110.1),
            (Instant.of_epoch_milli(4000), 'Bob', 30.2),
            (Instant.of_epoch_milli(3000), 'Alice', 20.0),
            (Instant.of_epoch_milli(2000), 'Bob', 53.1),
            (Instant.of_epoch_milli(5000), 'Alice', 13.1),
            (Instant.of_epoch_milli(3000), 'Bob', 3.1),
            (Instant.of_epoch_milli(7000), 'Bob', 16.1),
            (Instant.of_epoch_milli(10000), 'Alice', 20.1)
        ],
        type_info=Types.ROW([Types.INSTANT(), Types.STRING(), Types.FLOAT()]))

    table = t_env.from_data_stream(
        ds,
        Schema.new_builder()
              .column_by_expression("ts", "CAST(f0 AS TIMESTAMP(3))")
              .column("f1", DataTypes.STRING())
              .column("f2", DataTypes.FLOAT())
              .watermark("ts", "ts - INTERVAL '3' SECOND")
              .build()
    ).alias("ts", "name", "price")

    # define the sink
    t_env.create_temporary_table(
        'sink',
        TableDescriptor.for_connector('print')
                       .schema(Schema.new_builder()
                               .column('name', DataTypes.STRING())
                               .column('total_price', DataTypes.FLOAT())
                               .build())
                       .build())

    # define the over window operation
    table = table.over_window(
        Over.partition_by(col("name"))
            .order_by(col("ts"))
            .preceding(row_interval(2))
            .following(CURRENT_ROW)
            .alias('w')) \
        .select(table.name, table.price.max.over(col('w')))

    # submit for execution
    table.execute_insert('sink') \
         .wait()
示例#3
0
def _create_parquet_basic_row_and_data() -> Tuple[RowType, RowTypeInfo, List[Row]]:
    row_type = DataTypes.ROW([
        DataTypes.FIELD('char', DataTypes.CHAR(10)),
        DataTypes.FIELD('varchar', DataTypes.VARCHAR(10)),
        DataTypes.FIELD('binary', DataTypes.BINARY(10)),
        DataTypes.FIELD('varbinary', DataTypes.VARBINARY(10)),
        DataTypes.FIELD('boolean', DataTypes.BOOLEAN()),
        DataTypes.FIELD('decimal', DataTypes.DECIMAL(2, 0)),
        DataTypes.FIELD('int', DataTypes.INT()),
        DataTypes.FIELD('bigint', DataTypes.BIGINT()),
        DataTypes.FIELD('double', DataTypes.DOUBLE()),
        DataTypes.FIELD('date', DataTypes.DATE().bridged_to('java.sql.Date')),
        DataTypes.FIELD('time', DataTypes.TIME().bridged_to('java.sql.Time')),
        DataTypes.FIELD('timestamp', DataTypes.TIMESTAMP(3).bridged_to('java.sql.Timestamp')),
        DataTypes.FIELD('timestamp_ltz', DataTypes.TIMESTAMP_LTZ(3)),
    ])
    row_type_info = Types.ROW_NAMED(
        ['char', 'varchar', 'binary', 'varbinary', 'boolean', 'decimal', 'int', 'bigint', 'double',
         'date', 'time', 'timestamp', 'timestamp_ltz'],
        [Types.STRING(), Types.STRING(), Types.PRIMITIVE_ARRAY(Types.BYTE()),
         Types.PRIMITIVE_ARRAY(Types.BYTE()), Types.BOOLEAN(), Types.BIG_DEC(), Types.INT(),
         Types.LONG(), Types.DOUBLE(), Types.SQL_DATE(), Types.SQL_TIME(), Types.SQL_TIMESTAMP(),
         Types.INSTANT()]
    )
    datetime_ltz = datetime.datetime(1970, 2, 3, 4, 5, 6, 700000, tzinfo=pytz.timezone('UTC'))
    timestamp_ltz = Instant.of_epoch_milli(
        (
            calendar.timegm(datetime_ltz.utctimetuple()) +
            calendar.timegm(time.localtime(0))
        ) * 1000 + datetime_ltz.microsecond // 1000
    )
    data = [Row(
        char='char',
        varchar='varchar',
        binary=b'binary',
        varbinary=b'varbinary',
        boolean=True,
        decimal=Decimal(1.5),
        int=2147483647,
        bigint=-9223372036854775808,
        double=2e-308,
        date=datetime.date(1970, 1, 1),
        time=datetime.time(1, 1, 1),
        timestamp=datetime.datetime(1970, 1, 2, 3, 4, 5, 600000),
        timestamp_ltz=timestamp_ltz
    )]
    return row_type, row_type_info, data
示例#4
0
 def from_internal_type(self, obj):
     from pyflink.common.time import Instant
     return Instant.of_epoch_milli(obj // 1000)