示例#1
0
文件: test_util.py 项目: yyqyu/pyIEM
def test_grid_bounds():
    """Can we compute grid bounds correctly"""
    lons = np.arange(-100, -80, 0.1)
    lats = np.arange(29, 51, 0.2)
    (x0, y0, x1, y1) = util.grid_bounds(lons, lats, [-96, 32, -89, 40])
    assert x0 == 41
    assert x1 == 111
    assert y0 == 16
    assert y1 == 56
    (lons, lats) = np.meshgrid(lons, lats)
    (x0, y0, x1, y1) = util.grid_bounds(lons, lats, [-96, 32, -89, 40])
    assert x0 == 40
    assert x1 == 110
    assert y0 == 15
    assert y1 == 55
示例#2
0
文件: p84.py 项目: stormchas4/iem
def plotter(fdict):
    """ Go """
    ctx = util.get_autoplot_context(fdict, get_description())
    ptype = ctx["ptype"]
    sdate = ctx["sdate"]
    edate = ctx["edate"]
    src = ctx["src"]
    opt = ctx["opt"]
    usdm = ctx["usdm"]
    if sdate.year != edate.year:
        raise NoDataFound("Sorry, do not support multi-year plots yet!")
    days = (edate - sdate).days
    sector = ctx["sector"]

    x0 = 0
    x1 = -1
    y0 = 0
    y1 = -1
    state = None
    if len(sector) == 2:
        state = sector
        sector = "state"

    title = compute_title(src, sdate, edate)
    if src == "mrms":
        ncfn = iemre.get_daily_mrms_ncname(sdate.year)
        clncfn = iemre.get_dailyc_mrms_ncname()
        ncvar = "p01d"
        source = "MRMS Q3"
        subtitle = "NOAA MRMS Project, GaugeCorr and RadarOnly"
    elif src == "iemre":
        ncfn = iemre.get_daily_ncname(sdate.year)
        clncfn = iemre.get_dailyc_ncname()
        ncvar = "p01d_12z"
        source = "IEM Reanalysis"
        subtitle = "IEM Reanalysis is derived from various NOAA datasets"
    else:
        ncfn = "/mesonet/data/prism/%s_daily.nc" % (sdate.year, )
        clncfn = "/mesonet/data/prism/prism_dailyc.nc"
        ncvar = "ppt"
        source = "OSU PRISM"
        subtitle = ("PRISM Climate Group, Oregon State Univ., "
                    "http://prism.oregonstate.edu, created 4 Feb 2004.")

    mp = MapPlot(
        sector=sector,
        state=state,
        axisbg="white",
        nocaption=True,
        title="%s:: %s Precip %s" % (source, title, PDICT3[opt]),
        subtitle="Data from %s" % (subtitle, ),
        titlefontsize=14,
    )

    idx0 = iemre.daily_offset(sdate)
    idx1 = iemre.daily_offset(edate) + 1
    if not os.path.isfile(ncfn):
        raise NoDataFound("No data for that year, sorry.")
    with util.ncopen(ncfn) as nc:
        if state is not None:
            x0, y0, x1, y1 = util.grid_bounds(
                nc.variables["lon"][:],
                nc.variables["lat"][:],
                state_bounds[state],
            )
        elif sector in SECTORS:
            bnds = SECTORS[sector]
            x0, y0, x1, y1 = util.grid_bounds(
                nc.variables["lon"][:],
                nc.variables["lat"][:],
                [bnds[0], bnds[2], bnds[1], bnds[3]],
            )
        lats = nc.variables["lat"][y0:y1]
        lons = nc.variables["lon"][x0:x1]
        if sdate == edate:
            p01d = mm2inch(nc.variables[ncvar][idx0, y0:y1, x0:x1])
        elif (idx1 - idx0) < 32:
            p01d = mm2inch(
                np.sum(nc.variables[ncvar][idx0:idx1, y0:y1, x0:x1], 0))
        else:
            # Too much data can overwhelm this app, need to chunk it
            for i in range(idx0, idx1, 10):
                i2 = min([i + 10, idx1])
                if idx0 == i:
                    p01d = mm2inch(
                        np.sum(nc.variables[ncvar][i:i2, y0:y1, x0:x1], 0))
                else:
                    p01d += mm2inch(
                        np.sum(nc.variables[ncvar][i:i2, y0:y1, x0:x1], 0))
    if np.ma.is_masked(np.max(p01d)):
        raise NoDataFound("Data Unavailable")
    plot_units = "inches"
    cmap = get_cmap(ctx["cmap"])
    cmap.set_bad("white")
    if opt == "dep":
        # Do departure work now
        with util.ncopen(clncfn) as nc:
            climo = mm2inch(
                np.sum(nc.variables[ncvar][idx0:idx1, y0:y1, x0:x1], 0))
        p01d = p01d - climo
        [maxv] = np.percentile(np.abs(p01d), [99])
        clevs = np.around(np.linspace(0 - maxv, maxv, 11), decimals=2)
    elif opt == "per":
        with util.ncopen(clncfn) as nc:
            climo = mm2inch(
                np.sum(nc.variables[ncvar][idx0:idx1, y0:y1, x0:x1], 0))
        p01d = p01d / climo * 100.0
        cmap.set_under("white")
        cmap.set_over("black")
        clevs = [1, 10, 25, 50, 75, 100, 125, 150, 200, 300, 500]
        plot_units = "percent"
    else:
        p01d = np.where(p01d < 0.001, np.nan, p01d)
        cmap.set_under("white")
        clevs = [0.01, 0.1, 0.3, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 5, 6, 8, 10]
        if days > 6:
            clevs = [0.01, 0.3, 0.5, 1, 1.5, 2, 3, 4, 5, 6, 7, 8, 10, 15, 20]
        if days > 29:
            clevs = [0.01, 0.5, 1, 2, 3, 4, 5, 6, 8, 10, 15, 20, 25, 30, 35]
        if days > 90:
            clevs = [0.01, 1, 2, 3, 4, 5, 6, 8, 10, 15, 20, 25, 30, 35, 40]

    x2d, y2d = np.meshgrid(lons, lats)
    if ptype == "c":
        mp.contourf(x2d,
                    y2d,
                    p01d,
                    clevs,
                    cmap=cmap,
                    units=plot_units,
                    iline=False)
    else:
        res = mp.pcolormesh(x2d, y2d, p01d, clevs, cmap=cmap, units=plot_units)
        res.set_rasterized(True)
    if sector != "midwest":
        mp.drawcounties()
        mp.drawcities()
    if usdm == "yes":
        mp.draw_usdm(edate, filled=False, hatched=True)

    return mp.fig
示例#3
0
def plotter(fdict):
    """ Go """
    ctx = util.get_autoplot_context(fdict, get_description())
    ptype = ctx['ptype']
    sdate = ctx['sdate']
    edate = ctx['edate']
    src = ctx['src']
    opt = ctx['opt']
    usdm = ctx['usdm']
    if sdate.year != edate.year:
        raise NoDataFound('Sorry, do not support multi-year plots yet!')
    days = (edate - sdate).days
    sector = ctx['sector']

    if sdate == edate:
        title = sdate.strftime("%-d %B %Y")
    else:
        title = "%s to %s (inclusive)" % (sdate.strftime("%-d %b"),
                                          edate.strftime("%-d %b %Y"))
    x0 = 0
    x1 = -1
    y0 = 0
    y1 = -1
    state = None
    if len(sector) == 2:
        state = sector
        sector = 'state'

    if src == 'mrms':
        ncfn = iemre.get_daily_mrms_ncname(sdate.year)
        clncfn = iemre.get_dailyc_mrms_ncname()
        ncvar = 'p01d'
        source = 'MRMS Q3'
        subtitle = 'NOAA MRMS Project, GaugeCorr and RadarOnly'
    elif src == 'iemre':
        ncfn = iemre.get_daily_ncname(sdate.year)
        clncfn = iemre.get_dailyc_ncname()
        ncvar = 'p01d_12z'
        source = 'IEM Reanalysis'
        subtitle = 'IEM Reanalysis is derived from various NOAA datasets'
    else:
        ncfn = "/mesonet/data/prism/%s_daily.nc" % (sdate.year, )
        clncfn = "/mesonet/data/prism/prism_dailyc.nc"
        ncvar = 'ppt'
        source = 'OSU PRISM'
        subtitle = ('PRISM Climate Group, Oregon State Univ., '
                    'http://prism.oregonstate.edu, created 4 Feb 2004.')

    mp = MapPlot(sector=sector,
                 state=state,
                 axisbg='white',
                 nocaption=True,
                 title='%s:: %s Precip %s' % (source, title, PDICT3[opt]),
                 subtitle='Data from %s' % (subtitle, ),
                 titlefontsize=14)

    idx0 = iemre.daily_offset(sdate)
    idx1 = iemre.daily_offset(edate) + 1
    if not os.path.isfile(ncfn):
        raise NoDataFound("No data for that year, sorry.")
    with util.ncopen(ncfn) as nc:
        if state is not None:
            x0, y0, x1, y1 = util.grid_bounds(nc.variables['lon'][:],
                                              nc.variables['lat'][:],
                                              state_bounds[state])
        elif sector in SECTORS:
            bnds = SECTORS[sector]
            x0, y0, x1, y1 = util.grid_bounds(
                nc.variables['lon'][:], nc.variables['lat'][:],
                [bnds[0], bnds[2], bnds[1], bnds[3]])
        lats = nc.variables['lat'][y0:y1]
        lons = nc.variables['lon'][x0:x1]
        if sdate == edate:
            p01d = distance(nc.variables[ncvar][idx0, y0:y1, x0:x1],
                            'MM').value('IN')
        elif (idx1 - idx0) < 32:
            p01d = distance(
                np.sum(nc.variables[ncvar][idx0:idx1, y0:y1, x0:x1], 0),
                'MM').value('IN')
        else:
            # Too much data can overwhelm this app, need to chunk it
            for i in range(idx0, idx1, 10):
                i2 = min([i + 10, idx1])
                if idx0 == i:
                    p01d = distance(
                        np.sum(nc.variables[ncvar][i:i2, y0:y1, x0:x1], 0),
                        'MM').value('IN')
                else:
                    p01d += distance(
                        np.sum(nc.variables[ncvar][i:i2, y0:y1, x0:x1], 0),
                        'MM').value('IN')
    if np.ma.is_masked(np.max(p01d)):
        raise NoDataFound("Data Unavailable")
    units = 'inches'
    cmap = plt.get_cmap(ctx['cmap'])
    cmap.set_bad('white')
    if opt == 'dep':
        # Do departure work now
        with util.ncopen(clncfn) as nc:
            climo = distance(
                np.sum(nc.variables[ncvar][idx0:idx1, y0:y1, x0:x1], 0),
                'MM').value('IN')
        p01d = p01d - climo
        [maxv] = np.percentile(np.abs(p01d), [
            99,
        ])
        clevs = np.around(np.linspace(0 - maxv, maxv, 11), decimals=2)
    elif opt == 'per':
        with util.ncopen(clncfn) as nc:
            climo = distance(
                np.sum(nc.variables[ncvar][idx0:idx1, y0:y1, x0:x1], 0),
                'MM').value('IN')
        p01d = p01d / climo * 100.
        cmap.set_under('white')
        cmap.set_over('black')
        clevs = [1, 10, 25, 50, 75, 100, 125, 150, 200, 300, 500]
        units = 'percent'
    else:
        p01d = np.where(p01d < 0.001, np.nan, p01d)
        cmap.set_under('white')
        clevs = [0.01, 0.1, 0.3, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 5, 6, 8, 10]
        if days > 6:
            clevs = [0.01, 0.3, 0.5, 1, 1.5, 2, 3, 4, 5, 6, 7, 8, 10, 15, 20]
        if days > 29:
            clevs = [0.01, 0.5, 1, 2, 3, 4, 5, 6, 8, 10, 15, 20, 25, 30, 35]
        if days > 90:
            clevs = [0.01, 1, 2, 3, 4, 5, 6, 8, 10, 15, 20, 25, 30, 35, 40]

    x2d, y2d = np.meshgrid(lons, lats)
    if ptype == 'c':
        mp.contourf(x2d, y2d, p01d, clevs, cmap=cmap, units=units, iline=False)
    else:
        res = mp.pcolormesh(x2d, y2d, p01d, clevs, cmap=cmap, units=units)
        res.set_rasterized(True)
    if sector != 'midwest':
        mp.drawcounties()
        mp.drawcities()
    if usdm == 'yes':
        mp.draw_usdm(edate, filled=False, hatched=True)

    return mp.fig