示例#1
0
def fitCCC(f,
           amp,
           phi,
           eRho=0.01,
           ePhi=0.001,
           lam=1000.,
           mstart=None,
           taupar=(1e-2, 1e-5, 100),
           cpar=(0.5, 0, 1)):
    """Fit complex spectrum by Cole-Cole model."""
    fCC = ColeColeComplex(f)
    tLog = pg.RTransLog()
    fCC.region(0).setStartValue(max(amp))
    if mstart is None:  # compute from amplitude decay
        mstart = 1. - min(amp) / max(amp)
    fCC.region(1).setParameters(mstart, 0, 1)  # m (start,lower,upper)
    fCC.region(2).setParameters(*taupar)  # tau
    fCC.region(3).setParameters(*cpar)  # c
    data = pg.cat(amp, phi)
    ICC = pg.RInversion(data, fCC, False)  # set up inversion class
    ICC.setTransModel(tLog)
    error = pg.cat(eRho * amp, pg.RVector(len(f), ePhi))
    ICC.setAbsoluteError(error)  # perr + ePhi/data)
    ICC.setLambda(lam)  # start with large damping and cool later
    ICC.setMarquardtScheme(0.8)  # lower lambda by 20%/it., no stop chi=1
    model = np.asarray(ICC.run())  # run inversion
    ICC.echoStatus()
    response = np.asarray(ICC.response())
    return model, response[:len(f)], response[len(f):]
示例#2
0
    def setData(self, data):
        """TODO."""
        if isinstance(data, list):
            if len(data) == len(self.managers):
                self.tD.clear()
                self.dataVals.clear()
                self.dataErrs.clear()

                self.fop.setData(data)

                for i, mgr in enumerate(self.managers):
                    t = mgr.tD
                    self.tD.add(t, data[i].size())

                    self.dataVals = pg.cat(self.dataVals,
                                           data[i](mgr.dataToken()))

                    if mgr.errIsAbsolute:
                        self.dataErrs = pg.cat(
                            self.dataErrs,
                            data[i]('err') / data[i](mgr.dataToken()))
                    else:
                        self.dataErrs = pg.cat(self.dataErrs, data[i]('err'))

                self.data = data

                self.inv.setTransData(self.tD)
                self.inv.setTransModel(self.tM)
            else:
                raise BaseException("To few datacontainer given")
示例#3
0
    def block1dInversionNew(self, nlay=2, lam=100.0, verbose=True):
        """invert all data together by a 1D model (more general solution)"""
        data, error = pg.RVector(), pg.RVector()
        for mrs in self.mrs:
            data = pg.cat(data, mrs.data)
            error = pg.cat(error, mrs.error)

        f = JointMRSModelling(self.mrs, nlay)
        mrsobj = self.mrs[0]
        for i in range(3):
            f.region(i).setParameters(mrsobj.startval[i], mrsobj.lowerBound[i], mrsobj.upperBound[i])
        #        f.region(0).setStartValue(mrsobj.startval[0])
        #        f.region(1).setStartValue(mrsobj.startval[1])
        #        f.region(2).setStartValue(mrsobj.startval[2])
        #        # Model transformation instances saved in class
        #        transTH = pg.RTransLogLU(mrsobj.lowerBound[0], mrsobj.upperBound[0])
        #        transWC = pg.RTransLogLU(mrsobj.lowerBound[1], mrsobj.upperBound[1])
        #        transT2 = pg.RTransLogLU(mrsobj.lowerBound[2], mrsobj.upperBound[2])
        #        f.region(0).setTransModel(transTH)
        #        f.region(1).setTransModel(transWC)
        #        f.region(2).setTransModel(transT2)
        INV = pg.RInversion(data, f, verbose)
        INV.setLambda(lam)
        INV.setMarquardtScheme(0.8)
        INV.stopAtChi1(False)  # now in MarquardtScheme
        INV.setDeltaPhiAbortPercent(0.5)
        INV.setAbsoluteError(error)
        model = INV.run()
        return model
示例#4
0
 def setData(self, data):
     """
     """
     if type(data) is list:
         if len(data) == len(self.managers):
             self.tD.clear()
             self.dataVals.clear()
             self.dataErrs.clear()
             
             self.fop.setData(data)
             
             for i, mgr in enumerate(self.managers):
                 t = mgr.tD
                 self.tD.add(t, data[i].size())
 
                 self.dataVals = pg.cat(self.dataVals, data[i](mgr.dataToken()))
         
                 if mgr.errIsAbsolute:
                     self.dataErrs = pg.cat(self.dataErrs, data[i]('err')/data[i](mgr.dataToken()))
                 else:
                     self.dataErrs = pg.cat(self.dataErrs, data[i]('err'))
             
             self.data = data
             
             self.inv.setTransData(self.tD)
             self.inv.setTransModel(self.tM)
         else:
             raise BaseException("To few datacontainer given")
示例#5
0
文件: mrs.py 项目: wk1984/gimli
    def runEA(self,nlay=None,type='GA',pop_size=100,max_evaluations=10000,**kwargs):
        import inspyred
        import random
        
        def mygenerate( random, args ):
            """ generate a random vector of model size """
            return [random.random() for i in range( nlay*3 - 1 )]
        
        def my_observer(population, num_generations, num_evaluations, args):
            best = min(population)
            print('{0:6} -- {1}'.format(num_generations,best.fitness))
        
        @inspyred.ec.evaluators.evaluator
        def datafit( individual, args ):
            misfit = (self.data-self.f.response(self.genMod(individual)))/self.error
            return np.mean(misfit**2)
        
        # prepare forward operator
        if self.f is None or (nlay is not None and nlay is not self.nlay): self.createFOP(nlay)
        
        lowerBound = pg.cat( pg.cat( pg.RVector(self.nlay-1,self.lowerBound[0]), 
            pg.RVector(self.nlay,self.lowerBound[1])), pg.RVector(self.nlay,self.lowerBound[2]) )
        upperBound = pg.cat( pg.cat( pg.RVector(self.nlay-1,self.upperBound[0]), 
            pg.RVector(self.nlay,self.upperBound[1])), pg.RVector(self.nlay,self.upperBound[2]) )
        if self.logpar:
            self.lLB, self.lUB = pg.log(lowerBound), pg.log(upperBound) # ready mapping functions
        else:
            self.lLB, self.lUB = lowerBound, upperBound
        
#        self.f = MRS1dBlockQTModelling(nlay, self.K, self.z, self.t)
        # setup random generator
        rand = random.Random()
        rand.seed(int(time.time()))
        # choose among different evolution algorithms
        if type == 'GA': 
            ea = inspyred.ec.GA(rand)
            ea.variator = [inspyred.ec.variators.blend_crossover, inspyred.ec.variators.gaussian_mutation]
            ea.selector = inspyred.ec.selectors.tournament_selection
            ea.replacer = inspyred.ec.replacers.generational_replacement
        if type == 'SA': ea = inspyred.ec.SA(rand)
        if type == 'DEA': ea = inspyred.ec.DEA(rand)
        if type == 'PSO': ea = inspyred.swarm.PSO(rand)
        if type == 'ACS': ea = inspyred.swarm.ACS(rand,[])
        if type == 'ES': 
            ea = inspyred.ec.ES(rand)
            ea.terminator = [inspyred.ec.terminators.evaluation_termination, 
                             inspyred.ec.terminators.diversity_termination]            
        else:
            ea.terminator = inspyred.ec.terminators.evaluation_termination                     

        #ea.observer = my_observer
        ea.observer = [inspyred.ec.observers.stats_observer, inspyred.ec.observers.file_observer]
        self.pop = ea.evolve(evaluator=datafit,generator=mygenerate,maximize=False,
                             pop_size=pop_size,max_evaluations=max_evaluations,num_elites=1,
                             bounder=inspyred.ec.Bounder(0.,1.),**kwargs)
        self.pop.sort(reverse=True)
        self.fits=[ind.fitness for ind in self.pop]
示例#6
0
文件: ves.py 项目: torvalds2010/gimli
def test_VESManager(showProgress=False):
    """
        run from console with: python -c 'import pygimli.physics.ert.ves as pg; pg.test_VESManager(1)'
    """
    thicks = [2., 10.]
    res = [100., 5., 30]
    phi = [0., 20., 0.]

    # model fails
    thicks = [2., 6., 10.]
    res = [100., 500., 20., 800.]
    phi = [0., 20., 50., 0]

    synthModel = pg.cat(thicks, res)
    ab2 = np.logspace(np.log10(1.5), np.log10(100.), 25)

    mgr = VESManager(verbose=True, debug=False)
    mgr.fop.setRegionProperties(0, limits=[0.5, 200], trans='log')
    ra, err = mgr.simulate(synthModel, ab2=ab2, mn2=1.0, noiseLevel=0.01)
    mgr.exportData('synth.ves', ra, err)

    mgr.invert(ra, err, nLayer=4, lam=100,
               showProgress=showProgress)

    pg.wait()
    ### Test -- reinit with new parameter count
    mgr.invert(ra, err, nLayer=3,
               showProgress=showProgress)

    #np.testing.assert_array_less(mgr.inv.inv.chi2(), 1)

    ### Test -- reinit with new data basis
    ab2 = np.logspace(np.log10(1.5), np.log10(50.), 10)
    ra, err = mgr.simulate(synthModel, ab2=ab2, mn2=1.0, noiseLevel=0.01)

    mgr2 = VESManager(verbose=False, debug=False)
    mgr2.invert(ra, err, nLayer=3, ab2=ab2, mn2=1.0,
                showProgress=showProgress)

    #np.testing.assert_array_less(mgr2.inv.inv.chi2(), 1)

    pg.wait()
    ### Test -- reinit with complex resistivies
    mgr.complex = True
    synthModel =  pg.cat(synthModel, phi)

    ra, err = mgr.simulate(synthModel, ab2=ab2, mn2=1.0, noiseLevel=0.01)
    mgr.exportData('synthc.ves', ra, err)
    mgr.invert(ra, err,
               showProgress=showProgress)

    np.testing.assert_array_less(mgr.inv.inv.chi2(), 1)

    if showProgress:
        print("test done");
        pg.wait()
示例#7
0
文件: ves.py 项目: gimli-org/gimli
def test_VESManager(showProgress=False):
    """
        run from console with: python -c 'import pygimli.physics.ert.ves as pg; pg.test_VESManager(1)'
    """
    thicks = [2., 10.]
    res = [100., 5., 30]
    phi = [0., 20., 0.]

    # model fails
    thicks = [2., 6., 10.]
    res = [100., 500., 20., 800.]
    phi = [0., 20., 50., 0]

    synthModel = pg.cat(thicks, res)
    ab2 = np.logspace(np.log10(1.5), np.log10(100.), 25)

    mgr = VESManager(verbose=True, debug=False)
    mgr.fop.setRegionProperties(0, limits=[0.5, 200], trans='log')
    ra, err = mgr.simulate(synthModel, ab2=ab2, mn2=1.0, noiseLevel=0.01)
    mgr.exportData('synth.ves', ra, err)

    mgr.invert(ra, err, nLayer=4, lam=100,
               showProgress=showProgress)

    pg.wait()
    ### Test -- reinit with new parameter count
    mgr.invert(ra, err, nLayer=3,
               showProgress=showProgress)

    #np.testing.assert_array_less(mgr.inv.inv.chi2(), 1)

    ### Test -- reinit with new data basis
    ab2 = np.logspace(np.log10(1.5), np.log10(50.), 10)
    ra, err = mgr.simulate(synthModel, ab2=ab2, mn2=1.0, noiseLevel=0.01)

    mgr2 = VESManager(verbose=False, debug=False)
    mgr2.invert(ra, err, nLayer=3, ab2=ab2, mn2=1.0,
                showProgress=showProgress)

    #np.testing.assert_array_less(mgr2.inv.inv.chi2(), 1)

    pg.wait()
    ### Test -- reinit with complex resistivies
    mgr.complex = True
    synthModel =  pg.cat(synthModel, phi)

    ra, err = mgr.simulate(synthModel, ab2=ab2, mn2=1.0, noiseLevel=0.01)
    mgr.exportData('synthc.ves', ra, err)
    mgr.invert(ra, err,
               showProgress=showProgress)

    np.testing.assert_array_less(mgr.inv.inv.chi2(), 1)

    if showProgress:
        print("test done");
        pg.wait()
示例#8
0
    def setData(self, data):
        self.fop.setData(data)
        self.dataVals = pg.Vector(0)
        self.dataErrs = pg.Vector(0)

        for i, mgr in enumerate(self.mgrs):
            self.tD.add(mgr.tD, data[i].size())
            self.dataVals = pg.cat(self.dataVals, mgr.dataVals(data[i]))
            self.dataErrs = pg.cat(self.dataErrs, mgr.relErrorVals(data[i]))
        self.inv.setTransData(self.tD)
示例#9
0
    def setData(self, data):
        self.fop.setData(data)
        self.dataVals = pg.Vector(0)
        self.dataErrs = pg.Vector(0)

        for i, mgr in enumerate(self.mgrs):
            self.tD.add(mgr.tD, data[i].size())
            self.dataVals = pg.cat(self.dataVals, mgr.dataVals(data[i]))
            self.dataErrs = pg.cat(self.dataErrs, mgr.relErrorVals(data[i]))
        self.inv.setTransData(self.tD)
示例#10
0
 def loadData(self, fileName, **kwargs):
     mat = np.loadtxt(fileName)
     if len(mat[0]) == 4:
         self.fop.setDataBasis(ab2=mat[:, 0], mn2=mat[:, 1])
         return mat.T
     if len(mat[0]) == 6:
         self.complex = True
         self.fop.setDataBasis(ab2=mat[:, 0], mn2=mat[:, 1])
         return mat[:, 0], mat[:, 1], np.array(pg.cat(
             mat[:, 2], mat[:, 4])), np.array(pg.cat(mat[:, 3], mat[:, 5]))
示例#11
0
文件: ves.py 项目: syzeng999/gimli
 def loadData(self, fileName, **kwargs):
     """ Load simple data matrix
     """
     mat = np.loadtxt(fileName)
     if len(mat[0]) == 4:
         self.fop.setDataSpace(ab2=mat[:, 0], mn2=mat[:, 1])
         return mat.T
     if len(mat[0]) == 6:
         self.complex = True
         self.fop.setDataSpace(ab2=mat[:, 0], mn2=mat[:, 1])
         return (mat[:, 0], mat[:,
                                1], np.array(pg.cat(mat[:, 2], mat[:, 4])),
                 np.array(pg.cat(mat[:, 3], mat[:, 5])))
示例#12
0
def fitCCCC(f,
            amp,
            phi,
            error=0.01,
            lam=10.,
            taupar=(1e-2, 1e-5, 100),
            cpar=(0.25, 0, 1),
            mpar=(0, 0, 1)):
    """Fit complex spectrum by Cole-Cole model based on sigma."""
    fCC = ColeColeComplexSigma(f)
    tLog = pg.RTransLog()
    fCC.region(0).setStartValue(1. / max(amp))
    if mpar[0] == 0:
        mpar[0] = 1. - min(amp) / max(amp)
    fCC.region(1).setParameters(*mpar)  # m (start,lower,upper)
    fCC.region(2).setParameters(*taupar)  # tau
    fCC.region(3).setParameters(*cpar)  # c
    data = pg.cat(1. / amp * np.cos(phi), 1. / amp * np.sin(phi))
    ICC = pg.RInversion(data, fCC, False)  # set up inversion class
    ICC.setTransModel(tLog)
    ICC.setAbsoluteError(data * error +
                         max(data) * 0.0001)  # perr + ePhi/data)
    ICC.setLambda(lam)  # start with large damping and cool later
    ICC.setMarquardtScheme(0.8)  # lower lambda by 20%/it., no stop chi=1
    model = np.asarray(ICC.run())  # run inversion
    ICC.echoStatus()
    response = np.asarray(ICC.response())
    rRe, rIm = response[:len(f)], response[len(f):]
    rAmp = 1. / np.sqrt(rRe**2 + rIm**2)
    return model, rAmp, np.arctan(rIm / rRe)
示例#13
0
def createERTData(elecs, schemeName='none', **kwargs):
    """ Simple data creator for compatibility (advanced version in BERT).

    Parameters
    ----------
    sounding : bool [False]
        Create a 1D VES Schlumberger configuration.
        elecs need to be an array with elecs[0] = mn/2 and elecs[1:] = ab/2.

    """
    if kwargs.pop('sounding', False):
        data = pg.DataContainerERT()
        data.setSensors(pg.cat(-elecs[::-1], elecs))

        nElecs = len(elecs)
        for i in range(nElecs - 1):
            data.createFourPointData(i, i, 2 * nElecs - i - 1, nElecs - 1,
                                     nElecs)

        return data

    if schemeName != "dd":
        import pybert as pb  # that's bad!!! TODO: remove pybert deps
        return pb.createData(elecs, schemeName, **kwargs)

    isClosed = kwargs.pop('closed', False)

    data = pg.DataContainerERT()
    data.setSensors(elecs)

    nElecs = len(elecs)
    a = []
    b = []
    m = []
    n = []
    eb = 0
    for i in range(nElecs):
        for j in range(eb + 2, nElecs):
            ea = i
            eb = ea + 1
            em = j
            en = em + 1

            if isClosed:
                en = en % nElecs

            if en < nElecs and en != ea:
                a.append(ea)
                b.append(eb)
                m.append(em)
                n.append(en)

    data.resize(len(a))
    data.add('a', a)
    data.add('b', b)
    data.add('m', m)
    data.add('n', n)
    data.set('valid', np.ones(len(a)))

    return data
    def response_mt(self, model, i=0):
        model = np.nan_to_num(model)
        fw, fi, fa, fr = self.fractions(model)

        rho = self.fpm.rho(fw, fi, fa, fr)
        s = self.fpm.slowness(fw, fi, fa, fr)

        print("=" * 30)
        print("        Min. | Max.")
        print("-" * 30)
        print(" Water: %.2f | %.2f" % (np.min(fw), np.max(fw)))
        print(" Ice:   %.2f | %.2f" % (np.min(fi), np.max(fi)))
        print(" Air:   %.2f | %.2f" % (np.min(fa), np.max(fa)))
        print(" Rock:  %.2f | %.2f" % (np.min(fr), np.max(fr)))
        print("-" * 30)
        print(" SUM:   %.2f | %.2f" % (np.min(fa + fw + fi + fr),
                                       np.max(fa + fw + fi + fr)))
        print("=" * 30)
        print(" Rho:   %.2e | %.2e" % (np.min(rho), np.max(rho)))
        print(" Vel:   %d | %d" % (np.min(1 / s), np.max(1 / s)))

        t = self.RST.fop.response(s)
        rhoa = self.ERT.fop.response(rho)

        return pg.cat(t, rhoa)
示例#15
0
def drawSeismogramm(axes, mesh, u, ids, dt, i=None):
    r"""Extract and show time series from wave field

    Parameters
    ----------
    """
    axes.set_xlim(-20., 20.)
    axes.set_ylim(0., dt*len(u)*1000)
    axes.set_aspect(1)
    axes.set_ylabel('Time in ms')

    if i is None:
        i = len(u)-1

    t = np.linspace(0, i*dt*1000, i+1)

    for iw, n in enumerate(ids):
        pos = mesh.node(n).pos()
        print(pos)
        axes.plot(pos[0], 0.05, '^', color='black')

        trace = pg.cat(pg.RVector(0), u[:(i+1), n])
#        print(i+1, n)
#        print(trace, (max(pg.abs(trace))))

#        if max(pg.abs(trace)) > 1e-8:

        trace *= np.exp(0.5*t)
        trace /= (max(pg.abs(trace))*1.5)

        drawWiggle(axes, trace, t=t, xoffset=pos[0])
    axes.invert_yaxis()
示例#16
0
文件: ves.py 项目: torvalds2010/gimli
 def drawModel(self, ax, model):
     nLay = (len(model)+1) // 3
     super(VESCModelling, self).drawModel(ax, model[0:nLay*2-1])
     pg.mplviewer.drawModel1D(ax=ax,
                              model=pg.cat(model[0:nLay-1], model[nLay*2-1::]),
                              plot='plot',
                              xlabel='Phase [mrad]')
示例#17
0
 def response(self, par):
     """Response vector as combined in-phase and out-phase data."""
     thk = np.asarray(par[:self.nlay-1], dtype=np.float)
     res = np.asarray(par[self.nlay-1:2*self.nlay-1], dtype=np.float)
     mur = np.asarray(par[2*self.nlay-1:3*self.nlay-1], dtype=np.float) + 1
     ip, op = self.vmd_hem(self.height, rho=res, d=thk, mur=mur)
     return pg.cat(ip, op)
示例#18
0
文件: ves.py 项目: gimli-org/gimli
 def drawModel(self, ax, model):
     nLay = (len(model)+1) // 3
     super(VESCModelling, self).drawModel(ax, model[0:nLay*2-1])
     pg.mplviewer.drawModel1D(ax=ax,
                              model=pg.cat(model[0:nLay-1], model[nLay*2-1::]),
                              plot='plot',
                              xlabel='Phase [mrad]')
示例#19
0
    def checkErrors(self, err, dataVals):
        """Return relative error. Default we assume 'err' are relative vales.
        """
        if isinstance(err, pg.DataContainer):
            rae = None

            if not err.allNonZero('err'):
                pg.warn(
                    "Datacontainer have no 'err' values. "
                    "Fallback of 1mV + 3% using ERTManager.estimateError(...) "
                )
                rae = self.estimateError(err,
                                         absoluteError=0.001,
                                         relativeError=0.03)
            else:
                rae = err['err']

            if self.fop.complex():

                ipe = None

                if err.haveData('iperr'):
                    amp, phi = pg.utils.toPolar(dataVals)
                    # assuming ipErr are absolute dPhi in mrad
                    ipe = err['iperr'] / abs((phi * 1000))
                else:
                    pg.warn("Datacontainer have no 'iperr' values. "
                            "Fallback set to 0.01")
                    ipe = np.ones(err.size()) * 0.01

                # pg._y("err", min(rae), max(rae), rae)
                # pg._y("iperr", min(ipe), max(ipe), ipe)
                return pg.cat(rae, ipe)

        return rae
示例#20
0
def drawSeismogramm(axes, mesh, u, ids, dt, i=None):
    r"""Extract and show time series from wave field

    Parameters
    ----------
    """
    axes.set_xlim(-20., 20.)
    axes.set_ylim(0., dt * len(u) * 1000)
    axes.set_aspect(1)
    axes.set_ylabel('Time in ms')

    if i is None:
        i = len(u) - 1

    t = np.linspace(0, i * dt * 1000, i + 1)

    for iw, n in enumerate(ids):
        pos = mesh.node(n).pos()
        print(pos)
        axes.plot(pos[0], 0.05, '^', color='black')

        trace = pg.cat(pg.RVector(0), u[:(i + 1), n])
        #        print(i+1, n)
        #        print(trace, (max(pg.abs(trace))))

        #        if max(pg.abs(trace)) > 1e-8:

        trace *= np.exp(0.5 * t)
        trace /= (max(pg.abs(trace)) * 1.5)

        drawWiggle(axes, trace, t=t, xoffset=pos[0])
    axes.invert_yaxis()
示例#21
0
    def __init__(self,
                 fop,
                 data,
                 error,
                 startmodel,
                 lam=20,
                 beta=10000,
                 maxIter=50,
                 fwmin=0,
                 fwmax=1,
                 fimin=0,
                 fimax=1,
                 famin=0,
                 famax=1,
                 frmin=0,
                 frmax=1):
        LSQRInversion.__init__(self, data, fop, verbose=True, dosave=True)
        self._error = pg.Vector(error)

        # Set data transformations
        self.logtrans = pg.trans.TransLog()
        self.trans = pg.trans.Trans()
        self.dcumtrans = pg.trans.TransCumulative()
        self.dcumtrans.add(self.trans, fop.RST.data.size())
        self.dcumtrans.add(self.logtrans, fop.ERT.data.size())
        self.setTransData(self.dcumtrans)

        # Set model transformation
        n = fop.cellCount
        self.mcumtrans = pg.trans.TransCumulative()
        self.transforms = []
        phase_limits = [[fwmin, fwmax], [fimin, fimax], [famin, famax],
                        [frmin, frmax]]
        for i, (lower, upper) in enumerate(phase_limits):
            if lower == 0:
                lower = 0.001
            self.transforms.append(pg.trans.TransLogLU(lower, upper))
            self.mcumtrans.add(self.transforms[i], n)

        self.setTransModel(self.mcumtrans)

        # Set error
        self.setRelativeError(self._error)

        # Set some defaults

        # Set maximum number of iterations (default is 20)
        self.setMaxIter(maxIter)

        # Regularization strength
        self.setLambda(lam)
        self.setDeltaPhiAbortPercent(0.25)

        # fop = self.forwardOperator()
        fop.createConstraints()  # Important!
        ones = pg.Vector(fop._I.rows(), 1.0)
        phiVec = pg.cat(ones, startmodel)
        self.setParameterConstraints(fop._G, phiVec, beta)
        self.setModel(startmodel)
示例#22
0
    def inv2D(self,
              nlay,
              lam=100.,
              resL=1.,
              resU=1000.,
              thkL=1.,
              thkU=100.,
              minErr=1.0):
        """2d LCI inversion class."""
        if isinstance(nlay, int):
            modVec = pg.RVector(nlay * 2 - 1, 30.)
            cType = 0  # no reference model
        else:
            modVec = nlay
            cType = 10  # use this as referencemodel
            nlay = (len(modVec) + 1) / 2

        # init forward operator
        self.f2d = self.FOP2d(nlay)

        # transformations
        self.transData = pg.RTrans()
        self.transThk = pg.RTransLogLU(thkL, thkU)
        self.transRes = pg.RTransLogLU(resL, resU)

        for i in range(nlay - 1):
            self.f2d.region(i).setTransModel(self.transThk)

        for i in range(nlay - 1, nlay * 2 - 1):
            self.f2d.region(i).setTransModel(self.transRes)

        # set constraints
        self.f2d.region(0).setConstraintType(cType)
        self.f2d.region(1).setConstraintType(cType)

        # collect data vector
        datvec = pg.RVector(0)

        for i in range(len(self.x)):
            datvec = pg.cat(datvec, self.datavec(i))

        # collect error vector
        if self.ERR is None:
            error = 1.0
        else:
            error = []
            for i in range(len(self.x)):
                err = np.maximum(self.ERR[i][self.activeFreq] * 0.701, minErr)
                error.extend(err)

        # generate starting model by repetition
        model = pg.asvector(np.repeat(modVec, len(self.x)))
        INV = pg.RInversion(datvec, self.f2d, self.transData)
        INV.setAbsoluteError(error)
        INV.setLambda(lam)
        INV.setModel(model)
        INV.setReferenceModel(model)

        return INV
示例#23
0
    def response(self, model):
        """ cut-together forward responses of all soundings """
        modA = np.reshape(model, (self.nx, self.nlay*2-1))
        resp = pg.RVector(0)
        for i, modi in enumerate(modA):
            resp = pg.cat(resp, self.FOP1d[i].response(modi))

        return resp
示例#24
0
    def response(self, model):
        """ yields forward model response """
        modA = np.asarray(model).reshape((self.nlay * 2 - 1, self.nx)).T
        resp = pg.RVector(0)
        for modi in modA:
            resp = pg.cat(resp, self.FOP1d.response(modi))

        return resp
示例#25
0
    def response(self, model):
        """ cut-together forward responses of all soundings """
        modA = np.asarray(model).reshape((self.nlay * 2 - 1, self.nx)).T
        resp = pg.RVector(0)
        for modi in modA:
            resp = pg.cat(resp, self.FOP.response(modi))

        return resp
示例#26
0
    def response(self, model):
        """Response as pasted forward responses from all soundings."""
        modA = np.reshape(model, (self.nx, self.nlay*2-1))
        resp = pg.RVector(0)
        for i, modi in enumerate(modA):
            resp = pg.cat(resp, self.FOP1d[i].response(modi))

        return resp
示例#27
0
    def block1dInversion(self,
                         nlay=2,
                         lam=100.,
                         show=False,
                         verbose=True,
                         uncertainty=False):
        """Invert all data together by a 1D model (more general solution)."""
        data, error = pg.Vector(), pg.Vector()
        for mrs in self.mrs:
            data = pg.cat(data, mrs.data)
            error = pg.cat(error, np.real(mrs.error))


#        f = JointMRSModelling(self.mrs, nlay)
        f = MultiFOP(self.mrs, nlay)
        mrsobj = self.mrs[0]
        for i in range(3):
            f.region(i).setParameters(mrsobj.startval[i], mrsobj.lowerBound[i],
                                      mrsobj.upperBound[i])

        INV = pg.Inversion(data, f, verbose)
        INV.setLambda(lam)
        INV.setMarquardtScheme(0.8)
        #        INV.stopAtChi1(False)  # should be already in MarquardtScheme
        INV.setDeltaPhiAbortPercent(0.5)
        INV.setAbsoluteError(error)
        model = INV.run()
        m0 = self.mrs[0]
        m0.model = np.asarray(model)
        if uncertainty:
            from pygimli.utils import iterateBounds
            m0.modelL, m0.modelU = iterateBounds(INV,
                                                 dchi2=INV.chi2() / 2,
                                                 change=1.2)
        if show:
            self.show1dModel()
        # %% fill up 2D model (for display only)
        self.WMOD, self.TMOD = [], []
        thk = model[0:nlay - 1]
        wc = model[nlay - 1:2 * nlay - 1]
        t2 = model[2 * nlay - 1:3 * nlay - 1]
        for i in range(len(self.mrs)):
            self.WMOD.append(np.hstack((thk, wc)))
            self.TMOD.append(np.hstack((thk, t2)))

        return model
示例#28
0
    def response(self, par):
        ip, op = self.vmd_hem(self.height,
                              np.asarray(par)[self.nlay-1:self.nlay*2-1],
                              np.asarray(par)[:self.nlay-1])
#        ip, op = self.vmd_hem(self.height,
#                              np.asarray(par(self.nlay-1, self.nlay*2-1)),
#                              np.asarray(par(0, self.nlay-1)))
        return pg.cat(ip, op)
示例#29
0
 def createDefaultStartModel(self):
     """
     """
     res = pb.getComplexData(self.data())
     parCount = self.regionManager().parameterCount()
     re = pg.Vector(parCount, pg.mean(pg.math.real(res)))
     im = pg.Vector(parCount, -pg.mean(pg.math.imag(res)))
     return pg.cat(re, im)
 def createDefaultStartModel(self):
     """
     """
     res = pb.getComplexData(self.data())
     parCount = self.regionManager().parameterCount()
     re = pg.RVector(parCount, pg.mean(pg.real(res)))
     im = pg.RVector(parCount, -pg.mean(pg.imag(res)))
     return pg.cat(re, im)
示例#31
0
def squeezeComplex(z, polar=False, conj=False):
    """Squeeze complex valued array into [real, imag] or [amp, phase(rad)]"""
    if isinstance(z, (pg.matrix.CSparseMapMatrix, pg.matrix.CSparseMatrix,
                      pg.matrix.CMatrix)):
        return toRealMatrix(z, conj=conj)

    if isComplex(z):
        vals = np.array(z)
        if conj:
            vals = np.conj(vals)

        if polar is True:
            vals = pg.cat(*toPolar(z))
        else:
            vals = pg.cat(vals.real, vals.imag)
        return vals
    return z
示例#32
0
    def response(self, model):
        """Cut together forward responses of all soundings."""
        modA = np.reshape(model, (self.nx, self.np))
        resp = pg.RVector(0)
        for i, modi in enumerate(modA):
            resp = pg.cat(resp, self.FOP1d[i].response(modi))

        return resp
示例#33
0
 def response(self, par):
     """Response vector as combined in-phase and out-phase data."""
     thk = np.asarray(par[:self.nlay - 1], dtype=np.float)
     res = np.asarray(par[self.nlay - 1:2 * self.nlay - 1], dtype=np.float)
     mur = np.asarray(par[2 * self.nlay - 1:3 * self.nlay - 1],
                      dtype=np.float) + 1
     ip, op = self.vmd_hem(self.height, rho=res, d=thk, mur=mur)
     return pg.cat(ip, op)
示例#34
0
    def response(self, model):
        """Response as pasted forward responses from all soundings."""
        modA = np.reshape(model, (self.nx, self.nlay * 2 - 1))
        resp = pg.RVector(0)
        for i, modi in enumerate(modA):
            resp = pg.cat(resp, self.FOP1d[i].response(modi))

        return resp
示例#35
0
文件: fdem.py 项目: wensincai/gimli
    def response(self, model):
        """Cut together forward responses of all soundings."""
        modA = np.asarray(model).reshape((self.nlay * 2 - 1, self.nx)).T
        resp = pg.Vector(0)
        for modi in modA:
            resp = pg.cat(resp, self.FOP.response(modi))

        return resp
示例#36
0
文件: fdem.py 项目: wensincai/gimli
    def response(self, model):
        """Yields forward model response."""
        modA = np.asarray(model).reshape((self.nlay * 2 - 1, self.nx)).T
        resp = pg.Vector(0)
        for modi in modA:
            resp = pg.cat(resp, self.FOP1d.response(modi))

        return resp
示例#37
0
文件: ert.py 项目: gimli-org/gimli
    def getIntegrationWeights(self, rMin, rMax):
        """Retrieve Gauss-Legende/Laguerre integration weights."""
        nGauLegendre = max(int((6.0 * np.log10(rMax / rMin))), 4)
        nGauLaguerre = 4

        k = pg.RVector()
        w = pg.RVector()

        k0 = 1.0 / (2.0 * rMin)
        pg.GaussLegendre(0.0, 1.0, nGauLegendre, k, w)
        kLeg = k0 * k * k
        wLeg = 2.0 * k0 * k * w / np.pi

        pg.GaussLaguerre(nGauLaguerre, k, w)
        kLag = k0 * (k + 1.0)
        wLag = k0 * np.exp(k) * w / np.pi

        return pg.cat(kLeg, kLag), pg.cat(wLeg, wLag)
示例#38
0
 def createInv(self, nlay, lam=100., errVES=3, verbose=True):
     """Create Marquardt type inversion instance with data transformatio"""
     self.createFOP(nlay)
     self.tMod = pg.RTransLog()
     self.tMRS = pg.RTrans()
     self.tVES = pg.RTransLog()
     self.transData = pg.RTransCumulative()
     self.transData.push_back(self.tMRS, len(self.data))
     self.transData.push_back(self.tVES, len(self.rhoa))
     data = pg.cat(self.data, self.rhoa)
     self.INV = pg.RInversion(data, self.f, self.transData, verbose)
     self.INV.setLambda(lam)
     self.INV.setMarquardtScheme(0.8)
     self.INV.stopAtChi1(False)  # now in MarquardtScheme
     self.INV.setDeltaPhiAbortPercent(0.5)
     #        self.INV.setMaxIter(1)
     error = pg.cat(self.error, self.rhoa * errVES / 100.)
     self.INV.setAbsoluteError(error)
示例#39
0
文件: ves.py 项目: gimli-org/gimli
 def loadData(self, fileName, **kwargs):
     mat = np.loadtxt(fileName)
     if len(mat[0]) == 4:
         self.fop.setDataBasis(ab2=mat[:,0], mn2=mat[:,1])
         return mat.T
     if len(mat[0]) == 6:
         self.complex = True
         self.fop.setDataBasis(ab2=mat[:,0], mn2=mat[:,1])
         return mat[:,0], mat[:,1], np.array(pg.cat(mat[:,2], mat[:,4])), np.array(pg.cat(mat[:,3], mat[:,5]))
示例#40
0
文件: mrsves.py 项目: wk1984/gimli
    def createInv(self,nlay,lam=100.,errVES=3,verbose=True):
        """ create marquardt type inversion instance with data transformation """
        self.createFOP(nlay)
        self.tMod = pg.RTransLog()
        self.tMRS = pg.RTrans()
        self.tVES = pg.RTransLog()
        self.transData = pg.RTransCumulative()
        self.transData.push_back( self.tMRS, len(self.data) )
        self.transData.push_back( self.tVES, len(self.rhoa) )
        data = pg.cat(self.data, self.rhoa)
        self.INV = pg.RInversion(data, self.f, self.transData, verbose)
        self.INV.setLambda(lam)
        self.INV.setMarquardtScheme(0.8)
        self.INV.stopAtChi1(False) # now in MarquardtScheme
        self.INV.setDeltaPhiAbortPercent(0.5)
#        self.INV.setMaxIter(1)
        error = pg.cat(self.error, self.rhoa*errVES/100.)
        self.INV.setAbsoluteError(error)
示例#41
0
文件: mrsves.py 项目: wk1984/gimli
 def genMods( individual ):
     """ generate MRS and VES models from unit vector """
     model = pg.asvector( individual ) * ( self.lUB - self.lLB ) + self.lLB
     if self.logpar:
         model = pg.exp( model )
     
     modMRS = model(0,nlay*3-1)
     modVES = pg.cat(model(0,nlay-1),model(nlay*3-1,nlay*4-1))
     return modMRS, modVES
示例#42
0
文件: fdem.py 项目: wk1984/gimli
    def response(self, model):
        """
        """
        modA = np.asarray(model).reshape((self.nlay_*2-1,self.nx_)).T
        resp = pg.RVector(0)
        for modi in modA:
            resp = pg.cat(resp, self.FOP_.response(modi))

        return resp
示例#43
0
    def response(self, par):
        """Compute response vector by pasting in-phase and out-phase data."""
        ip, op = self.vmd_hem(self.height,
                              np.asarray(par)[self.nlay-1:self.nlay*2-1],
                              np.asarray(par)[:self.nlay-1])
#        ip, op = self.vmd_hem(self.height,
#                              np.asarray(par(self.nlay-1, self.nlay*2-1)),
#                              np.asarray(par(0, self.nlay-1)))
        return pg.cat(ip, op)
示例#44
0
 def response(self, par):
     """Compute response vector by pasting in-phase and out-phase data."""
     ip, op = self.vmd_hem(self.height,
                           np.asarray(par)[self.nlay - 1:self.nlay * 2 - 1],
                           np.asarray(par)[:self.nlay - 1])
     #        ip, op = self.vmd_hem(self.height,
     #                              np.asarray(par(self.nlay-1, self.nlay*2-1)),
     #                              np.asarray(par(0, self.nlay-1)))
     return pg.cat(ip, op)
示例#45
0
    def getIntegrationWeights(self, rMin, rMax):
        """Retrieve Gauss-Legende/Laguerre integration weights."""
        nGauLegendre = max(int((6.0 * np.log10(rMax / rMin))), 4)
        nGauLaguerre = 4

        k = pg.RVector()
        w = pg.RVector()

        k0 = 1.0 / (2.0 * rMin)
        pg.GaussLegendre(0.0, 1.0, nGauLegendre, k, w)
        kLeg = k0 * k * k
        wLeg = 2.0 * k0 * k * w / np.pi

        pg.GaussLaguerre(nGauLaguerre, k, w)
        kLag = k0 * (k + 1.0)
        wLag = k0 * np.exp(k) * w / np.pi

        return pg.cat(kLeg, kLag), pg.cat(wLeg, wLag)
示例#46
0
    def inv2D(self, nlay, lam=100., resL=1., resU=1000., thkL=1.,
              thkU=100., minErr=1.0):
        """
            2d LCI inversion class
        """

        if isinstance(nlay, int):
            modVec = pg.RVector(nlay * 2 - 1, 30.)
            cType = 0  # no reference model
        else:
            modVec = nlay
            cType = 10  # use this as referencemodel
            nlay = (len(modVec) + 1) / 2

        # init forward operator
        self.f2d = self.FOP2d(nlay)

        # transformations
        self.tD = pg.RTrans()
        self.tThk = pg.RTransLogLU(thkL, thkU)
        self.tRes = pg.RTransLogLU(resL, resU)

        for i in range(nlay - 1):
            self.f2d.region(i).setTransModel(self.tThk)

        for i in range(nlay - 1, nlay * 2 - 1):
            self.f2d.region(i).setTransModel(self.tRes)

        # set constraints
        self.f2d.region(0).setConstraintType(cType)
        self.f2d.region(1).setConstraintType(cType)

        # collect data vector
        datvec = pg.RVector(0)

        for i in range(len(self.x)):
            datvec = pg.cat(datvec, self.datavec(i))

        # collect error vector
        if self.ERR is None:
            error = 1.0
        else:
            error = []
            for i in range(len(self.x)):
                err = np.maximum(self.ERR[i][self.activeFreq] * 0.701, minErr)
                error.extend(err)

        # generate starting model by repetition
        model = pg.asvector(np.repeat(modVec, len(self.x)))
        INV = pg.RInversion(datvec, self.f2d, self.tD)
        INV.setAbsoluteError(error)
        INV.setLambda(lam)
        INV.setModel(model)
        INV.setReferenceModel(model)

        return INV
示例#47
0
文件: sip.py 项目: zhangwise/gimli
    def fitDebyeModel(self, ePhi=0.001, lam=1e3, lamFactor=0.8,
                      mint=None, maxt=None, nt=None, new=True,
                      showFit=False, cType=1):
        """fit a (smooth) continuous Debye model (Debye decomposition)"""
        nf = len(self.f)
        if mint is None:
            mint = .1 / max(self.f)
        if maxt is None:
            maxt = .5 / min(self.f)
        if nt is None:
            nt = nf*2
        # %% discretize tau, setup DD and perform DD inversion
        self.tau = np.logspace(log10(mint), log10(maxt), nt)
        phi = self.phi
        tLin, tLog, tM = pg.RTrans(), pg.RTransLog(), pg.RTransLogLU(0., 1.)
        if new:
            reNorm, imNorm = self.zNorm()
            fDD = DebyeComplex(self.f, self.tau)
            Znorm = pg.cat(reNorm, imNorm)
            IDD = pg.RInversion(Znorm, fDD, tLog, tM, False)
            IDD.setAbsoluteError(max(Znorm)*0.003+0.01)
        else:
            fDD = DebyePhi(self.f, self.tau)
            IDD = pg.RInversion(phi, fDD, tLin, tM, True)
            IDD.setAbsoluteError(ePhi)  # 1 mrad

        fDD.regionManager().setConstraintType(cType)
        IDD.stopAtChi1(False)
        startModel = pg.RVector(nt, 0.01)
        IDD.setModel(startModel)
        IDD.setLambda(lam)
        IDD.setLambdaFactor(lamFactor)
        self.mDD = IDD.run()
        IDD.echoStatus()
        if new:
            resp = np.array(IDD.response())
            respRe = resp[:nf]
            respIm = resp[nf:]
            respC = ((1 - respRe) + respIm * 1j) * max(self.amp)
            self.phiDD = np.angle(respC)
            self.ampDD = np.abs(respC)
            if showFit:
                fig, ax = self.showData(znorm=True, nrows=3)
                ax[0].plot(self.f, respRe, 'r-')
                ax[1].plot(self.f, respIm, 'r-')
                ax[2].semilogx(self.tau, self.mDD, 'r-')
                ax[2].set_xlim(max(self.tau), min(self.tau))
                ax[2].set_ylim(0., max(self.mDD))
                ax[2].grid(True)
                ax[2].set_xlabel(r'$\tau$ [s]')
                ax[2].set_xlabel('$m$ [-]')
        else:
            self.phiDD = IDD.response()
            if showFit:
                fig, ax = self.showData(nrows=3)
                ax[2].semilogx(self.tau, self.mDD, 'r-')
示例#48
0
    def blockLCInversion(self, nlay=2, startModel=None, **kwargs):
        """Laterally constrained (piece-wise 1D) block inversion."""
        data, error, self.nData = pg.Vector(), pg.Vector(), []
        for mrs in self.mrs:
            data = pg.cat(data, mrs.data)
            error = pg.cat(error, mrs.error)
            self.nData.append(len(mrs.data))

        fop = MRSLCI(self.mrs, nlay=nlay)
        fop.region(0).setZWeight(kwargs.pop('zWeight', 0))
        fop.region(0).setConstraintType(kwargs.pop('cType', 1))
        transData, transMod = pg.trans.Trans(), pg.trans.TransLog(
        )  # LU(1., 500.)
        if startModel is None:
            startModel = self.block1dInversion(nlay, verbose=False)
        model = kwargs.pop('startvec', np.tile(startModel, len(self.mrs)))
        INV = pg.Inversion(data, fop, transData, transMod, True, False)
        INV.setModel(model)
        INV.setReferenceModel(model)
        INV.setAbsoluteError(error)
        INV.setLambda(kwargs.pop('lam', 100))
        INV.setMaxIter(kwargs.pop('maxIter', 20))
        #        INV.stopAtChi1(False)
        INV.setLambdaFactor(0.9)
        INV.setDeltaPhiAbortPercent(0.1)
        model = INV.run()
        self.WMOD, self.TMOD = [], []
        for par in np.reshape(model, (len(self.mrs), 3 * nlay - 1)):
            thk = par[0:nlay - 1]
            self.WMOD.append(np.hstack((thk, par[nlay - 1:2 * nlay - 1])))
            self.TMOD.append(np.hstack((thk, par[2 * nlay - 1:3 * nlay - 1])))

        ind = np.hstack((0, np.cumsum(self.nData)))
        resp = INV.response()
        misfit = data - resp
        emisfit = misfit / error
        misfit *= 1e9
        self.totalChi2 = INV.chi2()
        self.totalRMS = INV.absrms() * 1e9
        self.RMSvec, self.Chi2vec = [], []
        for i in range(len(self.mrs)):
            self.RMSvec.append(np.sqrt(np.mean(misfit[ind[i]:ind[i + 1]]**2)))
            self.Chi2vec.append(np.mean(emisfit[ind[i]:ind[i + 1]]**2))
示例#49
0
    def blockLCInversion(self, nlay=2, startModel=None, **kwargs):
        """Laterally constrained (piece-wise 1D) block inversion."""
        data, error, self.nData = pg.RVector(), pg.RVector(), []
        for mrs in self.mrs:
            data = pg.cat(data, mrs.data)
            error = pg.cat(error, mrs.error)
            self.nData.append(len(mrs.data))

        fop = MRSLCI(self.mrs, nlay=nlay)
        fop.region(0).setZWeight(kwargs.pop('zWeight', 0))
        fop.region(0).setConstraintType(kwargs.pop('cType', 1))
        transData, transMod = pg.RTrans(), pg.RTransLog()  # LU(1., 500.)
        if startModel is None:
            startModel = self.block1dInversion(nlay, verbose=False)
        model = kwargs.pop('startvec', np.tile(startModel, len(self.mrs)))
        INV = pg.RInversion(data, fop, transData, transMod, True, False)
        INV.setModel(model)
        INV.setReferenceModel(model)
        INV.setAbsoluteError(error)
        INV.setLambda(kwargs.pop('lam', 100))
        INV.setMaxIter(kwargs.pop('maxIter', 20))
#        INV.stopAtChi1(False)
        INV.setLambdaFactor(0.9)
        INV.setDeltaPhiAbortPercent(0.1)
        model = INV.run()
        self.WMOD, self.TMOD = [], []
        for par in np.reshape(model, (len(self.mrs), 3*nlay-1)):
            thk = par[0:nlay-1]
            self.WMOD.append(np.hstack((thk, par[nlay-1:2*nlay-1])))
            self.TMOD.append(np.hstack((thk, par[2*nlay-1:3*nlay-1])))

        ind = np.hstack((0, np.cumsum(self.nData)))
        resp = INV.response()
        misfit = data - resp
        emisfit = misfit / error
        misfit *= 1e9
        self.totalChi2 = INV.chi2()
        self.totalRMS = INV.absrms()*1e9
        self.RMSvec, self.Chi2vec = [], []
        for i in range(len(self.mrs)):
            self.RMSvec.append(np.sqrt(np.mean(misfit[ind[i]:ind[i+1]]**2)))
            self.Chi2vec.append(np.mean(emisfit[ind[i]:ind[i+1]]**2))
示例#50
0
    def checkError(self, err, data=None):
        """Collect error values."""
        if len(err) != len(self.mgrs):
            pg.critical("Please provide data for all managers")

        vals = pg.Vector(0)
        for i, mgr in enumerate(self.mgrs):
            # we get the data values again or we have to split data
            dataVals = mgr.checkData(self.fop._data[i])
            vals = pg.cat(vals, mgr.checkError(err[i], dataVals))
        return vals
示例#51
0
        def genMods(individual):
            """generate MRS and VES models from unit vector"""
            model = individual * (self.lUB - self.lLB) + self.lLB
            #            model = pg.asvector(individual) * (self.lUB - self.lLB) + self.lLB
            if self.logpar:
                model = pg.exp(model)

            modMRS = model(0, nlay * 3 - 1)
            modVES = pg.cat(model(0, nlay - 1),
                            model(nlay * 3 - 1, nlay * 4 - 1))
            return modMRS, modVES
示例#52
0
    def response(self, par):
        """Cut together forward responses of all soundings."""
        mods = np.asarray(par).reshape(self._nSoundings, self._parPerSounding)

        resp = pg.Vector(0)
        for i in range(self._nSoundings):
            r = self._fops1D[i].response(mods[i])
            #print("i:", i, mods[i], r)
            resp = pg.cat(resp, r)

        return resp
示例#53
0
    def prepare(self, dataVals, errorVals, nLayers=4, **kwargs):
        dataVec = pg.RVector()
        for d in dataVals:
            dataVec = pg.cat(dataVec, d)

        errVec = pg.RVector()
        for e in errorVals:
            errVec = pg.cat(errVec, e)

        self.fop.initJacobian(dataVals=dataVals,
                              nLayers=nLayers,
                              nPar=kwargs.pop('nPar', None))

        ### self.fop.initJacobian resets prior set startmodels
        if self._startModel is not None:
            self.fop.setStartModel(self._startModel)

        rC = self.fop.regionManager().regionCount()

        if kwargs.pop('disableLCI', False):
            self.inv.setMarquardtScheme(0.7)
            #self.inv.setLocalRegularization(True)
            for r in self.fop.regionManager().regionIdxs():
                self.fop.setRegionProperties(r, cType=0)
        else:
            #self.inv.stopAtChi1(False)
            cType = kwargs.pop('cType', None)
            if cType is None:
                cType = [1] * rC

            zWeight = kwargs.pop('zWeight', None)
            if zWeight is None:
                zWeight = [0.0] * rC

            self.fop.setRegionProperties('*',
                                         cType=cType,
                                         zWeight=zWeight,
                                         **kwargs)
            self.inv.setReferenceModel(self.fop.startModel())

        return dataVec, errVec
示例#54
0
    def block1dInversionNew(self, nlay=2, lam=100., verbose=True):
        """invert all data together by a 1D model (more general solution)"""
        data, error = pg.RVector(), pg.RVector()
        for mrs in self.mrs:
            data = pg.cat(data, mrs.data)
            error = pg.cat(error, mrs.error)

        f = JointMRSModelling(self.mrs, nlay)
        mrsobj = self.mrs[0]
        for i in range(3):
            f.region(i).setParameters(mrsobj.startval[i], mrsobj.lowerBound[i],
                                      mrsobj.upperBound[i])

        INV = pg.RInversion(data, f, verbose)
        INV.setLambda(lam)
        INV.setMarquardtScheme(0.8)
#        INV.stopAtChi1(False)  # should be already in MarquardtScheme
        INV.setDeltaPhiAbortPercent(0.5)
        INV.setAbsoluteError(error)
        model = INV.run()
        return model
示例#55
0
    def block1dInversion(self, nlay=2, lam=100., show=False, verbose=True,
                         uncertainty=False):
        """Invert all data together by a 1D model (more general solution)."""
        data, error = pg.RVector(), pg.RVector()
        for mrs in self.mrs:
            data = pg.cat(data, mrs.data)
            error = pg.cat(error, np.real(mrs.error))

#        f = JointMRSModelling(self.mrs, nlay)
        f = MultiFOP(self.mrs, nlay)
        mrsobj = self.mrs[0]
        for i in range(3):
            f.region(i).setParameters(mrsobj.startval[i], mrsobj.lowerBound[i],
                                      mrsobj.upperBound[i])

        INV = pg.RInversion(data, f, verbose)
        INV.setLambda(lam)
        INV.setMarquardtScheme(0.8)
#        INV.stopAtChi1(False)  # should be already in MarquardtScheme
        INV.setDeltaPhiAbortPercent(0.5)
        INV.setAbsoluteError(error)
        model = INV.run()
        m0 = self.mrs[0]
        m0.model = np.asarray(model)
        if uncertainty:
            from pygimli.utils import iterateBounds
            m0.modelL, m0.modelU = iterateBounds(
                INV, dchi2=INV.chi2() / 2, change=1.2)
        if show:
            self.show1dModel()
        # %% fill up 2D model (for display only)
        self.WMOD, self.TMOD = [], []
        thk = model[0:nlay-1]
        wc = model[nlay-1:2*nlay-1]
        t2 = model[2*nlay-1:3*nlay-1]
        for i in range(len(self.mrs)):
            self.WMOD.append(np.hstack((thk, wc)))
            self.TMOD.append(np.hstack((thk, t2)))

        return model
示例#56
0
文件: tools.py 项目: gimli-org/gimli
def fitCCC(f, amp, phi, eRho=0.01, ePhi=0.001, lam=1000., mstart=None,
           taupar=(1e-2, 1e-5, 100), cpar=(0.5, 0, 1)):
    """Fit complex spectrum by Cole-Cole model."""
    fCC = ColeColeComplex(f)
    tLog = pg.RTransLog()
    fCC.region(0).setStartValue(max(amp))
    if mstart is None:  # compute from amplitude decay
        mstart = 1. - min(amp) / max(amp)
    fCC.region(1).setParameters(mstart, 0, 1)    # m (start,lower,upper)
    fCC.region(2).setParameters(*taupar)  # tau
    fCC.region(3).setParameters(*cpar)   # c
    data = pg.cat(amp, phi)
    ICC = pg.RInversion(data, fCC, False)  # set up inversion class
    ICC.setTransModel(tLog)
    error = pg.cat(eRho*amp, pg.RVector(len(f), ePhi))
    ICC.setAbsoluteError(error)  # perr + ePhi/data)
    ICC.setLambda(lam)  # start with large damping and cool later
    ICC.setMarquardtScheme(0.8)  # lower lambda by 20%/it., no stop chi=1
    model = np.asarray(ICC.run())  # run inversion
    ICC.echoStatus()
    response = np.asarray(ICC.response())
    return model, response[:len(f)], response[len(f):]
示例#57
0
    def blockLCInversion(self, nlay=2, startModel=None, lam=100.0, cType=1):
        """laterally constrained (piece-wise 1D) block inversion"""
        data, error, self.nData = pg.RVector(), pg.RVector(), []
        for mrs in self.mrs:
            data = pg.cat(data, mrs.data)
            error = pg.cat(error, mrs.error)
            self.nData.append(len(mrs.data))

        fop = MRSLCI(self.mrs, nlay=nlay)
        fop.region(0).setZWeight(0.01)
        fop.region(0).setConstraintType(cType)
        transData, transMod = pg.RTrans(), pg.RTransLog()  # LU(1., 500.)
        if startModel is None:
            startModel = self.block1dInversion(nlay, verbose=False)
        model = np.tile(startModel, len(self.mrs))
        INV = pg.RInversion(data, fop, transData, transMod, True, False)
        INV.setModel(model)
        INV.setReferenceModel(model)
        INV.setAbsoluteError(error)
        INV.setLambda(lam)
        INV.stopAtChi1(False)
        model = INV.run()
        self.WMOD, self.TMOD = [], []
        for par in np.reshape(model, (len(self.mrs), nlay * 3 - 1)):
            thk = par[0 : nlay - 1]
            self.WMOD.append(np.hstack((thk, par[nlay - 1 : 2 * nlay - 1])))
            self.TMOD.append(np.hstack((thk, par[2 * nlay - 1 : 3 * nlay - 1])))

        ind = np.hstack((0, np.cumsum(self.nData)))
        resp = INV.response()
        misfit = data - resp
        emisfit = misfit / error
        misfit *= 1e9
        self.RMSvec, self.Chi2vec = [], []
        for i in range(len(self.mrs)):
            self.RMSvec.append(np.sqrt(np.mean(misfit[ind[i] : ind[i + 1]] ** 2)))
            self.Chi2vec.append(np.mean(emisfit[ind[i] : ind[i + 1]] ** 2))
示例#58
0
文件: vmd.py 项目: gimli-org/gimli
    def createStartModel(self, rhoa, nLayer, thickness=None):
        r"""Create suitable starting model.

            Create suitable starting model based on median apparent resistivity
            values and skin depth approximation.
        """
        res = np.ones(nLayer) * pg.median(rhoa)
        if thickness is None:
            skinDepth = np.sqrt(max(self.t) * pg.median(rhoa)) * 500
            thk = np.arange(nLayer) / sum(np.arange(nLayer)) * skinDepth / 2.
            thk = thk[1:]
        else:
            thk = np.ones(nLayer-1) * thickness
        self.setStartModel(pg.cat(thk, res))
        return self.startModel()
示例#59
0
文件: mrsves.py 项目: wk1984/gimli
    def runEMO(self,nlay=5,pop_size=100,max_generations=100):
        """ run evolutionary multi-objective optimization (EMO) using inspyred
            for now fixed to NSGA-II algorithm after Deb (2002)
            (non-dominated sorting genetic algorithm) """
        import inspyred

        def genMods( individual ):
            """ generate MRS and VES models from unit vector """
            model = pg.asvector( individual ) * ( self.lUB - self.lLB ) + self.lLB
            if self.logpar:
                model = pg.exp( model )
            
            modMRS = model(0,nlay*3-1)
            modVES = pg.cat(model(0,nlay-1),model(nlay*3-1,nlay*4-1))
            return modMRS, modVES
   
        def mygenerate( random, args ):
            """ generate a random vector of model size """
            return [random.random() for i in range( nlay*4 - 1 )]

        @inspyred.ec.evaluators.evaluator
        def datafit( individual, args ):
            """ return data fits for MRS and VES as Pareto object """
            modMRS, modVES = genMods(individual)
            MRSmisfit = ( self.data - self.f(modMRS) ) / self.error
            VESmisfit = ( np.log(self.rhoa) - np.log(self.fVES(modVES)) ) / np.log(1.02)
            return inspyred.ec.emo.Pareto([np.mean(MRSmisfit**2),np.mean(VESmisfit**2)])

        self.createFOP(nlay)
        self.fVES = pg.DC1dModelling(nlay,self.ab2,self.mn2)

        lowerBound = pg.cat( 
            pg.cat( pg.RVector(nlay-1,self.lowerBound[0]), pg.RVector(nlay,self.lowerBound[1])), 
            pg.cat( pg.RVector(nlay,self.lowerBound[2]), pg.RVector(nlay,self.lowerBound[3]) ) )
        upperBound = pg.cat( 
            pg.cat( pg.RVector(nlay-1,self.upperBound[0]), pg.RVector(nlay,self.upperBound[1])), 
            pg.cat( pg.RVector(nlay,self.upperBound[2]), pg.RVector(nlay,self.upperBound[3]) ) )
        if self.logpar:
            self.lLB, self.lUB = pg.log(lowerBound), pg.log(upperBound) # ready mapping functions
        else:
            self.lLB, self.lUB = lowerBound, upperBound
        
        rand = random.Random()
        rand.seed(int(time.time()))
        ea = inspyred.ec.emo.NSGA2(rand)
        ea.variator = [inspyred.ec.variators.blend_crossover, inspyred.ec.variators.gaussian_mutation]
        ea.terminator = inspyred.ec.terminators.generation_termination
        ea.observer = [inspyred.ec.observers.stats_observer, inspyred.ec.observers.file_observer]
        self.pop = ea.evolve(evaluator=datafit,
                     generator=mygenerate,
                     maximize=False,
                     bounder=inspyred.ec.Bounder(0.,1.),
                     pop_size=pop_size,
                     max_generations=max_generations)
示例#60
0
def drawSeismogramm(ax, mesh, u, dt, ids=None, pos=None, i=None):
    r"""Extract and show time series from wave field

    Parameters
    ----------

    ids: list
        List of node ids for the given mesh.
    pos : list
        List of positions for the given mesh. We will look for the nearest node.

    """
    ax.set_xlim(mesh.xmin(), mesh.xmax())
    ax.set_ylim(0., dt*len(u)*1000)
    ax.set_aspect(1)
    ax.set_ylabel('Time (ms)')
    ax.set_xlabel('Distance (m)')

    if i is None:
        i = len(u)-1

    t = np.linspace(0, i*dt*1000, i+1)

    if ids is None and pos is not None:
        ids = []
        for p in pos:
           ids.append(mesh.findNearestNode(p))

    xDist = mesh.node(0).pos().distance(mesh.node(1).pos())
    for iw, n in enumerate(ids):
        pos = mesh.node(n).pos()
        ax.plot(pos[0], 0.05, '^', color='black')
        trace = pg.cat(pg.RVector(0), u[:(i+1), n])
#        print(i+1, n)
#        print(trace, (max(pg.abs(trace))))

#        if max(pg.abs(trace)) > 1e-8:

        trace *= np.exp(1/1000 * t)
        trace /= (max(pg.abs(trace)))
        trace *= 10

        drawWiggle(ax, trace, t=t, xoffset=pos[0])
    ax.invert_yaxis()