示例#1
0
def main():
    parser = getparser()
    args = parser.parse_args()

    fn = args.fn
    if not iolib.fn_check(fn):
        sys.exit("Unable to locate input file: %s" % fn)

    #Need some checks on these
    param = args.param

    print("Loading input raster into masked array")
    ds = iolib.fn_getds(fn)
    #Currently supports only single band operations
    r = iolib.ds_getma(ds, 1)

    #May need to cast input ma as float32 so np.nan filling works
    #r = r.astype(np.float32)
    #Want function that checks and returns float32 if necessary
    #Should filter, then return original dtype

    r_fltr = r

    #Loop through all specified input filters
    #for filt in args.filt:
    filt = args.filt[0]

    if len(param) == 1:
        param = param[0]
    param_str = ''

    if filt == 'range':
        #Range filter
        param = [float(i) for i in param[1:]]
        r_fltr = filtlib.range_fltr(r_fltr, param)
        param_str = '_{0:0.2f}-{1:0.2f}'.format(*param)
    elif filt == 'absrange':
        #Range filter of absolute values
        param = [float(i) for i in param[1:]]
        r_fltr = filtlib.absrange_fltr(r_fltr, param)
        param_str = '_{0:0.2f}-{1:0.2f}'.format(*param)
    elif filt == 'perc':
        #Percentile filter
        param = [float(i) for i in param[1:]]
        r_fltr = filtlib.perc_fltr(r, perc=param)
        param_str = '_{0:0.2f}-{1:0.2f}'.format(*param)
    elif filt == 'med':
        #Median filter
        param = int(param)
        r_fltr = filtlib.rolling_fltr(r_fltr, f=np.nanmedian, size=param)
        #r_fltr = filtlib.median_fltr(r_fltr, fsize=param, origmask=True)
        #r_fltr = filtlib.median_fltr_skimage(r_fltr, radius=4, origmask=True)
        param_str = '_%ipx' % param
    elif filt == 'gauss':
        #Gaussian filter (default)
        param = int(param)
        r_fltr = filtlib.gauss_fltr_astropy(r_fltr,
                                            size=param,
                                            origmask=False,
                                            fill_interior=False)
        param_str = '_%ipx' % param
    elif filt == 'highpass':
        #High pass filter
        param = int(param)
        r_fltr = filtlib.highpass(r_fltr, size=param)
        param_str = '_%ipx' % param
    elif filt == 'sigma':
        #n*sigma filter, remove outliers
        param = int(param)
        r_fltr = filtlib.sigma_fltr(r_fltr, n=param)
        param_str = '_n%i' % param
    elif filt == 'mad':
        #n*mad filter, remove outliers
        #Maybe better to use a percentile filter
        param = int(param)
        r_fltr = filtlib.mad_fltr(r_fltr, n=param)
        param_str = '_n%i' % param
    elif filt == 'dz':
        #Difference filter, need to specify ref_fn and range
        #Could let the user compute their own dz, then just run a standard range or absrange filter
        ref_fn = param[0]
        ref_ds = warplib.memwarp_multi_fn([
            ref_fn,
        ],
                                          res=ds,
                                          extent=ds,
                                          t_srs=ds)[0]
        ref = iolib.ds_getma(ref_ds)
        param = [float(i) for i in param[1:]]
        r_fltr = filtlib.dz_fltr_ma(r, ref, rangelim=param)
        #param_str = '_{0:0.2f}-{1:0.2f}'.format(*param)
        param_str = '_{0:0.0f}_{1:0.0f}'.format(*param)
    else:
        sys.exit("No filter type specified")

    #Compute and print stats before/after
    if args.stats:
        print("Input stats:")
        malib.print_stats(r)
        print("Filtered stats:")
        malib.print_stats(r_fltr)

    #Write out
    dst_fn = os.path.splitext(fn)[0] + '_%sfilt%s.tif' % (filt, param_str)
    if args.outdir is not None:
        outdir = args.outdir
        if not os.path.exists(outdir):
            os.makedirs(outdir)
        dst_fn = os.path.join(outdir, os.path.split(dst_fn)[-1])
    print("Writing out filtered raster: %s" % dst_fn)
    iolib.writeGTiff(r_fltr, dst_fn, ds)
示例#2
0
def sample_stack(ex, ey, geoid_offset=False, pad=3):
    if ex > m.shape[2]-1 or ey > m.shape[1]-1:
        print "Input coordinates are outside stack extent:"
        print ex, ey
        print m.shape
        v = None
    else:
        print "Sampling with pad: %i" % pad
        if pad == 0:
            v = m[:,ey,ex]
        else:
            window_x = np.around(np.clip([ex-pad, ex+pad+1], 0, m.shape[2]-1)).astype(int)
            window_y = np.around(np.clip([ey-pad, ey+pad+1], 0, m.shape[1]-1)).astype(int)
            print window_x
            print window_y
            v = m[:,window_y[0]:window_y[1],window_x[0]:window_x[1]].reshape(m.shape[0], np.ptp(window_x)*np.ptp(window_y))
            #v = v.mean(axis=1)
            v = np.ma.median(v, axis=1)
        if v.count() == 0:
            print "No valid values"
        else:
            mx, my = geolib.pixelToMap(ex, ey, gt)
            print ex, ey, mx, my
            print "Count: %i" % v.count()
            #Hack to get elevations relative to geoid
            #Note: this can be added multiple times if clicked quickly
            if geoid_offset:
                #geoid_offset = geolib.sps2geoid(mx, my, 0.0)[2]
                geoid_offset = geolib.nps2geoid(mx, my, 0.0)[2]
                print "Removing geoid offset: %0.1f" % geoid_offset
                v += geoid_offset
        #Should filter here
        #RS1 has some values that are many 1000s of m/yr below neighbors
        if filter_outliers:
            if True:
                med = malib.fast_median(v)
                mad = malib.mad(v)
                min_v = med - mad*4
                f_idx = (v < min_v).filled(False)
                if np.any(f_idx):
                    print med, mad
                    print "Outliers removed by absolute filter: (val < %0.1f)" % min_v
                    print timelib.o2dt(d[f_idx])
                    print v[f_idx]
                    v[f_idx] = np.ma.masked
            if True:
                v_idx = (~np.ma.getmaskarray(v)).nonzero()[0]
                #This tries to maintain fixed window in time
                f = filtlib.rolling_fltr(v, size=7)
                #This uses fixed number of neighbors
                f = filtlib.rolling_fltr(v[v_idx], size=7)
                #f_diff = np.abs(f - v)
                #Note: the issue is usually that the velocity values are too low
                #f_diff = f - v
                f_diff = f - v[v_idx]
                diff_thresh = 2000
                #f_idx = (f_diff > diff_thresh).filled(False)
                #f_idx = (f_diff < diff_thresh).filled(False)
                f_idx = np.zeros_like(v.data).astype(bool)
                f_idx[v_idx] = (f_diff > diff_thresh)
                if np.any(f_idx):
                    print "Outliers removed by rolling median filter: (val < %0.1f)" % diff_thresh
                    print timelib.o2dt(d[f_idx])
                    print v[f_idx]
                    v[f_idx] = np.ma.masked
    return v
示例#3
0
if args.density is None:
    #Attempt to extract from nearby SNOTEL sites for dem_ts
    #Attempt to use model
    #Last resort, use constant value
    rho_s = 0.5
    #rho_s = 0.4
    #rho_s = 0.36

#Convert snow depth to swe
swe = dz * rho_s

if args.filter:
    print("Filtering SWE map")
    #Median filter to remove artifacts
    swe_f = filtlib.rolling_fltr(swe, size=5)
    #Gaussian filter to smooth over gaps
    swe_f = filtlib.gauss_fltr_astropy(swe, size=9)
    swe = swe_f

swe_clim = list(malib.calcperc(swe, (1,99)))
swe_clim[0] = 0
swe_clim = (0, 8)

prism = None
nax = 2
figsize = (8, 4)
if args.prism:
    #This is PRISM 30-year normal winter PRECIP
    prism_fn = '/Users/dshean/data/PRISM_ppt_30yr_normal_800mM2_10-05_winter_cum.tif'
    if os.path.exists(prism_fn):
示例#4
0
    print("Input pixel count: %s" % trend.count())

    #Outlier filter
    #This can remove valid pixels for larger glaciers (e.g. Baltoro) with negative dh/dt - could scale based on pixel count
    #trend_filt = filtlib.mad_fltr(trend, n=4)
    #trend_filt = filtlib.sigma_fltr(trend, n=3)
    #print("Output pixel count: %s" % trend_filt.count())

    #Remove islands
    #trend_filt = filtlib.remove_islands(trend, iterations=1)
    #Erode edges near nodata 
    trend_filt = filtlib.erode_edge(trend, iterations=1)
    print("Output pixel count: %s" % trend_filt.count())

    #Rolling median filter (remove noise) - can use a slightly larger window here
    trend_filt = filtlib.rolling_fltr(trend_filt, size=size, circular=True, origmask=True)
    print("Output pixel count: %s" % trend_filt.count())

    #Gaussian filter (smooth)
    #trend_filt = filtlib.gauss_fltr_astropy(trend_filt, size=size, origmask=True, fill_interior=True)
    trend_filt = filtlib.gauss_fltr_astropy(trend_filt, size=size)
    print("Output pixel count: %s" % trend_filt.count())

    trend_fn=out_fn+'_trend_%spx_filt.tif' % size
    print("Writing out: %s" % trend_fn)
    iolib.writeGTiff(trend_filt*365.25, trend_fn, trend_ds)

    #Update intercept using new filtered slope values
    #Need to update for different periods?
    #dt_pivot = timelib.mean_date(datetime(2000,5,31), datetime(2009,5,31))
    #dt_pivot = timelib.mean_date(datetime(2009,5,31), datetime(2018,5,31))