示例#1
0
    def __setattr__(self, name, value):
        if self._has_terms() and name in self._super_get('_plural'):
            # get the total number of arguments
            size = np.atleast_1d(flatten(getattr(self, name))).size

            # check shapes
            if isiterable(value):
                value = flatten(value)
                if len(value) != size:
                    raise ValueError('Expected {} to have length {}, but found {} = {}'\
                                     .format(name, size, name, value))
            else:
                value = [value] * size

            # now set each term's sequence of arguments
            for term in self._get_terms()[::-1]:

                # skip intercept
                if term.isintercept:
                    continue

                # how many values does this term get?
                n = np.atleast_1d(getattr(term, name)).size

                # get the next n values and set them on this term
                vals = [value.pop() for _ in range(n)][::-1]
                setattr(term, name, vals[0] if n == 1 else vals)

                term._validate_arguments()

            return
        super(MetaTermMixin, self).__setattr__(name, value)
示例#2
0
def test_tensor_term_expands_args_to_match_penalties_and_terms():
    tensor = te(0, 1, lam=3)
    assert len(tensor.lam) == 2
    assert len(flatten(tensor.lam)) == 2

    tensor = te(0, 1, penalties='auto')
    assert len(tensor.lam) == 2
    assert len(flatten(tensor.lam)) == 2

    tensor = te(0, 1, penalties=['auto', ['auto', 'auto']])
    assert len(tensor.lam) == 2
    assert len(flatten(tensor.lam)) == 3
示例#3
0
def nice_repr(name, param_kvs, line_width=30, line_offset=5, decimals=3, args=None, flatten_attrs=True):
    """
    tool to do a nice repr of a class.

    Parameters
    ----------
    name : str
        class name
    param_kvs : dict
        dict containing class parameters names as keys,
        and the corresponding values as values
    line_width : int
        desired maximum line width.
        default: 30
    line_offset : int
        desired offset for new lines
        default: 5
    decimals : int
        number of decimal places to keep for float values
        default: 3

    Returns
    -------
    out : str
        nicely formatted repr of class instance
    """
    if not param_kvs and not args :
        # if the object has no params it's easy
        return '{}()'.format(name)

    # sort keys and values
    ks = list(param_kvs.keys())
    vs = list(param_kvs.values())
    idxs = np.argsort(ks)
    param_kvs = [(ks[i],vs[i]) for i in idxs]

    if args is not None:
        param_kvs = [(None, arg) for arg in args] + param_kvs

    param_kvs = param_kvs[::-1]
    out = ''
    current_line = name + '('
    while len(param_kvs) > 0:

        # flatten sub-term properties, but not `terms`
        k, v = param_kvs.pop()
        if flatten_attrs and k != 'terms':
            v = flatten(v)

        # round the floats first
        if issubclass(v.__class__, (float, np.ndarray)):
            v = round_to_n_decimal_places(v, n=decimals)
            v = str(v)
        else:
            v = repr(v)

        # handle args
        if k is None:
            param = '{},'.format(v)
        else:
            param = '{}={},'.format(k, v)

        # print
        if len(current_line + param) <= line_width:
            current_line += param
        else:
            out += current_line + '\n'
            current_line = ' '*line_offset + param

        if len(current_line) < line_width and len(param_kvs) > 0:
            current_line += ' '

    out += current_line[:-1] # remove trailing comma
    out += ')'
    return out