def test2_predict_is_nonconstant(): """ We should not really have predictions that are constant (should be some difference)... This captures bugs with the predict function not iterating forward """ model = pf.GASX(formula="y ~ x1 + x2", data=data, ar=1, sc=1, family=pf.Poisson()) assert(not np.all(predictions.values==predictions.values[0]))
def test_normal_bbvi_elbo(): """ Tests that the ELBO increases """ model = pf.GASReg(formula="y ~ x1 + x2", data=data, family=pf.Poisson()) x = model.fit('BBVI',iterations=200, record_elbo=True, map_start=False) assert(x.elbo_records[-1]>x.elbo_records[0])
def test_poisson_predict_is_length(): """ Tests that the prediction IS dataframe length is equal to the number of steps h """ model = pf.GAS(data=countdata, ar=2, sc=2, family=pf.Poisson()) x = model.fit() assert (model.predict_is(h=5).shape[0] == 5)
def test_bbvi_mini_batch_elbo(): """ Tests that the ELBO increases """ model = pf.GASX(formula="y ~ x1", data=data, ar=1, sc=1, family=pf.Poisson()) x = model.fit('BBVI',iterations=500, mini_batch=32, record_elbo=True, map_start=False) assert(x.elbo_records[-1]>x.elbo_records[0])
def test_normal_predict_is_length(): """ Tests that the length of the predict IS dataframe is equal to no of steps h """ model = pf.GASReg(formula="y ~ x1", data=data, family=pf.Poisson()) x = model.fit() assert(model.predict_is(h=5).shape[0] == 5)
def test_bbvi_mini_batch_elbo(): """ Tests that the ELBO increases """ model = pf.ARIMA(data=data, ar=1, ma=1, family=pf.Poisson()) x = model.fit('BBVI', iterations=100, mini_batch=32, record_elbo=True) assert (x.elbo_records[-1] > x.elbo_records[0])
def test_predict_length(): """ Tests that the prediction dataframe length is equal to the number of steps h """ model = pf.ARIMA(data=data, ar=2, ma=2, family=pf.Poisson()) x = model.fit() assert (model.predict(h=5).shape[0] == 5)
def test2_poisson_predict_is_length(): """ Tests that the length of the predict IS dataframe is equal to no of steps h """ model = pf.GASX(formula="y ~ x1 + x2", data=data, ar=1, sc=1, family=pf.Poisson()) x = model.fit() assert(model.predict_is(h=5).shape[0] == 5)
def test_poisson_bbvi_elbo(): """ Tests that the ELBO increases """ model = pf.GAS(data=countdata, ar=1, sc=1, family=pf.Poisson()) x = model.fit('BBVI', iterations=200, record_elbo=True, map_start=False) assert (x.elbo_records[-1] > x.elbo_records[0])
def gasy(self, topic_index=0): model = pf.GAS(ar=2, sc=2, data=self.topic_counts[topic_index], family=pf.Poisson()) x = model.fit() x.summary() model.plot_fit()
def test_ppc(): """ Tests PPC value """ model = pf.ARIMA(data=data, ar=2, ma=2, family=pf.Poisson()) x = model.fit('BBVI', iterations=100) p_value = model.ppc(nsims=100) assert (0.0 <= p_value <= 1.0)
def test_predict_nans(): """ Tests that the predictions are not nans """ model = pf.ARIMA(data=data, ar=2, ma=2, family=pf.Poisson()) x = model.fit() assert (len( model.predict(h=5).values[np.isnan(model.predict(h=5).values)]) == 0)
def test_poisson_predict_length(): """ Tests that the prediction dataframe length is equal to the number of steps h """ model = pf.GASLLEV(data=countdata, family=pf.Poisson()) x = model.fit() x.summary() assert (model.predict(h=5).shape[0] == 5)
def test2_ppc(): """ Tests PPC value """ model = pf.GASX(formula="y ~ x1 + x2", data=data, ar=1, sc=1, family=pf.Poisson()) x = model.fit('BBVI', iterations=100) p_value = model.ppc() assert(0.0 <= p_value <= 1.0)
def test_poisson_ppc(): """ Tests PPC value """ model = pf.GAS(data=countdata, ar=1, sc=1, family=pf.Poisson()) x = model.fit('BBVI', iterations=200) p_value = model.ppc() assert (0.0 <= p_value <= 1.0)
def test_poisson_predict_length(): """ Tests that the length of the predict dataframe is equal to no of steps h """ model = pf.GASX(formula="y ~ x1", data=data, ar=1, sc=1, family=pf.Poisson()) x = model.fit() x.summary() assert(model.predict(h=5, oos_data=data_oos).shape[0] == 5)
def test_poisson_ppc(): """ Tests PPC value """ model = pf.GASLLEV(data=data, family=pf.Poisson()) x = model.fit('BBVI', iterations=100) p_value = model.ppc() assert (0.0 <= p_value <= 1.0)
def test2_poisson_predict_is_nans(): """ Tests that the predictions in-sample are not NaNs """ model = pf.GASX(formula="y ~ x1 + x2", data=data, ar=1, sc=1, family=pf.Poisson()) x = model.fit() x.summary() assert(len(model.predict_is(h=5).values[np.isnan(model.predict_is(h=5).values)]) == 0)
def test_poisson_predict_nans(): """ Tests that the predictions are not NaNs """ model = pf.GASX(formula="y ~ x1", data=data, ar=1, sc=1, family=pf.Poisson()) x = model.fit() x.summary() assert(len(model.predict(h=5, oos_data=data_oos).values[np.isnan(model.predict(h=5, oos_data=data_oos).values)]) == 0)
def test_poisson_predict_is_nonconstant(): """ We should not really have predictions that are constant (should be some difference)... This captures bugs with the predict function not iterating forward """ model = pf.GAS(data=countdata, ar=1, sc=1, family=pf.Poisson()) x = model.fit() predictions = model.predict_is(h=10, intervals=False) assert (not np.all(predictions.values == predictions.values[0]))
def test_poisson_sample_model(): """ Tests sampling function """ model = pf.GAS(data=countdata, ar=1, sc=1, family=pf.Poisson()) x = model.fit('BBVI', iterations=200) sample = model.sample(nsims=100) assert (sample.shape[0] == 100) assert (sample.shape[1] == len(data) - 1)
def test2_sample_model(): """ Tests sampling function """ model = pf.GASX(formula="y ~ x1 + x2", data=data, ar=1, sc=1, family=pf.Poisson()) x = model.fit('BBVI', iterations=100) sample = model.sample(nsims=100) assert(sample.shape[0]==100) assert(sample.shape[1]==len(data)-1)
def test_sample_model(): """ Tests sampling function """ model = pf.ARIMA(data=data, ar=2, ma=2, family=pf.Poisson()) x = model.fit('BBVI', iterations=100) sample = model.sample(nsims=100) assert (sample.shape[0] == 100) assert (sample.shape[1] == len(data) - 2)
def test_poisson_predict_nans(): """ Tests that the predictions are not nans """ model = pf.GAS(data=countdata, ar=2, sc=2, family=pf.Poisson()) x = model.fit() x.summary() assert (len( model.predict(h=5).values[np.isnan(model.predict(h=5).values)]) == 0)
def test_poisson_laplace(): """ Tests an GASX model estimated with Laplace approximation, and tests that the latent variable vector length is correct, and that value are not nan """ model = pf.GASX(formula="y ~ x1", data=data, ar=1, sc=1, family=pf.Poisson()) x = model.fit('Laplace') assert(len(model.latent_variables.z_list) == 4) lvs = np.array([i.value for i in model.latent_variables.z_list]) assert(len(lvs[np.isnan(lvs)]) == 0)
def test_poisson_mh(): """ Tests an GASX model estimated with Metropolis-Hastings, and tests that the latent variable vector length is correct, and that value are not nan """ model = pf.GASX(formula="y ~ x1", data=data, ar=1, sc=1, family=pf.Poisson()) x = model.fit('M-H',nsims=300) assert(len(model.latent_variables.z_list) == 4) lvs = np.array([i.value for i in model.latent_variables.z_list]) assert(len(lvs[np.isnan(lvs)]) == 0)
def test_bbvi_mini_batch(): """ Tests an GASX model estimated with BBVI and that the length of the latent variable list is correct, and that the estimated latent variables are not nan """ model = pf.GASX(formula="y ~ x1", data=data, ar=1, sc=1, family=pf.Poisson()) x = model.fit('BBVI',iterations=500, mini_batch=32) assert(len(model.latent_variables.z_list) == 4) lvs = np.array([i.value for i in model.latent_variables.z_list]) assert(len(lvs[np.isnan(lvs)]) == 0)
def test_poisson_couple_terms(): """ Tests the length of the latent variable vector for an GASX model with 1 AR and 1 SC term, and tests that the values are not nan """ model = pf.GASX(formula="y ~ x1", data=data, ar=1, sc=1, family=pf.Poisson()) x = model.fit() assert(len(model.latent_variables.z_list) == 4) lvs = np.array([i.value for i in model.latent_variables.z_list]) assert(len(lvs[np.isnan(lvs)]) == 0)
def test2_predict_is_intervals_mh(): """ Tests prediction intervals are ordered correctly """ model = pf.GASX(formula="y ~ x1 + x2", data=data, ar=1, sc=1, family=pf.Poisson()) x = model.fit('M-H', nsims=400) predictions = model.predict_is(h=10, intervals=True) assert(np.all(predictions['99% Prediction Interval'].values > predictions['95% Prediction Interval'].values)) assert(np.all(predictions['95% Prediction Interval'].values > predictions['5% Prediction Interval'].values)) assert(np.all(predictions['5% Prediction Interval'].values > predictions['1% Prediction Interval'].values))
def test2_poisson_pml(): """ Tests an GASX model estimated with PML, with multiple predictors, and tests that the latent variable vector length is correct, and that value are not nan """ model = pf.GASX(formula="y ~ x1 + x2", data=data, ar=1, sc=1, family=pf.Poisson()) x = model.fit('PML') assert(len(model.latent_variables.z_list) == 5) lvs = np.array([i.value for i in model.latent_variables.z_list]) assert(len(lvs[np.isnan(lvs)]) == 0)