示例#1
0
 def collective_fn(input_tensor, output_tensor, context):
     pygloo.allgather(
         context,
         gloo_util.get_tensor_ptr(input_tensor),
         gloo_util.get_tensor_ptr(output_tensor),
         gloo_util.get_tensor_n_elements(input_tensor),
         gloo_util.get_gloo_tensor_dtype(input_tensor),
     )
示例#2
0
def test_allgather(rank, world_size, fileStore_path):
    '''
    rank  # Rank of this process within list of participating processes
    world_size  # Number of participating processes
    '''
    if rank == 0:
        if os.path.exists(fileStore_path):
            shutil.rmtree(fileStore_path)
        os.makedirs(fileStore_path)
    else:
        time.sleep(0.5)

    context = pygloo.rendezvous.Context(rank, world_size)

    attr = pygloo.transport.tcp.attr("localhost")
    # Perform rendezvous for TCP pairs
    dev = pygloo.transport.tcp.CreateDevice(attr)

    fileStore = pygloo.rendezvous.FileStore(fileStore_path)
    store = pygloo.rendezvous.PrefixStore(str(world_size), fileStore)

    context.connectFullMesh(store, dev)

    sendbuf = np.array([[1, 2, 3], [1, 2, 3]], dtype=np.float32)
    recvbuf = np.zeros([world_size] + list(sendbuf.shape), dtype=np.float32)
    sendptr = sendbuf.ctypes.data
    recvptr = recvbuf.ctypes.data

    # sendbuf = torch.Tensor([[1,2,3],[1,2,3]]).float()
    # recvbuf = torch.zeros([world_size] + list(sendbuf.shape)).float()
    # sendptr = sendbuf.data_ptr()
    # recvptr = recvbuf.data_ptr()

    assert sendbuf.size() * world_size == recvbuf.size()

    data_size = sendbuf.size if isinstance(
        sendbuf, np.ndarray) else sendbuf.numpy().size
    datatype = pygloo.glooDataType_t.glooFloat32

    pygloo.allgather(context, sendptr, recvptr, data_size, datatype)

    print(f"rank {rank} sends {sendbuf},\nreceives {recvbuf}")