示例#1
0
def test_explicit_citations():
    assert "unknown node ranking algorithm" == pg.NodeRanking().cite()
    assert "with parameters tuned \cite{krasanakis2021pygrank}" in pg.ParameterTuner(
        lambda params: pg.PageRank(params[0])).cite()
    assert "Postprocessor" in pg.Postprocessor().cite()
    assert pg.PageRank().cite() in pg.AlgorithmSelection().cite()
    assert "krasanakis2021pygrank" in pg.ParameterTuner().cite()
    assert "ortega2018graph" in pg.ParameterTuner().cite()
    assert pg.HeatKernel().cite() in pg.SeedOversampling(pg.HeatKernel()).cite()
    assert pg.AbsorbingWalks().cite() in pg.BoostedSeedOversampling(pg.AbsorbingWalks()).cite()
    assert "krasanakis2018venuerank" in pg.BiasedKernel(converge_to_eigenvectors=True).cite()
    assert "yu2021chebyshev" in pg.HeatKernel(coefficient_type="chebyshev").cite()
    assert "susnjara2015accelerated" in pg.HeatKernel(krylov_dims=5).cite()
    assert "krasanakis2021pygrank" in pg.GenericGraphFilter(optimization_dict=dict()).cite()
    assert "tautology" in pg.Tautology().cite()
    assert pg.PageRank().cite() == pg.Tautology(pg.PageRank()).cite()
    assert "mabs" in pg.MabsMaintain(pg.PageRank()).cite()
    assert "max normalization" in pg.Normalize(pg.PageRank()).cite()
    assert "[0,1] range" in pg.Normalize(pg.PageRank(), "range").cite()
    assert "ordinal" in pg.Ordinals(pg.PageRank()).cite()
    assert "exp" in pg.Transformer(pg.PageRank()).cite()
    assert "0.5" in pg.Threshold(pg.PageRank(), 0.5).cite()
    assert "andersen2007local" in pg.Sweep(pg.PageRank()).cite()
    assert pg.HeatKernel().cite() in pg.Sweep(pg.PageRank(), pg.HeatKernel()).cite()
    assert "LFPRO" in pg.AdHocFairness("O").cite()
    assert "LFPRO" in pg.AdHocFairness(pg.PageRank(), "LFPRO").cite()
    assert "multiplicative" in pg.AdHocFairness(pg.PageRank(), "B").cite()
    assert "multiplicative" in pg.AdHocFairness(pg.PageRank(), "mult").cite()
    assert "tsioutsiouliklis2020fairness" in pg.AdHocFairness().cite()
    assert "rahman2019fairwalk" in pg.FairWalk(pg.PageRank()).cite()
    assert "krasanakis2020prioredit" in pg.FairPersonalizer(pg.PageRank()).cite()
示例#2
0
def test_absorbing_vs_pagerank():
    graph = next(pg.load_datasets_graph(["graph9"]))
    personalization = {"A": 1, "B": 1}
    for _ in supported_backends():
        pagerank_result = pg.PageRank(normalization='col').rank(graph, personalization)
        absorbing_result = pg.AbsorbingWalks(0.85, normalization='col', max_iters=1000).rank(graph, personalization)
        assert pg.Mabs(pagerank_result)(absorbing_result) < pg.epsilon()
示例#3
0
def test_completion():
    graph = next(pg.load_datasets_graph(["graph9"]))
    for _ in supported_backends():
        pg.PageRank().rank(graph)
        pg.HeatKernel().rank(graph)
        pg.AbsorbingWalks().rank(graph)
        pg.HeatKernel().rank(graph)
        assert True
示例#4
0
def test_filter_citations():
    assert pg.PageRank().cite() != pg.GraphFilter().cite()
    assert pg.HeatKernel().cite() != pg.GraphFilter().cite()
    assert pg.AbsorbingWalks().cite() != pg.GraphFilter().cite()
    assert pg.HeatKernel().cite() != pg.GraphFilter().cite()
    assert pg.PageRank(alpha=0.85).cite() != pg.PageRank(alpha=0.99).cite()
    assert pg.HeatKernel(krylov_dims=0).cite() != pg.HeatKernel(krylov_dims=5).cite()
    assert pg.HeatKernel(coefficient_type="taylor").cite() != pg.HeatKernel(coefficient_type="chebyshev").cite()
    assert pg.HeatKernel(optimization_dict=dict()).cite() != pg.HeatKernel(optimization_dict=None).cite()
示例#5
0
def test_completion():
    graph = next(pg.load_datasets_graph(["graph9"]))
    for _ in supported_backends():
        pg.PageRank().rank(graph)
        pg.PageRank(normalization="both").rank(graph)
        pg.HeatKernel().rank(graph)
        pg.AbsorbingWalks().rank(graph)
        pg.SymmetricAbsorbingRandomWalks().rank(graph)
        pg.HeatKernel().rank(graph)
        assert True