示例#1
0
def split_big_parcels(parcel_file, output_file, max_size=400):
    print 'split_big_parcels ...'
    roiMask, roiHeader = read_volume(parcel_file)
    roiIds = np.unique(roiMask)
    background = roiIds.min()
    labels = roiMask[np.where(roiMask>background)].astype(int)
    if (np.bincount(labels) <= max_size).all():
        pyhrf.verbose(1, 'no parcel to split')
        return

    graphs = parcels_to_graphs(roiMask, kerMask3D_6n)
    for roiId in roiIds:
        if roiId != background:
            roi_size = (roiMask==roiId).sum()
            if roi_size > max_size:
                print 'roi %d, size = %d' %(roiId, roi_size)
                nparcels = int(np.ceil(roi_size*1./max_size))
                print 'split into %d parcels ...' %(nparcels)
                split_parcel(labels, graphs, roiId, nparcels, inplace=True,
                             verbosity=1)

    final_roi_mask = np.zeros_like(roiMask)
    final_roi_mask[np.where(roiMask>background)] = labels
    #print np.bincount(labels)
    assert (np.bincount(labels) <= max_size).all()
    write_volume(final_roi_mask, output_file, roiHeader)
示例#2
0
    def glm_matlab_from_files(bold_file, tr, paradigm_csv_file, output_dir,
                              mask_file, hf_cut=128, hack_mask=False):
        """
        Only mono-session
        #TODO: compute mask if mask_file does not exist
        #TODO: handle contrasts
        """

        # Functional mask
        # if not op.exists(mask_file):
        #     pyhrf.verbose(1, 'Mask file does not exist. Computing mask from '\
        #                       'BOLD data')
        #     compute_mask_files(bold_files, mask_file, False, 0.4, 0.9)


        #split BOLD into 3D vols:
        bold, hbold = read_volume(bold_file)
        bold_files = []
        tmp_path = tempfile.mkdtemp(dir=pyhrf.cfg['global']['tmp_path'])
        for iscan, bscan in enumerate(bold):
            f = op.join(tmp_path, 'bold_%06d.nii' %iscan)
            write_volume(bscan, f, hbold)
            bold_files.append(f)
        bold_files = ';'.join(bold_files)

        script_path = op.join(op.dirname(pyhrf.__file__),'../../script/SPM')
        spm_path = pyhrf.cfg['global']['spm_path']
        matlab_code = "cd %s;paradigm_file='%s';TR=%f;mask_file='%s';" \
            "bold_files='%s';output_path='%s';" \
            "HF_cut=%f;spm_path='%s';api=1;hack_mask=%d;glm_intra_subj;exit" \
            %(script_path,paradigm_csv_file,tr,mask_file,bold_files,output_dir,
              hf_cut,spm_path,hack_mask)

        matlab_cmd = 'matlab -nosplash -nodesktop -r "%s"'%matlab_code

        if op.exists(op.join(output_dir,'SPM.mat')):
            #remove SPM.mat so that SPM won't ask over ask overwriting
            os.remove(op.join(output_dir,'SPM.mat'))

        #print 'matlab cmd:'
        #print matlab_cmd
        os.system(matlab_cmd)

        # Fix shape of outputs if necessary
        # eg if input data has shape (n,m,1) then SPM will write outputs of
        # shape (n,m) so that they are not consistent with their QForm
        input_shape = bscan.shape
        for foutput in glob.glob(op.join(output_dir, '*.img')):
            data, h = read_volume(foutput)
            if data.ndim < 3:
                sm = ','.join([ [':','np.newaxis'][d==1] \
                                    for d in input_shape ] )
                exec('data = data[%s]' %sm)
                assert data.shape == input_shape
                write_volume(data, foutput, h)

        shutil.rmtree(tmp_path)
        #TODO: maybe find a better way to grab beta file names
        beta_files = sorted(glob.glob(op.join(output_dir,'beta_*.img')))
        return beta_files
示例#3
0
文件: core.py 项目: Solvi/pyhrf
    def save(self, output_dir):
        """
        Save paradigm to output_dir/paradigm.csv,
        BOLD to output_dir/bold.nii, mask to output_dir/mask.nii
        #TODO: handle multi-session

        Return: tuple of file names in this order: (paradigm, bold, mask)
        """
        paradigm_file = op.join(output_dir,'paradigm.csv')
        self.paradigm.save_csv(paradigm_file)
        if self.data_type == 'volume':
            # unflatten bold
            bold_vol = expand_array_in_mask(self.bold, self.roiMask, 1)
            bold_vol = np.rollaxis(bold_vol, 0, 4)
            bold_file = op.join(output_dir, 'bold.nii')
            write_volume(bold_vol, bold_file, self.meta_obj)

            mask_file = op.join(output_dir, 'mask.nii')
            write_volume(self.roiMask, mask_file, self.meta_obj)

        elif self.data_type == 'surface': #TODO surface
            bold_file = op.join(output_dir, 'bold.gii')
            write_texture(self.bold_vol, bold_file, self.meta_obj)
            pass

        return paradigm_file, bold_file, mask_file
示例#4
0
文件: graphtest.py 项目: Solvi/pyhrf
    def test_pyhrf_extract_cc_vol(self):
        test_mask = np.array( [[[1,1,0,1,1],
                                [1,1,0,1,1],
                                [0,0,0,0,0],
                                [1,0,1,1,0],
                                [0,0,1,1,0]],
                               [[1,1,0,1,1],
                                [1,1,0,1,1],
                                [0,0,0,0,0],
                                [0,0,1,1,0],
                                [0,0,1,1,0]]],
                              dtype=int )
        mask_file = op.join(self.tmp_dir, 'test_mask.nii')
        write_volume(test_mask, mask_file)

        cmd = 'pyhrf_extract_cc_vol -v0 -m 2 %s' %mask_file
        if os.system(cmd) != 0:
            raise Exception('Command %s failed' %cmd)
        #print os.listdir(self.tmp_dir)
        assert len(os.listdir(self.tmp_dir)) == 4
示例#5
0
def make_parcellation_cubed_blobs_from_file(parcellation_file, output_path,
                                            roi_ids=None, bg_parcel=0,
                                            skip_existing=False):


    p,mp = read_volume(parcellation_file)
    p = p.astype(np.int32)
    if bg_parcel==0 and p.min() == -1:
        p += 1 #set background to 0

    if roi_ids is None:
        roi_ids = np.unique(p)

    pyhrf.verbose(1,'%d rois to extract' %(len(roi_ids)-1))

    tmp_dir = pyhrf.get_tmp_path('blob_parcellation')
    tmp_parcel_mask_file = op.join(tmp_dir, 'parcel_for_blob.nii')

    out_files = []
    for roi_id in roi_ids:
        if roi_id != bg_parcel: #discard background
            output_blob_file = op.join(output_path, 'parcel_%d_cubed_blob.arg'\
                                           %roi_id)
            out_files.append(output_blob_file)
            if skip_existing and os.path.exists(output_blob_file):
                continue
            parcel_mask = (p==roi_id).astype(np.int32)
            write_volume(parcel_mask, tmp_parcel_mask_file, mp)
            pyhrf.verbose(3,'Extract ROI %d -> %s' %(roi_id,output_blob_file))
            cmd = 'AimsGraphConvert -i %s -o %s --bucket' \
                %(tmp_parcel_mask_file, output_blob_file)
            pyhrf.verbose(3,'Cmd: %s' %(cmd))
            os.system(cmd)
    if op.exists(tmp_parcel_mask_file):
        os.remove(tmp_parcel_mask_file)

    return out_files
示例#6
0
文件: surface.py 项目: Solvi/pyhrf
def project_fmri_from_kernels(input_mesh, kernels_file, fmri_data_file,
                              output_tex, bin_threshold=None, ):

    pyhrf.verbose(2,'Project data onto mesh using kernels ...')

    if 0:
        print 'Projecting ...'
        print 'func data:', fmri_data_file
        print 'Mesh file:', input_mesh
        print 'Save as:', output_tex

    pyhrf.verbose(2,'Call AimsFunctionProjection -op 1 ...')    

    data_files = []
    output_texs = []
    p_ids = None
    if bin_threshold is not None:
        d,h = read_volume(fmri_data_file)
        if np.allclose(d.astype(int), d):
            tmp_dir = pyhrf.get_tmp_path()
            p_ids = np.unique(d)
            pyhrf.verbose(2, 'bin threshold: %f' %bin_threshold)
            pyhrf.verbose(2, 'pids(n=%d): %d...%d' \
                              %(len(p_ids),min(p_ids),max(p_ids)))
            for i,p_id in enumerate(p_ids):
                if p_id != 0:
                    new_p = np.zeros_like(d)
                    new_p[np.where(d==p_id)] = i + 1 #0 is background
                    ifn = op.join(tmp_dir,'pmask_%d.nii'%p_id)
                    write_volume(new_p, ifn, h)
                    data_files.append(ifn)
                    ofn = op.join(tmp_dir,'ptex_%d.gii'%p_id)
                    output_texs.append(ofn)
        else:
            data_files.append(fmri_data_file)
            output_texs.append(output_tex)
    else:
        data_files.append(fmri_data_file)
        output_texs.append(output_tex)

    pyhrf.verbose(3, 'input data files: %s' %str(data_files))
    pyhrf.verbose(3, 'output data files: %s' %str(output_texs))

    for data_file, o_tex in zip(data_files, output_texs):
        projection = [ 
            'AimsFunctionProjection', 
            '-op', '1',
            '-d', kernels_file,
            '-d1', data_file,
            '-m', input_mesh,
            '-o', o_tex
            ]

        cmd = ' '.join(map(str,projection))
        pyhrf.verbose(3, 'cmd: %s' %cmd)
        os.system(cmd)

    if bin_threshold is not None:
        pyhrf.verbose(2, 'Binary threshold of texture at %f' %bin_threshold)
        o_tex = output_texs[0]
        data,data_gii = read_texture(o_tex)
        data = (data>bin_threshold).astype(np.int32)
        print 'data:', data.dtype
        if p_ids is not None:
            for pid, o_tex in zip(p_ids[1:], output_texs[1:]):
                pdata,pdata_gii = read_texture(o_tex)
                data += (pdata>bin_threshold).astype(np.int32) * pid

        #assert (np.unique(data) == p_ids).all()
        write_texture(data, output_tex, intent='NIFTI_INTENT_LABEL')
示例#7
0
def glm_nipy_from_files(bold_file, tr,  paradigm_csv_file, output_dir,
                        mask_file, session=0, contrasts=None,
                        con_test_baseline=0.0,
                        hrf_model='Canonical',
                        drift_model='Cosine', hfcut=128,
                        residuals_model='spherical', fit_method='ols',
                        fir_delays=[0]):
    """
    #TODO: handle surface data
    hrf_model : Canonical | Canonical with Derivative | FIR

    """

    fdata = FmriData.from_vol_files(mask_file, paradigm_csv_file,
                                    [bold_file], tr)
    g, dm, cons = glm_nipy(fdata, contrasts=contrasts, hrf_model=hrf_model,
                            hfcut=hfcut, drift_model=drift_model,
                            residuals_model=residuals_model,
                            fit_method=fit_method, fir_delays=fir_delays)

    ns, nr = dm.matrix.shape
    cdesign_matrix = xndarray(dm.matrix, axes_names=['time','regressor'],
                            axes_domains={'time':np.arange(ns)*tr,
                                          'regressor':dm.names})

    cdesign_matrix.save(op.join(output_dir, 'design_matrix.nii'))

    beta_files = []
    beta_values = dict.fromkeys(dm.names)
    beta_vars = dict.fromkeys(dm.names)
    beta_vars_voxels = dict.fromkeys(dm.names)
    for ib, bname in enumerate(dm.names):
        #beta values
        beta_vol = expand_array_in_mask(g.beta[ib], fdata.roiMask>0)
        beta_fn = op.join(output_dir, 'beta_%s.nii' %bname)
        write_volume(beta_vol, beta_fn, fdata.meta_obj)
        beta_files.append(beta_fn)
        beta_values[bname] = beta_vol

        #normalized variance of betas
        beta_vars[bname] = sp.diag(g.nvbeta)[ib] #variance: diag of cov matrix
        #sig2 = g.s2 #ResMS
        var_cond = sp.diag(g.nvbeta)[ib]*g.s2 #variance for all voxels, condition ib
        beta_vars_voxels[bname] = var_cond
        #beta_var_fn = op.join(output_dir, 'var_beta_%s.nii' %bname)
        #write_volume(beta_var, beta_var_fn, fdata.meta_obj)
        #beta_var_files.append(beta_var_fn)

    if cons is not None:
        con_files = []
        pval_files = []
        for cname, con in cons.iteritems():
            con_vol = expand_array_in_mask(con.effect, fdata.roiMask>0)
            con_fn = op.join(output_dir, 'con_effect_%s.nii' %cname)
            write_volume(con_vol, con_fn, fdata.meta_obj)
            con_files.append(con_fn)

            pval_vol = expand_array_in_mask(con.pvalue(con_test_baseline),
                                            fdata.roiMask>0)
            pval_fn = op.join(output_dir, 'con_pvalue_%s.nii' %cname)
            write_volume(pval_vol, pval_fn, fdata.meta_obj)
            pval_files.append(pval_fn)
    else:
        con_files = None
        pval_files = None

    dof = g.dof
    #if do_ppm:
        #for

    #TODO: FIR stuffs
    return beta_files, beta_values, beta_vars_voxels, dof#, con_files, pval_files
示例#8
0
def parcellation_for_jde(fmri_data, avg_parcel_size=250, output_dir=None,
                         method='gkm', glm_drift='Cosine', glm_hfcut=128):
    """
    method: gkm, ward, ward_and_gkm
    """

    if output_dir is None:
        output_dir = tempfile.mkdtemp(prefix='pyhrf_JDE_parcellation_GLM',
                                      dir=pyhrf.cfg['global']['tmp_path'])
    glm_output_dir = op.join(output_dir, 'GLM_for_parcellation')
    if not op.exists(glm_output_dir): os.makedirs(glm_output_dir)

    pyhrf.verbose(1, 'GLM for parcellation')

    # if fmri_data.data_type == 'volume':
    #     paradigm_file, bold_file, mask_file = fmri_data.save(glm_output_dir)
    #     beta_files = glm_nipy_from_files(bold_file, fmri_data.tr, paradigm_file,
    #                                      glm_output_dir, mask_file,
    #                                      drift_model=glm_drift, hfcut=glm_hfcut)
    # elif fmri_data.data_type == 'surface':
    #     beta_files = glm_nipy(fmri_data, glm_output_dir,
    #                           drift_model=glm_drift, hfcut=glm_hfcut)

    g, dm, cons = glm_nipy(fmri_data, drift_model=glm_drift, hfcut=glm_hfcut)

    pval_files = []
    if cons is not None:
        func_data = [('con_pval_%s' %cname, con.pvalue()) \
                         for cname, con in cons.iteritems()]
    else:
        reg_cst_drift = re.compile(".*constant.*|.*drift.*")
        func_data = [('beta_%s' %reg_name, g.beta[ir]) \
                         for ir,reg_name in enumerate(dm.names) \
                         if not reg_cst_drift.match(reg_name)]

    for name, data in func_data:
        val_vol = expand_array_in_mask(data, fmri_data.roiMask>0)
        val_fn = op.join(glm_output_dir, '%s.nii' %name)
        write_volume(val_vol, val_fn, fmri_data.meta_obj)
        pval_files.append(val_fn)

    mask_file = op.join(glm_output_dir,'mask.nii')
    write_volume(fmri_data.roiMask>0, mask_file, fmri_data.meta_obj)

    nvox = fmri_data.get_nb_vox_in_mask()
    nparcels = round_nb_parcels(nvox * 1. / avg_parcel_size)

    pyhrf.verbose(1, 'Parcellation from GLM outputs, method: %s, ' \
                      'nb parcels: %d' %(method, nparcels))

    if fmri_data.data_type == 'volume':
        parcellation_file = op.join(output_dir, 'parcellation_%s_np%d.nii'
                                    %(method, nparcels))

        make_parcellation_from_files(pval_files, mask_file, parcellation_file,
                                     nparcels, method)
        parcellation,_ = read_volume(parcellation_file)
    else:
        mesh_file = fmri_data.data_files[-1]
        parcellation_file = op.join(output_dir, 'parcellation_%s_np%d.gii'
                                    %(method, nparcels))
        make_parcellation_surf_from_files(pval_files, mesh_file,
                                          parcellation_file, nparcels, method,
                                          verbose=1)
        parcellation,_ = read_texture(parcellation_file)
    #print parcellation_file


    pyhrf.verbose(1, parcellation_report(parcellation))

    return parcellation, parcellation_file
示例#9
0
def simulation_save_vol_outputs(simulation, output_dir, bold_3D_vols_dir=None,
                                simulation_graph_output=None, prefix=None,
                                vol_meta=None):
    """ simulation_graph_output : None, 'simple', 'thumbnails' #TODO
    """

    if simulation.has_key('paradigm'):
        fn = add_prefix(op.join(output_dir, 'paradigm.csv'), prefix)
        simulation['paradigm'].save_csv(fn)

    # Save all volumes in nifti format:
    if simulation.has_key('labels_vol'):
        mask_vol = np.ones_like(simulation['labels_vol'][0])
    elif simulation.has_key('mask'):
        mask_vol = simulation.get('mask', None)
    elif simulation.has_key('labels'):
        mask_vol = np.ones_like(simulation['labels'][0])
    else:
        raise Exception('Dunno where to get mask')

    pyhrf.verbose(3,'Vol mask of shape %s' %str(mask_vol.shape))

    fn_mask = add_prefix(op.join(output_dir, 'mask.nii'), prefix)
    write_volume(mask_vol.astype(np.int32), fn_mask, vol_meta)

    if simulation.has_key('hrf_territories'):
        fn_h_territories = add_prefix(op.join(output_dir, 'hrf_territories.nii'),
                                      prefix)

        ht = expand_array_in_mask(simulation['hrf_territories']+1, mask_vol)
        write_volume(ht, fn_h_territories, vol_meta)

    if simulation.has_key('hrf'):
        from pyhrf.ndarray import MRI3Daxes
        fn_hrf = add_prefix(op.join(output_dir, 'hrf.nii'), prefix)
        pyhrf.verbose(3,'hrf flat shape %s' %str(simulation['hrf'].shape))
        if simulation['hrf'].ndim == 1:
            hrf = (np.ones(mask_vol.size) * simulation['hrf'][:,np.newaxis])
        else:
            hrf = simulation['hrf']

        hrfs_vol = expand_array_in_mask(hrf, mask_vol, flat_axis=1)
        dt = simulation['dt']
        chrfs = xndarray(hrfs_vol, axes_names=['time',]+MRI3Daxes,
                       axes_domains={'time':np.arange(hrfs_vol.shape[0])*dt})
        #write_volume(np.rollaxis(hrfs_vol,0,4), fn_hrf, vol_meta)
        chrfs.save(fn_hrf, vol_meta)

        ttp_vol = hrfs_vol.argmax(0)
        fn_ttp = add_prefix(op.join(output_dir, 'ttp.nii'), prefix)
        write_volume(ttp_vol, fn_ttp, vol_meta)

    if simulation.has_key('brf'):
        from pyhrf.ndarray import MRI3Daxes
        fn_brf = add_prefix(op.join(output_dir, 'brf.nii'), prefix)
        pyhrf.verbose(3,'brf flat shape %s' %str(simulation['brf'].shape))
        brfs_vol = expand_array_in_mask(simulation['brf'], mask_vol, flat_axis=1)
        dt = simulation['dt']
        cbrfs = xndarray(brfs_vol, axes_names=['time',]+MRI3Daxes,
                       axes_domains={'time':np.arange(brfs_vol.shape[0])*dt})
        #write_volume(np.rollaxis(hrfs_vol,0,4), fn_hrf, vol_meta)
        cbrfs.save(fn_brf, vol_meta)

    if simulation.has_key('prf'):
        from pyhrf.ndarray import MRI3Daxes
        fn_brf = add_prefix(op.join(output_dir, 'prf.nii'), prefix)
        pyhrf.verbose(3,'prf flat shape %s' %str(simulation['prf'].shape))
        brfs_vol = expand_array_in_mask(simulation['prf'], mask_vol, flat_axis=1)
        dt = simulation['dt']
        cbrfs = xndarray(brfs_vol, axes_names=['time',]+MRI3Daxes,
                       axes_domains={'time':np.arange(brfs_vol.shape[0])*dt})
        #write_volume(np.rollaxis(hrfs_vol,0,4), fn_hrf, vol_meta)
        cbrfs.save(fn_brf, vol_meta)


    if simulation.has_key('drift'):
        fn_drift = add_prefix(op.join(output_dir, 'drift.nii'), prefix)
        pyhrf.verbose(3,'drift flat shape %s' %str(simulation['drift'].shape))
        drift_vol = expand_array_in_mask(simulation['drift'], mask_vol,
                                         flat_axis=1)
        #write_volume(drift_vol, fn_drift, vol_meta)
        write_volume(np.rollaxis(drift_vol,0,4), fn_drift)

    if simulation.has_key('drift_coeffs'):
        fn_drift = add_prefix(op.join(output_dir, 'drift_coeffs.nii'), prefix)
        pyhrf.verbose(3,'drift flat shape %s' %str(simulation['drift_coeffs'].shape))
        drift_vol = expand_array_in_mask(simulation['drift'], mask_vol,
                                         flat_axis=1)
        #write_volume(drift_vol, fn_drift, vol_meta)
        write_volume(np.rollaxis(drift_vol,0,4), fn_drift)


    if simulation.has_key('noise'):
        fn_noise = add_prefix(op.join(output_dir, 'noise.nii'), prefix)
        pyhrf.verbose(3,'noise flat shape %s' %str(simulation['noise'].shape))
        noise_vol = expand_array_in_mask(simulation['noise'], mask_vol,
                                         flat_axis=1)
        write_volume(np.rollaxis(noise_vol,0,4), fn_noise, vol_meta)

        fn_noise = add_prefix(op.join(output_dir, 'noise_emp_var.nii'), prefix)
        noise_vol = expand_array_in_mask(simulation['noise'].var(0), mask_vol)
        write_volume(noise_vol, fn_noise, vol_meta)


    if simulation.has_key('noise_var'):
        fn_noise_var = add_prefix(op.join(output_dir, 'noise_var.nii'), prefix)
        pyhrf.verbose(3,'noise_var flat shape %s' \
                      %str(simulation['noise_var'].shape))
        noise_var_vol = expand_array_in_mask(simulation['noise_var'], mask_vol)
        write_volume(noise_var_vol, fn_noise_var, vol_meta)



    if simulation.has_key('stim_induced_signal'):
        fn_stim_induced = add_prefix(op.join(output_dir, 'stim_induced.nii'),
                                     prefix)
        pyhrf.verbose(3,'stim_induced flat shape %s' \
                          %str(simulation['stim_induced_signal'].shape))
        stim_induced_vol = expand_array_in_mask(simulation['stim_induced_signal'],
                                           mask_vol, flat_axis=1)
        write_volume(np.rollaxis(stim_induced_vol,0,4), fn_stim_induced)

    if simulation.has_key('perf_stim_induced'):
        fn_stim_induced = add_prefix(op.join(output_dir, 'perf_stim_induced.nii'),
                                     prefix)
        pyhrf.verbose(3,'asl_stim_induced flat shape %s' \
                          %str(simulation['perf_stim_induced'].shape))
        stim_induced_vol = expand_array_in_mask(simulation['perf_stim_induced'],
                                                mask_vol, flat_axis=1)
        write_volume(np.rollaxis(stim_induced_vol,0,4), fn_stim_induced)

        fn_stim_induced = add_prefix(op.join(output_dir,
                                             'perf_stim_induced_ct.nii'),
                                     prefix)
        pyhrf.verbose(3,'asl_stim_induced flat shape %s' \
                          %str(simulation['perf_stim_induced'].shape))

        dsf = simulation['dsf']
        perf = np.dot(simulation['ctrl_tag_mat'],
                      simulation['perf_stim_induced'][0:-1:dsf])
        stim_induced_vol = expand_array_in_mask(perf, mask_vol, flat_axis=1)
        write_volume(np.rollaxis(stim_induced_vol,0,4), fn_stim_induced)

    if simulation.has_key('perf_baseline'):
        fn = add_prefix(op.join(output_dir, 'perf_baseline.nii'), prefix)
        pb = np.zeros_like(simulation['bold']) + simulation['perf_baseline']
        write_volume(expand_array_in_mask(pb[0], mask_vol), fn, vol_meta)




    if simulation.has_key('bold_stim_induced'):
        fn_stim_induced = add_prefix(op.join(output_dir, 'bold_stim_induced.nii'),
                                     prefix)
        pyhrf.verbose(3,'asl_stim_induced flat shape %s' \
                          %str(simulation['bold_stim_induced'].shape))
        stim_induced_vol = expand_array_in_mask(simulation['bold_stim_induced'],
                                                mask_vol, flat_axis=1)
        write_volume(np.rollaxis(stim_induced_vol,0,4), fn_stim_induced)


    m = np.where(mask_vol)
    labels_and_mask = mask_vol.copy()[m]


    for ic in xrange(simulation['labels'].shape[0]):
        if simulation.has_key('condition_defs'):
            c_name = simulation['condition_defs'][ic].name
        else:
            c_name = 'cond%d' %ic
        fn_labels = add_prefix(op.join(output_dir, 'labels_%s.nii' %c_name),
                               prefix)
        if simulation.has_key('labels'):
            labels_c = simulation['labels'][ic]
            labels_and_mask[np.where(labels_c)] = ic+2
            write_volume(expand_array_in_mask(labels_c,mask_vol).astype(np.int32),
                         fn_labels, vol_meta)
        elif simulation.has_key('labels_vol'):
            labels_c = simulation['labels_vol'][ic]
            labels_and_mask[np.where(labels_c[m])] = ic+2
            write_volume(labels_c.astype(np.int32), fn_labels, vol_meta)

        if simulation.has_key('nrls'):
            nrls_c = simulation['nrls'][ic]
            fn = add_prefix(op.join(output_dir, 'nrls_%s.nii' %c_name), prefix)
            write_volume(expand_array_in_mask(nrls_c,mask_vol) , fn, vol_meta)
        if simulation.has_key('nrls_session'):
            nrls_session_c = simulation['nrls_session'][ic]
            fn = add_prefix(op.join(output_dir, 'nrls_session_%s.nii' \
                                    %(c_name)), prefix)
            write_volume(expand_array_in_mask(nrls_session_c,mask_vol) ,
                         fn, vol_meta)

        if simulation.has_key('brls'):
            brls_c = simulation['brls'][ic]
            fn = add_prefix(op.join(output_dir, 'brls_%s.nii' %c_name), prefix)
            write_volume(expand_array_in_mask(brls_c,mask_vol) , fn, vol_meta)
        if simulation.has_key('prls'):
            prls_c = simulation['prls'][ic]
            fn = add_prefix(op.join(output_dir, 'prls_%s.nii' %c_name), prefix)
            write_volume(expand_array_in_mask(prls_c,mask_vol) , fn, vol_meta)

        if simulation.has_key('neural_efficacies'):
            ne_c = simulation['neural_efficacies'][ic]
            fn = add_prefix(op.join(output_dir, 'neural_efficacies_%s.nii' \
                                    %c_name), prefix)
            write_volume(expand_array_in_mask(ne_c,mask_vol) , fn, vol_meta)


    fn_labels_and_mask = add_prefix(op.join(output_dir, 'mask_and_labels.nii'),
                                    prefix)

    write_volume(expand_array_in_mask(labels_and_mask,mask_vol).astype(int),
                 fn_labels_and_mask, vol_meta)


    if simulation.has_key('bold_full_vol') or simulation.has_key('bold'):
        fn = add_prefix(op.join(output_dir, 'bold.nii'), prefix)
        if simulation.has_key('bold_full_vol'):
            bold4D = simulation['bold_full_vol']
        else:
            bold = simulation['bold']
            bold4D = expand_array_in_mask(bold, mask_vol, flat_axis=1)

        write_volume(np.rollaxis(bold4D,0,4), fn, vol_meta)

    def save_time_series(k):
        if simulation.has_key(k):
            fn_stim_induced = add_prefix(op.join(output_dir, k+'.nii'), prefix)
            pyhrf.verbose(3,'%s flat shape %s' %(k,str(simulation[k].shape)))
            vol = expand_array_in_mask(simulation[k], mask_vol, flat_axis=1)
            write_volume(np.rollaxis(vol,0,4), fn_stim_induced)
    save_time_series('flow_induction')
    save_time_series('cbv')
    save_time_series('hbr')
    save_time_series('bold_stim_induced_rescaled')

    if simulation.has_key('asl'):
        fn = add_prefix(op.join(output_dir, 'asl.nii'), prefix)
        asl4D = expand_array_in_mask(simulation['asl'], mask_vol, flat_axis=1)
        write_volume(np.rollaxis(asl4D,0,4), fn, vol_meta)

    if simulation.has_key('outliers'):
        fn = add_prefix(op.join(output_dir, 'outliers.nii'), prefix)
        outliers = expand_array_in_mask(simulation['outliers'], mask_vol,
                                        flat_axis=1)

        write_volume(np.rollaxis(outliers,0,4), fn, vol_meta)

    if simulation.has_key('hrf_group'):
        hrfgroup = simulation['hrf_group']
        nb_vox = mask_vol.size
        fn_hrf = add_prefix(op.join(output_dir, 'hrf_group.nii'), prefix)
        pyhrf.verbose(3,'hrf group shape %s' %str(simulation['hrf_group'].shape))
        hrfGd = duplicate_hrf(nb_vox, hrfgroup)
        hrfs_vol = expand_array_in_mask(hrfGd, mask_vol, flat_axis=1)
        dt = simulation['dt']
        chrfs = xndarray(hrfs_vol, axes_names=['time',]+MRI3Daxes,
        axes_domains={'time':np.arange(hrfs_vol.shape[0])*dt})
        chrfs.save(fn_hrf, vol_meta)


    if bold_3D_vols_dir is not None:
        assert op.exists(bold_3D_vols_dir)
        for iscan, bscan in enumerate(bold4D):
            fnout = add_prefix('bold_%06d.nii'%(iscan), prefix)
            #print fnout
            write_volume(bscan, op.join(bold_3D_vols_dir,fnout), vol_meta)
示例#10
0
 def save_time_series(k):
     if simulation.has_key(k):
         fn_stim_induced = add_prefix(op.join(output_dir, k+'.nii'), prefix)
         pyhrf.verbose(3,'%s flat shape %s' %(k,str(simulation[k].shape)))
         vol = expand_array_in_mask(simulation[k], mask_vol, flat_axis=1)
         write_volume(np.rollaxis(vol,0,4), fn_stim_induced)
def BMA_consensus_cluster_parallel(
    cfg,
    remote_path,
    remote_BOLD_fn,
    remote_mask_fn,
    Y,
    nifti_masker,
    num_vox,
    K_clus,
    K_clusters,
    parc,
    alpha,
    prop,
    nbItRFIR,
    onsets,
    durations,
    output_sub_parc,
    rescale=True,
    averg_bold=False,
):
    """
    Performs all steps for one clustering case (Kclus given, number l of the parcellation given)
    remote_path: path on the cluster, where results will be stored
    """
    import os
    import sys

    sys.path.append("/home/pc174679/pyhrf/pyhrf-tree_trunk/script/WIP/Scripts_IRMf_BB/Parcellations/")
    sys.path.append("/home/pc174679/pyhrf/pyhrf-tree_trunk/script/WIP/Scripts_IRMf_Adultes_Solv/")
    sys.path.append(
        "/home/pc174679/pyhrf/pyhrf-tree_trunk/script/WIP/Scripts_IRMf_Adultes_Solv/Scripts_divers_utiles/Scripts_utiles/"
    )
    sys.path.append("/home/pc174679/local/installations/consensus-cluster-0.6")

    from Random_parcellations import random_parcellations, subsample_data_on_time
    from Divers_parcellations_test import *

    from RFIR_evaluation_parcellations import JDE_estim, RFIR_estim, clustering_from_RFIR

    from Random_parcellations import hrf_roi_to_vox
    from pyhrf.tools.io import remote_copy, remote_mkdir
    from nisl import io

    # nifti_masker.mask=remote_mask_fn

    # Creation of the necessary paths --> do not do here
    parc_name = "Subsampled_data_with_" + str(K_clus) + "clusters"
    parc_name_clus = parc_name + "rnd_number_" + str(parc + 1)

    remote_sub = os.sep.join((remote_path, parc_name))
    # if not os.path.exists(remote_sub):
    # os.path.exists(remote_sub)
    # print 'remote_sub:', remote_sub
    # os.makedirs(remote_sub)
    remote_sub_parc = os.sep.join((remote_sub, parc_name_clus))
    # if not os.path.exists(remote_sub_parc):
    # os.makedirs(remote_sub_parc)

    output_RFIR_parc = os.sep.join((output_sub_parc, "RFIR_estim"))

    ###################################
    ## 1st STEP: SUBSAMPLING
    print "--- Subsample data ---"
    Ysub = subsample_data_on_time(Y, remote_mask_fn, K_clus, alpha, prop, nifti_masker, rescale=rescale)
    print "Ysub:", Ysub
    print "remote_sub_prc:", remote_sub_parc
    Ysub_name = "Y_sub_" + str(K_clus) + "clusters_" + "rnd_number_" + str(parc + 1) + ".nii"
    Ysub_fn = os.sep.join((remote_sub_parc, Ysub_name))
    Ysub_masked = nifti_masker.inverse_transform(Ysub).get_data()
    write_volume(Ysub_masked, Ysub_fn)

    ###################################
    ## 2D STEP: RFIR
    print "--- Performs RFIR estimation ---"

    remote_RFIR_parc_clus = os.sep.join((remote_sub_parc, "RFIR_estim"))
    # if not os.path.exists(remote_RFIR_parc):os.makedirs(remote_RFIR_parc)
    # remote_RFIR_parc_clus = os.sep.join((remote_RFIR_parc, parc_name_clus))
    # if not os.path.exists(remote_RFIR_parc_clus):os.makedirs(remote_RFIR_parc_clus)

    print "  * output path for RFIR ", remote_RFIR_parc_clus
    print "  * RFIR for subsampling nb ", str(parc + 1), " with ", K_clus, " clusters"
    RFIR_estim(nbItRFIR, onsets, durations, Ysub_fn, remote_mask_fn, remote_RFIR_parc, avg_bold=averg_bold)

    hrf_fn = os.sep.join((remote_RFIR_parc_clus, "rfir_ehrf.nii"))
    # remote_copy([hrf_fn], remote_host,
    # remote_user, remote_path)[0]

    ###################################
    ## 3D STEP: CLUSTERING FROM RFIR RESULTS
    name_hrf = "rfir_ehrf.nii"

    from pyhrf.tools.io import write_volume, read_volume
    from pyhrf.tools.io import read_volume, write_volume
    import nisl.io as ionisl
    from sklearn.feature_extraction import image
    from sklearn.cluster import WardAgglomeration
    from scipy.spatial.distance import cdist, pdist

    hrf_fn = os.sep.join((remote_RFIR_parc_clus, name_hrf))
    hrf = read_volume(hrf_fn)[0]
    hrf_t_fn = add_suffix(hrf_fn, "transpose")
    # taking only 1st condition to parcellate
    write_volume(hrf[:, :, :, :, 0], hrf_t_fn)

    nifti_masker = ionisl.NiftiMasker(remote_mask_fn)
    Nm = nifti_masker.fit(hrf_t_fn)

    # features: coeff of the HRF
    HRF = Nm.fit_transform(hrf_t_fn)

    mask, meta_data = read_volume(remote_mask_fn)
    shape = mask.shape
    connectivity = image.grid_to_graph(n_x=shape[0], n_y=shape[1], n_z=shape[2], mask=mask)

    # features used for clustering
    features = HRF.transpose()

    ward = WardAgglomeration(n_clusters=K_clus, connectivity=connectivity, memory="nisl_cache")
    ward.fit(HRF)
    labels_tot = ward.labels_ + 1

    # Kelbow, Perc_WSS, all_parc_from_RFIR_fns, all_parc_RFIR = \
    # clustering_from_RFIR(K_clusters, remote_RFIR_parc_clus, remote_mask_fn, name_hrf, plots=False)
    # labels_tot = all_parc_RFIR[str(Kelbow)]

    # to retrieve clustering with as many clusters as determined in K_clusters
    # labels_tot = all_parc_RFIR[str(K_clus)]
    # Parcellation retrieved: for K=Kelbow
    # clusters_RFIR_fn = all_parc_from_RFIR[str(Kelbow)]
    # clustering_rfir_fn = os.path.join(remote_RFIR_parc_clus, 'output_clustering_elbow.nii')
    # write_volume(read_volume(clusters_RFIR_fn)[0], clustering_rfir_fn, meta_bold)

    # labels_tot = nifti_masker.fit_transform([clusters_RFIR_fn])[0]
    # labels_tot = read_volume(clusters_RFIR_fn)[0]

    # labels_name='labels_' + str(int(K_clus)) + '_' + str(parc+1) + '.pck'
    # name_f = os.sep.join((remote_sub_parc, labels_name))
    # pickle_labels=open(name_f, 'w')
    # cPickle.dump(labels_tot,f)
    # pickle_labels.close()

    # remote_copy(pickle_labels, remote_user,
    # remote_host, output_sub_parc)

    #################################
    ## Prepare consensus clustering
    print "Prepare consensus clustering"
    clustcount, totalcount = upd_similarity_matrix(labels_tot)
    print "results:", clustcount

    return clustcount.astype(np.bool)