def plot_maps_ts_from_path(path_nc, var_name, lon, lat, out_path, xaxis_min=0.0, xaxis_max=1.1, xaxis_step=0.1, save_name='fig', xlabel='', start_movie_yr=-1, title='', do_jenks=True, tme_name='time', land_bg=True, cmap=plt.cm.RdBu, grid=False): """ Plot map for var_name variable from netCDF file :param path_nc: Name of netCDF file :param var_name: Name of variable in netCDF file to plot on map :param xaxis_min: :param xaxis_max: :param xaxis_step: :param lon: List of lon's :param lat: List of lat's :param out_path: Output directory path + file name :return: List of paths of images produced, side-effect: save an image(s) """ logger.info('Plotting ' + var_name + ' in ' + path_nc) util.make_dir_if_missing(out_path) # Read netCDF file and get time dimension nc = util.open_or_die(path_nc) if start_movie_yr > 0: ts = nc.variables[tme_name][:].astype(int) # time-series ts = ts[start_movie_yr - ts[0]:] else: ts = nc.variables[tme_name][:] # time-series nc.close() return plot_maps_ts(path_nc, ts, lon, lat, out_path, var_name=var_name, xaxis_min=xaxis_min, xaxis_max=xaxis_max, xaxis_step=xaxis_step, save_name=save_name, xlabel=xlabel, do_jenks=do_jenks, start_movie_yr=start_movie_yr, title=title, tme_name=tme_name, land_bg=land_bg, cmap=cmap, grid=grid)
def make_movie(list_images, out_path, out_fname): """ :param list_images: :param out_path: :return: """ util.make_dir_if_missing(out_path) convert_cmd = 'convert -delay 50 -loop 1 '+' '.join(list_images) + ' ' + out_path + os.sep + out_fname subprocess.call(convert_cmd, shell=True)
def make_movie(list_images, out_path, out_fname): """ :param list_images: :param out_path: :return: """ util.make_dir_if_missing(out_path) convert_cmd = 'convert -delay 50 -loop 1 ' + ' '.join( list_images) + ' ' + out_path + os.sep + out_fname subprocess.call(convert_cmd, shell=True)
def __init__(self, out_path, ver='3.2', lon_name='lon', lat_name='lat', tme_name='time', area_name='cell_area'): """ Constructor """ self.list_files_to_del = [] # List of file paths to delete when done self.ver = ver if self.ver == '3.2': self.HYDE_crop_path = constants.HYDE32_CROP_PATH self.HYDE_othr_path = constants.HYDE32_OTHR_PATH self.HYDE_urbn_path = constants.HYDE32_URBN_PATH self.HYDE_past_path = constants.HYDE32_PAST_PATH self.HYDE_graz_path = constants.HYDE32_GRAZ_PATH self.HYDE_rang_path = constants.HYDE32_RANG_PATH self.HYDE_urbn_path = constants.HYDE32_URBN_PATH # Land use variables self.lus = {self.HYDE_crop_path: ['cropland', 'cropland fraction'], self.HYDE_othr_path: ['other', 'other vegetation fraction'], self.HYDE_urbn_path: ['urban', 'urban fraction'], self.HYDE_graz_path: ['grazing', 'grazing land fraction'], self.HYDE_past_path: ['pasture', 'managed pasture fraction'], self.HYDE_rang_path: ['rangeland', 'rangeland fraction']} elif self.ver == '3.1': self.HYDE_crop_path = constants.HYDE31_CROP_PATH self.HYDE_othr_path = constants.HYDE31_OTHR_PATH self.HYDE_past_path = constants.HYDE31_PAST_PATH self.HYDE_urbn_path = constants.HYDE31_URBN_PATH # Land use variables self.lus = {self.HYDE_crop_path: ['cropland', 'cropland'], self.HYDE_othr_path: ['primary', 'primary'], self.HYDE_urbn_path: ['urban', 'urban fraction'], self.HYDE_past_path: ['pasture', 'pasture']} elif self.ver == '3.2_v03': self.HYDE_crop_path = constants.HYDE32_v03_CROP_PATH self.HYDE_othr_path = constants.HYDE32_v03_OTHR_PATH self.HYDE_urbn_path = constants.HYDE32_v03_URBN_PATH self.HYDE_past_path = constants.HYDE32_v03_PAST_PATH self.HYDE_graz_path = constants.HYDE32_v03_GRAZ_PATH self.HYDE_rang_path = constants.HYDE32_v03_RANG_PATH self.HYDE_urbn_path = constants.HYDE32_v03_URBN_PATH # Land use variables self.lus = {self.HYDE_crop_path: ['cropland', 'cropland fraction'], self.HYDE_othr_path: ['other', 'other vegetation fraction'], self.HYDE_urbn_path: ['urban', 'urban fraction'], self.HYDE_graz_path: ['grazing', 'grazing land fraction'], self.HYDE_past_path: ['pasture', 'pasture fraction'], self.HYDE_rang_path: ['rangeland', 'rangeland fraction']} elif self.ver == '3.2_v1hb': self.HYDE_crop_path = constants.HYDE32_v1hb_CROP_PATH self.HYDE_othr_path = constants.HYDE32_v1hb_OTHR_PATH self.HYDE_urbn_path = constants.HYDE32_v1hb_URBN_PATH self.HYDE_past_path = constants.HYDE32_v1hb_PAST_PATH self.HYDE_graz_path = constants.HYDE32_v1hb_GRAZ_PATH self.HYDE_rang_path = constants.HYDE32_v1hb_RANG_PATH # Land use variables self.lus = {self.HYDE_crop_path: ['cropland', 'cropland fraction'], self.HYDE_othr_path: ['other', 'other vegetation fraction'], self.HYDE_urbn_path: ['urban', 'urban fraction'], self.HYDE_graz_path: ['grazing', 'grazing land fraction'], self.HYDE_past_path: ['pasture', 'pasture fraction'], self.HYDE_rang_path: ['rangeland', 'rangeland fraction']} elif self.ver == '3.2_march': self.HYDE_crop_path = constants.HYDE32_march_CROP_PATH self.HYDE_othr_path = constants.HYDE32_march_OTHR_PATH self.HYDE_urbn_path = constants.HYDE32_march_URBN_PATH self.HYDE_past_path = constants.HYDE32_march_PAST_PATH self.HYDE_graz_path = constants.HYDE32_march_GRAZ_PATH self.HYDE_rang_path = constants.HYDE32_march_RANG_PATH # Land use variables self.lus = {self.HYDE_crop_path: ['cropland', 'cropland fraction'], self.HYDE_othr_path: ['other', 'other vegetation fraction'], self.HYDE_urbn_path: ['urban', 'urban fraction'], self.HYDE_graz_path: ['grazing', 'grazing land fraction'], self.HYDE_past_path: ['pasture', 'pasture fraction'], self.HYDE_rang_path: ['rangeland', 'rangeland fraction']} # Lat, Lon and time dimensions self.lon_name = lon_name self.lat_name = lat_name self.tme_name = tme_name self.area_name = area_name self.out_path = out_path self.movies_path = out_path + os.sep + 'movies' util.make_dir_if_missing(self.out_path) util.make_dir_if_missing(self.movies_path) # Open up netCDF and get dimensions ds = util.open_or_die(self.HYDE_crop_path) self.lat = ds.variables[lat_name][:] self.lon = ds.variables[lon_name][:] self.time = ds.variables[tme_name][:] ds.close() # GLM static data self.path_glm_stat = constants.path_glm_stat # Static data, contains grid cell area (carea) self.path_glm_carea = constants.path_glm_carea # Get cell area (after subtracting ice/water fraction) icwtr_nc = util.open_or_die(self.path_glm_stat) icwtr = icwtr_nc.variables[constants.ice_water_frac][:, :] self.carea = util.open_or_die(self.path_glm_carea) self.carea_wo_wtr = util.open_or_die(self.path_glm_carea) * (1.0 - icwtr) # Movie frames self.yrs = np.arange(int(min(self.time)), int(max(self.time)), constants.MOVIE_SEP) # Get colors for plotting self.cols = plot.get_colors(palette='tableau')
def plot_HYDE_diff_maps(self, ver31='3.1', ver32alt='3.2'): """ Maps showing spatial differences between HYDE versions :param ver31: :param ver32alt: :return: """ obj_hyde31 = HYDE(constants.HYDE31_OUT_PATH, ver=ver31) obj_hyde32a = HYDE(constants.HYDE32_OUT_PATH, ver=ver32alt) # Create a reverse look-up table to access HYDE 3.2 paths based on HYDE 3.1 variables rev_dict = dict((v[0], k) for k, v in self.lus.iteritems()) # Create difference map and movie of difference maps HYDE3.2 and HYDE3.2alt for path, lu in obj_hyde32a.lus.iteritems(): imgs_diff_movie = [] var_hyde32 = lu[0] out_dir = self.out_path + os.sep + 'HYDE_diff_maps' util.make_dir_if_missing(out_dir) for yr in obj_hyde32a.time.tolist()[::constants.MOVIE_SEP]: logger.info('Create difference map for year ' + str(int(yr)) + ' for variable ' + var_hyde32) out_img_path = out_dir + os.sep + 'hyde_diff_' + var_hyde32 + '_' + str(int(yr)) + '.png' cmap = palettable.colorbrewer.diverging.RdYlBu_11_r.mpl_colormap diff_nc = util.subtract_netcdf(path, rev_dict[var_hyde32], left_var=lu[0], right_var=var_hyde32, date=int(yr)) plot.plot_arr_to_map(diff_nc, self.lon, self.lat, out_path=out_img_path, var_name='diff_' + var_hyde32 + '_' + str(int(yr)), xaxis_min=-1.0, xaxis_max=1.1, xaxis_step=0.1, annotate_date=True, yr=int(yr), xlabel='Difference in fraction of grid cell area \n HYDE 3.2 and ' + ver32alt + ': ' + var_hyde32, title='', cmap=cmap, any_time_data=False, land_bg=False, grid=True) imgs_diff_movie.append(out_img_path) plot.make_movie(imgs_diff_movie, out_dir + os.sep + 'movies', out_fname='Diff_HYDE32Alt_' + lu[0] + '.gif') # Create difference map and movie of difference maps HYDE3.2 and HYDE3.1 for path, lu in obj_hyde31.lus.iteritems(): imgs_diff_movie = [] # Variable 'primary' in HYDE 3.1 corresponds to 'other' in HYDE 3.2 var_hyde32 = lu[0] if lu[0] == 'primary': var_hyde32 = 'other' elif lu[0] == 'pasture': var_hyde32 = 'grazing' out_dir = self.out_path + os.sep + 'HYDE31_diff_maps' util.make_dir_if_missing(out_dir) for yr in obj_hyde31.time.tolist()[::constants.MOVIE_SEP]: logger.info('Create difference map for year ' + str(int(yr)) + ' for variable ' + var_hyde32) out_img_path = out_dir + os.sep + 'hyde31_diff_' + var_hyde32 + '_' + str(int(yr)) + '.png' cmap = palettable.colorbrewer.diverging.RdYlBu_11_r.mpl_colormap diff_nc = util.subtract_netcdf(rev_dict[var_hyde32], path, left_var=var_hyde32, right_var=lu[0], date=int(yr)) plot.plot_arr_to_map(diff_nc, self.lon, self.lat, out_path=out_img_path, var_name='diff_' + var_hyde32 + '_' + str(int(yr)), xaxis_min=-1.0, xaxis_max=1.1, xaxis_step=0.1, annotate_date=True, yr=int(yr), xlabel='Difference in fraction of grid cell area \n HYDE 3.2 and HYDE 3.1: ' + var_hyde32, title='', cmap=cmap, any_time_data=False, land_bg=False, grid=True) imgs_diff_movie.append(out_img_path) plot.make_movie(imgs_diff_movie, out_dir + os.sep + 'movies', out_fname='Diff_HYDE31_' + lu[0] + '.gif')
GLM_STRT_YR = parser.getint('PARAMETERS', 'GLM_STRT_YR') GLM_END_YR = parser.getint('PARAMETERS', 'GLM_END_YR') FILL_ZEROS = parser.getboolean('PARAMETERS', 'FILL_ZEROS') TEST_CFT = parser.getboolean('PROJECT', 'TEST_CFT') # Directories data_dir = dir_prj + os.sep + parser.get('PATHS', 'data_dir') + os.sep out_dir = dir_prj + os.sep + parser.get( 'PATHS', 'out_dir') + os.sep + PROJ_NAME + os.sep log_dir = out_dir + os.sep + 'Logs' fao_dir = data_dir + os.sep + parser.get('PATHS', 'fao_dir') + os.sep hyde_dir = data_dir + os.sep + parser.get('HYDE', 'hyde32_crop_path') # FAO CONSTANTS FAO_REGION_CODE = 1000 # FAO country codes maximum limit RAW_FAO = fao_dir + os.sep + parser.get('PROJECT', 'RAW_FAO') RAW_FAO_SHT = parser.get('PROJECT', 'RAW_FAO_SHT') CROP_LUP = fao_dir + os.sep + parser.get('PROJECT', 'CROP_LUP') CROP_LUP_SHT = parser.get('PROJECT', 'CROP_LUP_SHT') FAO_CONCOR = fao_dir + os.sep + parser.get('PROJECT', 'FAO_CONCOR') # Crop rotations csv file csv_rotations = data_dir + os.sep + parser.get('PROJECT', 'CSV_ROTATIONS') # Create directories util.make_dir_if_missing(data_dir) util.make_dir_if_missing(out_dir) util.make_dir_if_missing(log_dir) max_threads = multiprocessing.cpu_count() - 1
import numpy as np import pandas as pd import pygeoutil.util as util import GLM.constants as constants_glm import constants import plots reload(sys) sys.setdefaultencoding('utf-8') pd.options.mode.chained_assignment = None # default='warn' # Logging cur_flname = os.path.splitext(os.path.basename(__file__))[0] LOG_FILENAME = constants.log_dir + os.sep + 'Log_' + cur_flname + '.txt' util.make_dir_if_missing(constants.log_dir) logging.basicConfig( filename=LOG_FILENAME, level=logging.INFO, filemode='w', format='%(asctime)s %(levelname)s %(module)s - %(funcName)s: %(message)s', datefmt="%m-%d %H:%M" ) # Logging levels are DEBUG, INFO, WARNING, ERROR, and CRITICAL # Output to screen logger = logging.getLogger(cur_flname) logger.addHandler(logging.StreamHandler(sys.stdout)) class CropStats: """ 1. read_raw_FAO_data:
dir_prj = str(Path(__file__).parents[3]) TAG = parser.get('PROJECT', 'TAG') # AgNPP prj_name = parser.get('PROJECT', 'project_name') base_dir = parser.get('PATHS', 'input_dir') out_dir = parser.get('PATHS', 'out_dir') + os.sep + prj_dir + os.sep log_dir = out_dir + os.sep + 'Logs' inp_dir = prj_dir + os.sep + base_dir + os.sep AgNPP_fname = parser.get('AgNPP', 'AgNPP_file') AgNPP_file = inp_dir + os.sep + AgNPP_fname # Create directories import pygeoutil.util as util util.make_dir_if_missing(base_dir) util.make_dir_if_missing(out_dir) util.make_dir_if_missing(log_dir) # Logging LOG_FILENAME = out_dir + os.sep + 'Log_' + TAG + '.txt' logging.basicConfig(filename=LOG_FILENAME,level=logging.INFO,\ format='%(asctime)s %(levelname)s %(module)s - %(funcName)s: %(message)s',\ datefmt="%m-%d %H:%M") # Logging levels are DEBUG, INFO, WARNING, ERROR, and CRITICAL # Add a rotating handler logging.getLogger().addHandler( logging.handlers.RotatingFileHandler(LOG_FILENAME, maxBytes=50000, backupCount=5)) # Output to screen logging.getLogger().addHandler(logging.StreamHandler())
import matplotlib.pyplot as plt import matplotlib.ticker as mtick import numpy as np import pandas as pd import pygeoutil.util as util import constants import crop_stats import plots # Logging cur_flname = os.path.splitext(os.path.basename(__file__))[0] LOG_FILENAME = constants.log_dir + os.sep + 'Log_' + cur_flname + '.txt' util.make_dir_if_missing(constants.log_dir) logging.basicConfig(filename=LOG_FILENAME, level=logging.INFO, filemode='w', format='%(asctime)s %(levelname)s %(module)s - %(funcName)s: %(message)s', datefmt="%m-%d %H:%M") # Logging levels are DEBUG, INFO, WARNING, ERROR, and CRITICAL # Output to screen logger = logging.getLogger(cur_flname) logger.addHandler(logging.StreamHandler(sys.stdout)) class CropRotations: def __init__(self): self.name_country_col = 'Country_FAO' self.cft_type = 'functional crop type' @staticmethod def get_list_decades(lyrs):
def output_kml(trans, lon, lat, path_out, xmin, xmax, step, cmap, fname_out='out', name_legend='', label='', do_log_cb=False): """ :param trans: :param lon: :param lat: :param path_out: :param xmin: :param xmax: :param step: :param cmap: :param fname_out: :param name_legend: :param label: :param do_log_cb: :return: """ # Return if xmin == xmax if xmin == xmax: return logging.info('output_kml' + fname_out) dir_output = path_out + os.sep + 'kml' util.make_dir_if_missing(dir_output) fig, ax = gearth_fig(llcrnrlon=lon.min(), llcrnrlat=lat.min(), urcrnrlon=lon.max(), urcrnrlat=lat.max()) lons, lats = np.meshgrid(lon, lat) m = Basemap(projection='cyl', resolution='c') x, y = m(lons, lats) mask_data = maskoceans(lons, lats, trans) m.etopo() if do_log_cb and np.nanmin(mask_data) > 0.0: # manually set log levels e.g. http://matplotlib.org/examples/images_contours_and_fields/contourf_log.html lev_exp = np.arange(np.floor(np.log10(np.nanmin(mask_data)) - 1), np.ceil(np.log10(np.nanmax(mask_data)) + 1)) levs = np.power(10, lev_exp) cs = m.contourf(x, y, mask_data, levs, norm=colors.LogNorm(), cmap=cmap) else: cs = m.contourf(x, y, mask_data, np.arange(xmin, xmax, step), cmap=cmap) if abs(xmax - xmin) > 10000.0: format = '%.1e' elif abs(xmax - xmin) > 100.0: format = '%.0f' elif abs(xmax - xmin) > 1.0: format = '%.1f' elif abs(xmax - xmin) > 0.1: format = '%.3f' else: format = '%.4f' ax.set_axis_off() fig.savefig(dir_output + os.sep + 'kml_' + fname_out + '.png', transparent=False, format='png', dpi=800) # Colorbar fig = plt.figure(figsize=(1.0, 4.0), facecolor=None, frameon=False) # Colorbar legend, numbers represent: [bottom_left_x_coord, bottom_left_y_coord, width, height] ax = fig.add_axes([0.02, 0.05, 0.2, 0.9]) if do_log_cb and np.nanmin(mask_data) >= 0.0: cb = fig.colorbar(cs, cax=ax, spacing='uniform') else: cb = fig.colorbar(cs, cax=ax, format=format, spacing='uniform') cb.set_label(name_legend + '\n' + label, rotation=-90, color='k', labelpad=25, size=7) cb.ax.tick_params(labelsize=6) fig.savefig(dir_output + os.sep + name_legend + '.png', transparent=False, format='png', dpi=125) make_kml(llcrnrlon=lon.min(), llcrnrlat=lat.min(), urcrnrlon=lon.max(), urcrnrlat=lat.max(), figs=[dir_output + os.sep + 'kml_' + fname_out + '.png'], colorbar=dir_output + os.sep + name_legend + '.png', kmzfile=dir_output + os.sep + fname_out + '.kmz', name=fname_out) # Delte temp files # os.remove(dir_output + os.sep + 'kml_' + fname_out + '.png') # os.remove(dir_output + os.sep + name_legend + '.png') plt.close('all')
parser.read('config_AgNPP.txt') # Get directory path (3 levels up is the parent directory) dir_prj = str(Path(__file__).parents[3]) TAG = parser.get('PROJECT', 'TAG') # AgNPP prj_name = parser.get('PROJECT', 'project_name') base_dir = parser.get('PATHS', 'input_dir') out_dir = parser.get('PATHS', 'out_dir') + os.sep + prj_dir + os.sep log_dir = out_dir + os.sep + 'Logs' inp_dir = prj_dir + os.sep + base_dir + os.sep AgNPP_fname = parser.get('AgNPP', 'AgNPP_file') AgNPP_file = inp_dir + os.sep + AgNPP_fname # Create directories import pygeoutil.util as util util.make_dir_if_missing(base_dir) util.make_dir_if_missing(out_dir) util.make_dir_if_missing(log_dir) # Logging LOG_FILENAME = out_dir + os.sep + 'Log_' + TAG + '.txt' logging.basicConfig(filename=LOG_FILENAME,level=logging.INFO,\ format='%(asctime)s %(levelname)s %(module)s - %(funcName)s: %(message)s',\ datefmt="%m-%d %H:%M") # Logging levels are DEBUG, INFO, WARNING, ERROR, and CRITICAL # Add a rotating handler logging.getLogger().addHandler(logging.handlers.RotatingFileHandler(LOG_FILENAME, maxBytes=50000, backupCount=5)) # Output to screen logging.getLogger().addHandler(logging.StreamHandler())
CFT_FRAC_YR = parser.getint('PARAMETERS', 'CFT_FRAC_YR') GLM_STRT_YR = parser.getint('PARAMETERS', 'GLM_STRT_YR') GLM_END_YR = parser.getint('PARAMETERS', 'GLM_END_YR') FILL_ZEROS = parser.getboolean('PARAMETERS', 'FILL_ZEROS') TEST_CFT = parser.getboolean('PROJECT', 'TEST_CFT') # Directories data_dir = dir_prj + os.sep + parser.get('PATHS', 'data_dir') + os.sep out_dir = dir_prj + os.sep + parser.get('PATHS', 'out_dir') + os.sep + PROJ_NAME + os.sep log_dir = out_dir + os.sep + 'Logs' fao_dir = data_dir + os.sep + parser.get('PATHS', 'fao_dir') + os.sep hyde_dir = data_dir + os.sep + parser.get('HYDE', 'hyde32_crop_path') # FAO CONSTANTS FAO_REGION_CODE = 1000 # FAO country codes maximum limit RAW_FAO = fao_dir + os.sep + parser.get('PROJECT', 'RAW_FAO') RAW_FAO_SHT = parser.get('PROJECT', 'RAW_FAO_SHT') CROP_LUP = fao_dir + os.sep + parser.get('PROJECT', 'CROP_LUP') CROP_LUP_SHT = parser.get('PROJECT', 'CROP_LUP_SHT') FAO_CONCOR = fao_dir + os.sep + parser.get('PROJECT', 'FAO_CONCOR') # Crop rotations csv file csv_rotations = data_dir + os.sep + parser.get('PROJECT', 'CSV_ROTATIONS') # Create directories util.make_dir_if_missing(data_dir) util.make_dir_if_missing(out_dir) util.make_dir_if_missing(log_dir) max_threads = multiprocessing.cpu_count() - 1
def __init__(self, res='q'): """ :param res: Resolution of output dataset: q=quarter, h=half, o=one :return: """ # Dictionary of crop functional types self.cft = { 'C4Annual': ['maize.asc', 'millet.asc', 'sorghum.asc'], 'C4Perren': ['sugarcane.asc'], 'C3Perren': [ 'banana.asc', 'berry.asc', 'citrus.asc', 'fruittree.asc', 'grape.asc', 'palm.asc', 'tropevrgrn.asc' ], 'Ntfixing': [ 'alfalfa.asc', 'bean.asc', 'legumehay.asc', 'peanut.asc', 'soybean.asc' ], 'C3Annual': [ 'beet.asc', 'cassava.asc', 'cotton.asc', 'flax.asc', 'hops.asc', 'mixedcover.asc', 'nursflower.asc', 'oat.asc', 'potato.asc', 'rapeseed.asc', 'rice.asc', 'rye.asc', 'safflower.asc', 'sunflower.asc', 'tobacco.asc', 'vegetable.asc', 'wheat.asc' ], 'TotlRice': ['rice.asc', 'xrice.asc'] } # Get shape of file self.skiprows = 6 self.res = res self.tmpdata = util.open_or_die(path_file=GLM.constants.MFD_DATA_DIR + os.sep + 'maize.asc', skiprows=self.skiprows, delimiter=' ') self.asc_hdr = util.get_ascii_header( path_file=GLM.constants.MFD_DATA_DIR + os.sep + 'maize.asc', getrows=self.skiprows) self.yshape = self.tmpdata.shape[0] self.xshape = self.tmpdata.shape[1] # Create empty numpy arrays self.c4annual = numpy.zeros(shape=(self.yshape, self.xshape)) self.c4perren = numpy.zeros(shape=(self.yshape, self.xshape)) self.c3perren = numpy.zeros(shape=(self.yshape, self.xshape)) self.ntfixing = numpy.zeros(shape=(self.yshape, self.xshape)) self.c3annual = numpy.zeros(shape=(self.yshape, self.xshape)) self.totlrice = numpy.zeros(shape=(self.yshape, self.xshape)) self.totlcrop = numpy.zeros(shape=(self.yshape, self.xshape)) self.c4anarea = numpy.zeros(shape=(self.yshape, self.xshape)) self.c4prarea = numpy.zeros(shape=(self.yshape, self.xshape)) self.c3prarea = numpy.zeros(shape=(self.yshape, self.xshape)) self.ntfxarea = numpy.zeros(shape=(self.yshape, self.xshape)) self.c3anarea = numpy.zeros(shape=(self.yshape, self.xshape)) self.croparea = numpy.zeros(shape=(self.yshape, self.xshape)) # Area of each cell in Monfreda dataset self.mfd_area = numpy.zeros(shape=(self.yshape, self.xshape)) # Ice-water fraction and other static data self.icwtr = util.open_or_die(GLM.constants.path_GLM_stat) # Read in area file based on res if res == 'q': self.area_data = util.open_or_die( path_file=GLM.constants.CELL_AREA_Q) elif res == 'h': self.area_data = util.open_or_die( path_file=GLM.constants.CELL_AREA_H) elif res == 'o': self.area_data = util.open_or_die( path_file=GLM.constants.CELL_AREA_O) else: logging.info('Incorrect resolution for output of Monfreda') # Compute cell area (excluding ice-water fraction) self.cell_area = util.open_or_die(GLM.constants.path_GLM_carea) self.land_area = self.cell_area * ( 1.0 - self.icwtr.variables[GLM.constants.ice_water_frac][:, :]) # Get FAO country concordance list self.fao_id = pandas.read_csv( GLM.constants.FAO_CONCOR)[['Country_FAO', 'ISO']] # Output path self.out_path = GLM.constants.out_dir + os.sep + 'Monfreda' util.make_dir_if_missing(self.out_path)