def nearestOn3(self, points, closed=False, radius=R_M, **options):
        '''Locate the point on a polygon closest to this point.

           Distances are approximated by function L{equirectangular_},
           subject to the supplied B{C{options}}.

           @param points: The polygon points (L{LatLon}[]).
           @keyword closed: Optionally, close the polygon (C{bool}).
           @keyword radius: Mean earth radius (C{meter}).
           @keyword options: Optional keyword arguments for function
                             L{equirectangular_}.

           @return: A L{NearestOn3Tuple}C{(closest, distance, angle)}
                    where C{distance} is the L{equirectangular_} distance
                    between this and the C{closest} point in C{meter},
                    same units as B{C{radius}}.  The C{angle} from this to
                    the C{closest} point is in compass C{degrees360},
                    like function L{compassAngle}.

           @raise LimitError: Lat- and/or longitudinal delta exceeds
                              B{C{limit}}, see function L{equirectangular_}.

           @raise TypeError: Some B{C{points}} are not C{LatLon}.

           @raise ValueError: Insufficient number of B{C{points}}.

           @see: Functions L{compassAngle}, L{equirectangular_} and
                 L{nearestOn5}.
        '''
        a, b, d, c, h = _nearestOn5(self, points, closed=closed, **options)
        return NearestOn3Tuple(self.classof(a, b, height=h),
                               degrees2m(d, radius=radius), c)
def nearestOn2(point, points, closed=False, radius=R_M,   # PYCHOK no cover
                              LatLon=LatLon, **options):  # PYCHOK no cover
    '''DEPRECATED, use function L{sphericalTrigonometry.nearestOn3}.

       @return: ... C{closest} as B{C{LatLon}} or a 2-tuple C{(lat, lon)}
                without the height if B{C{LatLon}} is C{None} ...
    '''
    a, b, d, _, h = _nearestOn5(point, points, closed=closed, **options)
    ll = (a, b) if LatLon is None else LatLon(a, b, height=h)
    return ll, degrees2m(d, radius=radius)
示例#3
0
def nearestOn3(point,
               points,
               closed=False,
               radius=R_M,
               LatLon=LatLon,
               **options):
    '''Locate the point on a polygon closest to an other, reference point.

       Distances are approximated by function L{equirectangular_},
       subject to the supplied B{C{options}}.

       @arg point: The other, reference point (L{LatLon}).
       @arg points: The polygon points (L{LatLon}[]).
       @kwarg closed: Optionally, close the polygon (C{bool}).
       @kwarg radius: Mean earth radius (C{meter}).
       @kwarg LatLon: Optional class to return the closest point
                      (L{LatLon}) or C{None}.
       @kwarg options: Optional keyword arguments for function
                       L{equirectangular_}.

       @return: A L{NearestOn3Tuple}C{(closest, distance, angle)} with the
                C{closest} point as B{L{LatLon}} or L{LatLon3Tuple}C{(lat,
                lon, height)} if B{C{LatLon}} is C{None}.  The C{distance}
                is the L{equirectangular_} distance between the C{closest}
                and the given B{C{point}} in C{meter}, same units as
                B{C{radius}}.  The C{angle} from the given B{C{point}}
                to the C{closest} is in compass C{degrees360}, like function
                L{compassAngle}.  The C{height} is the (interpolated) height
                at the C{closest} point.

       @raise LimitError: Lat- and/or longitudinal delta exceeds the
                          B{C{limit}}, see function L{equirectangular_}.

       @raise PointsError: Insufficient number of B{C{points}}.

       @raise TypeError: Some B{C{points}} are not C{LatLon}.

       @raise ValueError: Invalid B{C{radius}}.

       @see: Functions L{equirectangular_} and L{nearestOn5}.
    '''
    lat, lon, d, c, h = _nearestOn5(point,
                                    points,
                                    closed=closed,
                                    LatLon=None,
                                    **options)
    r = LatLon3Tuple(lat, lon, h) if LatLon is None else \
              LatLon(lat, lon, height=h)
    r = NearestOn3Tuple(r, degrees2m(d, radius=radius), c)
    return _xnamed(r, nearestOn3.__name__)