示例#1
0
 def test_complex(self):
     c = _AddOneBlock()
     d = _AddOneBlock()
     e = _TwoInputBlock()
     p = pipeline.Pipeline([self.a, (self.b, [c, d]), e])
     out = p.process(self.data)
     assert out == self.data + 2 + self.data + 3
示例#2
0
 def test_clear(self):
     b = _ClearableBlock()
     internal_start = b.internal_var
     p = pipeline.Pipeline(b)
     out = p.process(self.data)
     assert b.internal_var == out
     p.clear()
     assert b.internal_var == internal_start
示例#3
0
    def __init__(self, config, record_thread, parent=None):
        super(SignalWidget, self).__init__(parent)

        self.cfg = config
        self.record_thread = record_thread

        self.samp_per_read = 1
        self.hist = 20
        self.plot_items = []
        self.plot_data_items = []

        self.ui = Ui_SignalWidget()
        self.ui.setupUi(self)

        self.pipeline = pipeline.Pipeline(self.cfg.conditioner)

        self.init_plot()
        self.init_button_group()
示例#4
0
 def test_parallel_to_series(self):
     c = _TwoInputBlock()
     p = pipeline.Pipeline([(self.a, self.b), c])
     out = p.process(self.data)
     assert out == self.data + 1 + self.data + 1
示例#5
0
 def test_series_to_parallel(self):
     c = _AddOneBlock()
     p = pipeline.Pipeline([self.a, (self.b, c)])
     out = p.process(self.data)
     assert out == [self.data + 2, self.data + 2]
示例#6
0
 def test_parallel_simple(self):
     p = pipeline.Pipeline((self.a, self.b))
     out = p.process(self.data)
     assert out == [self.data + 1, self.data + 1]
示例#7
0
 def test_series_simple(self):
     p = pipeline.Pipeline([self.a, self.b])
     out = p.process(self.data)
     assert out == self.data + 2
示例#8
0
文件: test.py 项目: hql1234/pygesture
    def build_pipeline(self):
        """
        Builds the processing pipeline. Most of the pipeline is specified by
        the config, but we need to gather training data, build a classifier
        with that data, and insert the classifier into the pipeline.
        """
        train_list = []
        for i in range(self.ui.trainingList.count()):
            item = self.ui.trainingList.item(i)
            if item.checkState():
                train_list.append(str(item.text()))
        self.training_sessions = train_list

        if not train_list:
            QtWidgets.QMessageBox().critical(
                self, "Error", "No sessions selected for training.",
                QtWidgets.QMessageBox.Ok)
            return

        # get only the labels for the selected TAC session
        # need to loop over available gestures to catch those with no dof
        labels = []
        mapping = {}
        for gesture in self.cfg.gestures:
            if gesture.dof is None:
                labels.append(gesture.label)
                mapping[gesture.label] = gesture.action
            else:
                if gesture in self.tac_session.gestures:
                    labels.append(gesture.label)
                    mapping[gesture.label] = gesture.action

        file_list = filestruct.get_feature_file_list(self.cfg.data_path,
                                                     self.pid, train_list)
        training_data = processing.read_feature_file_list(file_list,
                                                          labels=labels)

        # get average MAV for each gesture label to auto-set boosts
        # warning: super hacky
        j = 0
        start = 0
        for i, feature in enumerate(self.cfg.feature_extractor.features):
            if 'MAV' in str(feature):
                start = j
                break
            else:
                j += feature.dim_per_channel * len(self.cfg.channels)
        X, y = training_data
        X = X[:, start:len(self.cfg.channels)]
        boosts = dict()
        for label in labels:
            mav_avg = np.mean(X[y == label, :], axis=1)
            # -np.partition(-data, N) gets N largest elements of data
            boosts[label] = 1 / np.mean(-np.partition(-mav_avg, 10)[:10])
        self.boosts = boosts

        # re-create the controller to make sure it has the correct mapping
        self.controller = control.DBVRController(
            mapping=mapping,
            ramp_length=self.cfg.controller.ramp_length,
            boosts=1 if self.test else boosts)

        self.cfg.learner.fit(*training_data)

        self.pipeline = pipeline.Pipeline([
            self.cfg.conditioner, self.cfg.windower,
            (
                features.FeatureExtractor([features.MAV()],
                                          len(self.cfg.channels)),
                [self.cfg.feature_extractor, self.cfg.learner],
            )
        ])

        self.record_thread.set_pipeline(self.pipeline)