示例#1
0
def benchmark_number_of_minima():
    import time, sys
    import numpy as np
    db = Database("test.large.db")

    if True:
        istart = np.random.randint(0, sys.maxint)
        for i in xrange(istart, istart + 10000):
            e = float(i)
            db.addMinimum(e, [e], commit=False)
        db.session.commit()
    else:
        i = 1

    t1 = time.clock()
    print db.number_of_minima()
    print "time", t1 - time.clock()
    t1 = time.clock()
    print db.number_of_minima()
    print "time", t1 - time.clock()
    t1 = time.clock()
    print db.number_of_minima()
    print "time", t1 - time.clock()
    t1 = time.clock()
    e = float(i + 1)
    db.addMinimum(e, [e], commit=False)
    t1 = time.clock()
    print db.number_of_minima()
    print "time", t1 - time.clock()
    t1 = time.clock()

    print len(db.minima())
    print "time", t1 - time.clock()
    t1 = time.clock()
示例#2
0
def benchmark_number_of_minima():
    import time, sys
    import numpy as np
    db = Database("test.large.db")
    
    if True:
        istart = np.random.randint(0, sys.maxint)
        for i in xrange(istart,istart+10000):
            e = float(i)
            db.addMinimum(e, [e], commit=False)
        db.session.commit()
    else:
        i=1
    
    t1 = time.clock()
    print db.number_of_minima()
    print "time", t1 - time.clock(); t1 = time.clock()
    print db.number_of_minima()
    print "time", t1 - time.clock(); t1 = time.clock()
    print db.number_of_minima()
    print "time", t1 - time.clock(); t1 = time.clock()
    e = float(i+1)
    db.addMinimum(e, [e], commit=False)
    t1 = time.clock()
    print db.number_of_minima()
    print "time", t1 - time.clock(); t1 = time.clock()

    print len(db.minima())
    print "time", t1 - time.clock(); t1 = time.clock()
示例#3
0
文件: _graph.py 项目: yfyh2013/PyGMIN
def create_random_database(nmin=20, nts=None, natoms=2):
    """
    create a database for test purposes
    """
    from pygmin.storage import Database
    import numpy as np
    
    if nts is None:
        nts = nmin
    db = Database()
    #generate random structures
    minlist = []
    for i in range(nmin):
        coords = np.random.uniform(-1,1,natoms*3)
        e = float(i) #make up a fake energy
        minlist.append( db.addMinimum(e, coords) )
    #add random transition states
    for i in range(nts):
        j1, j2 = 1, 1
        while j1 == j2:
            j1, j2 = np.random.randint(0, nmin, 2)
        m1, m2 = minlist[j1], minlist[j2] 
        coords = np.random.uniform(-1,1,natoms*3)
        e = float(j1 + j2)
        db.addTransitionState(e, coords, m1, m2)
    return db
示例#4
0
文件: _graph.py 项目: wwwtyro/PyGMIN
def create_random_database(nmin=20, nts=None, natoms=2):
    """
    create a database for test purposes
    """
    from pygmin.storage import Database
    import numpy as np
    
    if nts is None:
        nts = nmin
    db = Database()
    #generate random structures
    minlist = []
    for i in range(nmin):
        coords = np.random.uniform(-1,1,natoms*3)
        e = float(i) #make up a fake energy
        minlist.append( db.addMinimum(e, coords) )
    #add random transition states
    for i in range(nts):
        j1, j2 = 1, 1
        while j1 == j2:
            j1, j2 = np.random.randint(0, nmin, 2)
        m1, m2 = minlist[j1], minlist[j2] 
        coords = np.random.uniform(-1,1,natoms*3)
        e = float(j1 + j2)
        db.addTransitionState(e, coords, m1, m2)
    return db
示例#5
0
def test():
    from pygmin.storage import Database
    coords1, coords2, pot, mindist, E1, E2 = getPairLJ()
    db = Database()
    min1 = db.addMinimum(E1, coords1)
    min2 = db.addMinimum(E2, coords2)

    local_connect = LocalConnect(pot, mindist)
    local_connect.connect(min1, min2)
示例#6
0
def test():
    from pygmin.storage import Database
    coords1, coords2, pot, mindist, E1, E2 = getPairLJ()
    db = Database()
    min1 = db.addMinimum(E1, coords1)
    min2 = db.addMinimum(E2, coords2)
    
    
    local_connect = LocalConnect(pot, mindist)
    local_connect.connect(min1, min2)
示例#7
0
    def create_neb(self, coords1, coords2):
        """setup the NEB object"""
        system = self.system

        throwaway_db = Database()
        min1 = throwaway_db.addMinimum(0., coords1)
        min2 = throwaway_db.addMinimum(1., coords2)
        #use the functions in DoubleEndedConnect to set up the NEB in the proper way
        double_ended = system.get_double_ended_connect(min1,
                                                       min2,
                                                       throwaway_db,
                                                       fresh_connect=True)
        local_connect = double_ended._getLocalConnectObject()

        self.local_connect = local_connect

        return local_connect.create_neb(system.get_potential(), coords1,
                                        coords2, **local_connect.NEBparams)
示例#8
0
 def create_neb(self, coords1, coords2):
     """setup the NEB object"""
     system = self.system
     
     throwaway_db = Database()
     min1 = throwaway_db.addMinimum(0., coords1)
     min2 = throwaway_db.addMinimum(1., coords2)
     #use the functions in DoubleEndedConnect to set up the NEB in the proper way
     double_ended = system.get_double_ended_connect(min1, min2, 
                                                    throwaway_db, 
                                                    fresh_connect=True)
     local_connect = double_ended._getLocalConnectObject()
 
     self.local_connect = local_connect
     
     return local_connect.create_neb(system.get_potential(),
                                       coords1, coords2,
                                       **local_connect.NEBparams)        
示例#9
0
文件: nebdlg.py 项目: js850/PyGMIN
def getNEB(coords1, coords2, system):
    """setup the NEB object"""
    throwaway_db = Database()
    min1 = throwaway_db.addMinimum(0., coords1)
    min2 = throwaway_db.addMinimum(1., coords2)
    #use the functions in DoubleEndedConnect to set up the NEB in the proper way
    double_ended = system.get_double_ended_connect(min1, min2, 
                                                        throwaway_db, 
                                                        fresh_connect=True)
    local_connect = double_ended._getLocalConnectObject()

    
    
    neb =  local_connect._getNEB(system.get_potential(),
                                      coords1, coords2,
                                      verbose=True,
                                      **local_connect.NEBparams)        
    
    return neb
示例#10
0
#import the starting and ending points and quench them, 
coords1 = np.genfromtxt("coords.A")
coords2 = np.genfromtxt("coords.B")
res1 = lbfgs_py(coords1.reshape(-1), pot)
res2 = lbfgs_py(coords2.reshape(-1), pot)
coords1 = res1.coords
coords2 = res2.coords
E1 = res1.energy
E2 = res2.energy
natoms = len(coords1)/3

#add the minima to a database
dbfile = "database.sqlite"
database = Database(dbfile)
database.addMinimum(E1, coords1)
database.addMinimum(E2, coords2)
min1 = database.minima()[0]
min2 = database.minima()[1]
    



#set up the structural alignment routine.
#we have to deal with global translational, global rotational,
#and permutational symmetry.
permlist = [range(natoms)]
mindist = MinPermDistAtomicCluster(permlist=permlist, niter=10)

#The transition state search needs to know what the eigenvector corresponding
#to the lowest nonzero eigenvector is.  For this we need to know what the
示例#11
0
class TestDB(unittest.TestCase):
    def setUp(self):
        self.db = Database()
        self.nminima = 10
        for i in range(self.nminima):
            e = float(i)
            self.db.addMinimum(e, [e])

        self.nts = 3
        self.db.addTransitionState(0., [0.],
                                   self.db.minima()[0],
                                   self.db.minima()[1],
                                   eigenval=0.,
                                   eigenvec=[0.])
        self.db.addTransitionState(0., [0.],
                                   self.db.minima()[1],
                                   self.db.minima()[2],
                                   eigenval=0.,
                                   eigenvec=[0.])
        self.db.addTransitionState(0., [0.],
                                   self.db.minima()[0],
                                   self.db.minima()[2],
                                   eigenval=0.,
                                   eigenvec=[0.])

    def test_size(self):
        self.assertEqual(len(self.db.minima()), self.nminima)

    def test_energy(self):
        m = self.db.minima()[0]
        self.assertEqual(m.energy, 0.)

    def test_coords(self):
        m = self.db.minima()[0]
        self.assertEqual(m.coords, [0.])

    def test_sizets(self):
        self.assertEqual(len(self.db.transition_states()), self.nts)

    def test_energyts(self):
        ts = self.db.transition_states()[0]
        self.assertEqual(ts.energy, 0.)

    def test_coordsts(self):
        ts = self.db.transition_states()[0]
        self.assertEqual(ts.coords, [0.])

    def test_remove_minimum(self):
        m = self.db.minima()[0]
        self.db.removeMinimum(m)
        self.assertEqual(len(self.db.minima()), self.nminima - 1)
        self.assertNotIn(m, self.db.minima())

        # m should have 2 minima.  both of those should be gone
        self.assertEqual(len(self.db.transition_states()), self.nts - 2)

    def test_remove_ts(self):
        ts = self.db.transition_states()[0]
        self.db.remove_transition_state(ts)
        self.assertEqual(self.db.number_of_transition_states(), self.nts - 1)
        self.assertNotIn(ts, self.db.transition_states())

        # m should have 2 minima.  both of those should be gone
        self.assertEqual(self.db.number_of_minima(), self.nminima)

    def test_getTransitionState(self):
        m1 = self.db.minima()[0]
        m2 = self.db.minima()[1]
        m3 = self.db.minima()[-1]
        self.assertIsNotNone(self.db.getTransitionState(m1, m2))
        self.assertIsNone(self.db.getTransitionState(m1, m3))

    def test_getMinimum(self):
        m = self.db.minima()[0]
        self.assertEqual(m, self.db.getMinimum(m._id))

    def test_minimum_adder(self):
        ma = self.db.minimum_adder()
        ma(101., [101.])
        self.assertEqual(len(self.db.minima()), self.nminima + 1)

    def test_merge_minima(self):
        m1 = self.db.minima()[0]
        m2 = self.db.minima()[1]
        self.db.mergeMinima(m1, m2)
        self.assertEqual(len(self.db.minima()), self.nminima - 1)
        # transition states shouldn't be deleted
        self.assertEqual(len(self.db.transition_states()), self.nts)

    def test_number_of_minima(self):
        self.assertEqual(self.nminima, self.db.number_of_minima())

    def test_number_of_transition_states(self):
        self.assertEqual(self.nts, self.db.number_of_transition_states())

    def test_highest_energy_minimum(self):
        m1 = self.db._highest_energy_minimum()
        m2 = self.db.minima()[-1]
        self.assertEqual(m1, m2)

    def test_maximum_number_of_minima(self):
        m = self.db.addMinimum(-1., [-1.], max_n_minima=self.nminima)
        self.assertEqual(self.nminima, self.db.number_of_minima())
        self.assertIn(m, self.db.minima())

    def test_maximum_number_of_minima_largestE(self):
        e = float(self.nminima + 1)
        m = self.db.addMinimum(e, [e], max_n_minima=self.nminima)
        self.assertEqual(self.nminima, self.db.number_of_minima())
        self.assertIsNone(m)

        #ensure the highest energy minimum is still in the database
        mmax = self.db._highest_energy_minimum()
        self.assertEqual(mmax.energy, float(self.nminima - 1))

    def test_maximum_number_of_minima_minima_adder(self):
        ma = self.db.minimum_adder(max_n_minima=self.nminima)
        m = ma(-1., [-1.])
        self.assertEqual(self.nminima, self.db.number_of_minima())
        self.assertIn(m, self.db.minima())
示例#12
0
    def process_events():
        app.processEvents()

    #setup system
    natoms = 13
    system = LJCluster(natoms)
    system.params.double_ended_connect.local_connect_params.NEBparams.iter_density = 10.
    system.params.double_ended_connect.local_connect_params.NEBparams.image_density = 3.
    #    system.params.double_ended_connect.local_connect_params.NEBparams.adaptive_nimages = 5.
    system.params.double_ended_connect.local_connect_params.NEBparams.reinterpolate = 400
    system.params.double_ended_connect.local_connect_params.NEBparams.max_images = 40
    x1, e1 = system.get_random_minimized_configuration()[:2]
    x2, e2 = system.get_random_minimized_configuration()[:2]
    db = Database()
    min1 = db.addMinimum(e1, x1)
    min2 = db.addMinimum(e2, x2)

    #setup neb dialog
    wnd = ConnectExplorerDialog(system, app)
    wnd.show()

    glutInit()

    #initilize the NEB and run it.
    #we have to do it through QTimer because the gui has to
    #be intitialized first... I don't really understand it
    from PyQt4.QtCore import QTimer
    QTimer.singleShot(10, start)

    sys.exit(app.exec_())
示例#13
0
文件: nebdlg.py 项目: js850/PyGMIN
    from pygmin.systems import LJCluster
    from pygmin.storage import Database
    import pylab as pl
    app = QApplication(sys.argv)
    
    def process_events():
        app.processEvents()
    
    #setup system
    natoms = 13
    system = LJCluster(natoms)
    system.params.double_ended_connect.local_connect_params.NEBparams.iter_density = 5.
    x1, e1 = system.get_random_minimized_configuration()[:2]
    x2, e2 = system.get_random_minimized_configuration()[:2]
    db = Database()
    min1 = db.addMinimum(e1, x1)
    min2 = db.addMinimum(e2, x2)
    
    #setup neb dialog
    pl.ion()
#    pl.show()
    dlg = NEBDialog()
    wnd = dlg.nebwgt   
    dlg.show()
    wnd.process_events.connect(process_events)

    #initilize the NEB and run it.
    #we have to do it through QTimer because the gui has to 
    #be intitialized first... I don't really understand it 
    from PyQt4.QtCore import QTimer
    QTimer.singleShot(10, start)
示例#14
0
class TestDB(unittest.TestCase):
    def setUp(self):
        self.db = Database()
        self.nminima = 10
        for i in range(self.nminima):
            e = float(i)
            self.db.addMinimum(e, [e])
        
        
        self.nts = 3
        self.db.addTransitionState(0., [0.], self.db.minima()[0], self.db.minima()[1], eigenval=0., eigenvec=[0.])
        self.db.addTransitionState(0., [0.], self.db.minima()[1], self.db.minima()[2], eigenval=0., eigenvec=[0.])
        self.db.addTransitionState(0., [0.], self.db.minima()[0], self.db.minima()[2], eigenval=0., eigenvec=[0.])

    def test_size(self):
        self.assertEqual(len(self.db.minima()), self.nminima)
        
    def test_energy(self):
        m = self.db.minima()[0]
        self.assertEqual(m.energy, 0.)

    def test_coords(self):
        m = self.db.minima()[0]
        self.assertEqual(m.coords, [0.])

    def test_sizets(self):
        self.assertEqual(len(self.db.transition_states()), self.nts)
    def test_energyts(self):
        ts = self.db.transition_states()[0]
        self.assertEqual(ts.energy, 0.)

    def test_coordsts(self):
        ts = self.db.transition_states()[0]
        self.assertEqual(ts.coords, [0.])
    
    def test_remove_minimum(self):
        m = self.db.minima()[0]
        self.db.removeMinimum(m)
        self.assertEqual(len(self.db.minima()), self.nminima-1)
        self.assertNotIn(m, self.db.minima())
        
        # m should have 2 minima.  both of those should be gone
        self.assertEqual(len(self.db.transition_states()), self.nts-2)

    def test_remove_ts(self):
        ts = self.db.transition_states()[0]
        self.db.remove_transition_state(ts)
        self.assertEqual(self.db.number_of_transition_states(), self.nts-1)
        self.assertNotIn(ts, self.db.transition_states())
        
        # m should have 2 minima.  both of those should be gone
        self.assertEqual(self.db.number_of_minima(), self.nminima)


    def test_getTransitionState(self):
        m1 = self.db.minima()[0]
        m2 = self.db.minima()[1]
        m3 = self.db.minima()[-1]
        self.assertIsNotNone(self.db.getTransitionState(m1, m2))
        self.assertIsNone(self.db.getTransitionState(m1, m3))
    
    def test_getMinimum(self):
        m = self.db.minima()[0]
        self.assertEqual(m, self.db.getMinimum(m._id))
        
    def test_minimum_adder(self):
        ma = self.db.minimum_adder()
        ma(101., [101.])
        self.assertEqual(len(self.db.minima()), self.nminima+1)
    
    def test_merge_minima(self):
        m1 = self.db.minima()[0]
        m2 = self.db.minima()[1]
        self.db.mergeMinima(m1, m2)
        self.assertEqual(len(self.db.minima()), self.nminima-1)
        # transition states shouldn't be deleted
        self.assertEqual(len(self.db.transition_states()), self.nts)
    
    def test_number_of_minima(self):
        self.assertEqual(self.nminima, self.db.number_of_minima())
    
    def test_number_of_transition_states(self):
        self.assertEqual(self.nts, self.db.number_of_transition_states())
    
    def test_highest_energy_minimum(self):
        m1 = self.db._highest_energy_minimum()
        m2 = self.db.minima()[-1]
        self.assertEqual(m1, m2)
    
    def test_maximum_number_of_minima(self):
        m = self.db.addMinimum(-1., [-1.], max_n_minima=self.nminima)
        self.assertEqual(self.nminima, self.db.number_of_minima())
        self.assertIn(m, self.db.minima())

    def test_maximum_number_of_minima_largestE(self):
        e = float(self.nminima + 1)
        m = self.db.addMinimum(e, [e], max_n_minima=self.nminima)
        self.assertEqual(self.nminima, self.db.number_of_minima())
        self.assertIsNone(m)
        
        #ensure the highest energy minimum is still in the database
        mmax = self.db._highest_energy_minimum()
        self.assertEqual(mmax.energy, float(self.nminima-1))
        
    def test_maximum_number_of_minima_minima_adder(self):
        ma = self.db.minimum_adder(max_n_minima=self.nminima)
        m = ma(-1., [-1.])
        self.assertEqual(self.nminima, self.db.number_of_minima())
        self.assertIn(m, self.db.minima())