示例#1
0
def process(x):

    # load the image and resize it to a smaller factor so that
    # the shapes can be approximated better
    image = cv2.imread(x)
    resized = imutils.resize(image, width=300)
    ratio = image.shape[0] / float(resized.shape[0])

    adjusted = adjust_gamma(resized, gamma=1.0)

    # blur the resized image slightly, then convert it to both
    # grayscale and the L*a*b* color spaces
    blurred = cv2.GaussianBlur(adjusted, (5, 5), 0)
    gray = cv2.cvtColor(blurred, cv2.COLOR_BGR2GRAY)
    lab = cv2.cvtColor(blurred, cv2.COLOR_BGR2LAB)
    thresh = cv2.threshold(gray, 100, 255, cv2.THRESH_BINARY_INV)[1]

    # find contours in the thresholded image
    cnts = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL,
                            cv2.CHAIN_APPROX_SIMPLE)
    cnts = cnts[0] if imutils.is_cv2() else cnts[1]

    # initialize the shape detector and color labeler
    # sd = ShapeDetector()
    cl = ColorLabeler()

    # loop over the contours
    for c in cnts:
        # compute the center of the contour
        M = cv2.moments(c)
        if M["m00"] == 0:
            # M["m00"] = 1
            continue
        cX = int((M["m10"] / M["m00"]) * ratio)
        cY = int((M["m01"] / M["m00"]) * ratio)

        # detect the shape of the contour and label the color
        # shape = sd.detect(c)
        color = cl.label(lab, c)

        # multiply the contour (x, y)-coordinates by the resize ratio,
        # then draw the contours and the name of the shape and labeled
        # color on the image
        c = c.astype("float")
        c *= ratio
        c = c.astype("int")
        text = "{}".format(color)
        if text != "NaN":
            cv2.drawContours(image, [c], -1, (255, 255, 255), 2)
            cv2.putText(image, text, (cX, cY), cv2.FONT_HERSHEY_SIMPLEX, 0.5,
                        (255, 255, 255), 2)
        else:
            cv2.drawContours(image, [c], -1, (255, 255, 255), 2)

        # show the output image
    cv2.imwrite(x, image)
示例#2
0
cnts = cnts[0] if imutils.is_cv2() else cnts[1]

# initialize the shape detector and color labeler
sd = ShapeDetector()
cl = ColorLabeler()

# loop over the contours
for c in cnts:
    # compute the center of the contour
    M = cv2.moments(c)
    cX = int((M["m10"] / M["m00"]) * ratio)
    cY = int((M["m01"] / M["m00"]) * ratio)

    # detect the shape of the contour and label the color
    shape = sd.detect(c)
    color = cl.label(lab, c)

    # multiply the contour (x, y)-coordinates by the resize ratio,
    # then draw the contours and the name of the shape and labeled
    # color on the image
    c = c.astype("float")
    c *= ratio
    c = c.astype("int")
    text = "{} {}".format(color, shape)
    cv2.drawContours(image, [c], -1, (0, 255, 0), 2)
    cv2.putText(image, text, (cX, cY), cv2.FONT_HERSHEY_SIMPLEX, 0.5,
                (255, 255, 255), 2)

    # show the output image
    cv2.imshow("Image", image)
    cv2.waitKey(0)
示例#3
0
def getGPSPos(image, ROBOT='blue'):

    blurred = cv2.GaussianBlur(image, (5, 5), 0)

    ## convert to hsv
    hsv = cv2.cvtColor(blurred, cv2.COLOR_BGR2HSV)

    if ROBOT == 'blue':
        #Blue
        mask = cv2.inRange(hsv, (177 / 2, 100, 40), (197 / 2, 255, 255))

    if ROBOT == 'red':
        #Red
        mask = cv2.inRange(hsv, (340 / 2, 100, 40), (360 / 2, 255, 255))

    blurred = cv2.bitwise_and(image, image, mask=mask)

    gray = cv2.cvtColor(blurred, cv2.COLOR_BGR2GRAY)
    lab = cv2.cvtColor(blurred, cv2.COLOR_BGR2LAB)
    thresh = cv2.threshold(gray, 60, 255, cv2.THRESH_BINARY)[1]

    # find contours in the thresholded image
    cnts = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL,
                            cv2.CHAIN_APPROX_SIMPLE)
    if cnts is None:
        return 0, 0, 0

    cnts = cnts[1]

    # initialize the shape detector and color labeler
    sd = ShapeDetector()
    cl = ColorLabeler()

    _, ySize = mask.shape[:2]

    if isinstance(cnts, Iterable):
        # loop over the contours
        for c in cnts:

            # compute the center of the contour
            M = cv2.moments(c)

            if M["m00"] != 0:
                cX = int(M["m10"] / M["m00"])
                cY = int(M["m01"] / M["m00"])
            else:
                cX = 0
                cY = 0

            # detect the shape of the contour and label the color
            shape = sd.detect(c)
            color = cl.label(lab, c)

            if shape == "triangle" and color == ROBOT:

                # multiply the contour (x, y)-coordinates by the resize ratio,
                # then draw the contours and the name of the shape and labeled
                # color on the image
                c = c.astype("float")
                c = c.astype("int")

                # Find sticky point
                maxDistance = 0
                for point in c:
                    distance = euclideanDistance(point[0], [cX, cY])
                    if distance > maxDistance:
                        maxDistance = distance
                        stickyPoint = point

                pixelAngle = math.atan2(
                    (ySize - cY) - (ySize - stickyPoint[0][1]),
                    cX - stickyPoint[0][0])

                if pixelAngle < 0:
                    pixelAngle = 2 * math.pi + pixelAngle

                return cX, cY, pixelAngle

            else:
                return 0, 0, 0
        else:
            return 0, 0, 0
示例#4
0
                                              cv2.CHAIN_APPROX_SIMPLE)
                contours_b = cv2.findContours(thresh_b.copy(),
                                              cv2.RETR_EXTERNAL,
                                              cv2.CHAIN_APPROX_SIMPLE)

                contours_r = imutils.grab_contours(contours_r)
                contours_g = imutils.grab_contours(contours_g)
                contours_b = imutils.grab_contours(contours_b)

                # initialize the sahpe detector and color labeler
                cl = ColorLabeler()

                for c in contours_r:
                    if cv2.contourArea(c) > 0:
                        M = cv2.moments(c)
                        red_label = cl.label(lab_r, c)  # label color of object
                        c = c.astype("int")  # change to type int
                        text = "{}".format(red_label)

                        cv2.drawContours(median_red, [c], -1, (0, 255, 0), 2)
                        cv2.drawContours(median_red, [c], -1, (0, 255, 0), 3)

                        if red_label == "red":
                            red_detector = 1
                            robot_move = 1
                            robot_text = "red"
                            if blue_detector == 1 or green_detector == 1:
                                defect_counter += 1
                                blue_detector = 0
                                green_detector = 0
                for d in contours_b:
示例#5
0
cnts = cnts[0] if imutils.is_cv2() else cnts[1]

# initialize the shape detector and color labeler
sd = ShapeDetector()
cl = ColorLabeler()

# loop over the contours
for c in cnts:
    # compute the center of the contour
    M = cv2.moments(c)
    cX = int((M["m10"] / M["m00"]) * ratio)
    cY = int((M["m01"] / M["m00"]) * ratio)

    # detect the shape of the contour and label the color
    shape = sd.detect(c)
    color = cl.label(lab, c)

    # multiply the contour (x, y)-coordinates by the resize ratio,
    # then draw the contours and the name of the shape and labeled
    # color on the image
    c = c.astype("float")
    c *= ratio
    c = c.astype("int")
    text = "{} {}".format(color, shape)
    cv2.drawContours(image, [c], -1, (0, 255, 0), 2)
    cv2.putText(image, text, (cX, cY), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 2)

    # show the output image
    cv2.imshow("Image", image)
    cv2.waitKey(0)
示例#6
0
            # shape detector
            cnts = cv2.findContours(thresh.copy(), cv2.RETR_TREE,
                                    cv2.CHAIN_APPROX_SIMPLE)
            cnts = cnts[0] if imutils.is_cv2() else cnts[1]
            sd = ShapeDetector()
            cl = ColorLabeler()

            # loop over the contours
            for c in cnts:
                # compute the center of the contour, then detect the name of the
                # shape using only the contour
                M = cv2.moments(c)
                cX = int((M["m10"] / M["m00"]) * ratio)
                cY = int((M["m01"] / M["m00"]) * ratio)
                shape = sd.detect(c)
                color = cl.label(image, c)

                # multiply the contour (x, y)-coordinates by the resize ratio,
                # then draw the contours and the name of the shape on the image
                c = c.astype("float")
                c *= ratio
                c = c.astype("int")
                text = "{} {}".format(color, shape)
                cv2.drawContours(image, [c], -1, (255, 255, 255), 3)
                cv2.putText(image, text, (cX, cY), cv2.FONT_HERSHEY_SIMPLEX,
                            0.5, (255, 255, 255), 2)

                # show the output image
                cv2.imshow("Image", frame)
                cv2.waitKey(0)
cnts = cnts[0] if imutils.is_cv2() else cnts[1]

sd = ShapeDetector()
cl = ColorLabeler()


for c in cnts:
	peri = cv2.arcLength(c, True)
	if(peri < 50):
		continue
	
	M = cv2.moments(c)
	if(M["m00"] != 0):
	
		shape = sd.detect(c)
		color = cl.label(blurred, c)

		c = c.astype("float")
		c *= ratio
		c = c.astype("int")
		print(shape, color)
		
		if(color == "vermelho"):
			sendSerial("r")

		if(color == "verde"):
			sendSerial("g")

		text = "{} {}".format(shape, color)
		cv2.drawContours(image, [c], -1, (0, 255, 0), 2)
	
示例#8
0
    def ProcessImage(self, image, colour):
        # View the original image seen by the camera.
        if debug:
            cv2.imshow('original', image)
            time.sleep(0.3)
            #cv2.waitKey(0)

        # convert the resized image to grayscale, blur it slightly,
        # and threshold it
        blurred_img = cv2.GaussianBlur(image, (7, 7), 0)
        #if debug:
        #    cv2.imshow('GaussianBlur', blurred_img)
        #    cv2.waitKey(0)
        grey_img = cv2.cvtColor(blurred_img, cv2.COLOR_BGR2GRAY)
        #if debug:
        #    cv2.imshow('cvtColor GRAY', grey_img)
        #    cv2.waitKey(0)
        lab_img = cv2.cvtColor(blurred_img, cv2.COLOR_BGR2LAB)
        #if debug:
        #    cv2.imshow('cvtColor LAB', lab_img)
        #    cv2.waitKey(0)
        #thresh_img = cv2.threshold(grey_img, 60, 255, cv2.THRESH_BINARY)[1]
        thresh_img = cv2.adaptiveThreshold(grey_img, 255,
                                           cv2.ADAPTIVE_THRESH_GAUSSIAN_C,
                                           cv2.THRESH_BINARY, 11, 2)
        if debug:
            cv2.imshow('threshold', thresh_img)
            time.sleep(0.3)
            #cv2.waitKey(0)

        ## Blur the image
        #image = cv2.medianBlur(image, 5)
        #if debug:
        #    cv2.imshow('blur', image)
        #    cv2.waitKey(0)

        ## Convert the image from 'BGR' to HSV colour space
        #image = cv2.cvtColor(image, cv2.COLOR_RGB2HSV)
        #if debug:
        #    cv2.imshow('cvtColour', image)
        #    cv2.waitKey(0)

        ## We want to extract the 'Hue', or colour, from the image. The 'inRange'
        ## method will extract the colour we are interested in (between 0 and 180)
        ## In testing, the Hue value for red is between 95 and 125
        ## Green is between 50 and 75
        ## Blue is between 20 and 35
        ## Yellow is... to be found!
        #if colour == "red":
        #    imrange = cv2.inRange(image, numpy.array((95, 127, 64)), numpy.array((125, 255, 255)))
        #elif colour == "green":
        #    imrange = cv2.inRange(image, numpy.array((40, 127, 64)), numpy.array((75, 255, 255)))
        #elif colour == 'blue':
        #    imrange = cv2.inRange(image, numpy.array((20, 64, 64)), numpy.array((35, 255, 255)))
        # View the filtered image found by 'imrange'
        #if debug:
        #    cv2.imshow('imrange', imrange)
        #    cv2.waitKey(0)

        # I used the following code to find the approximate 'hue' of the ball in
        # front of the camera
        #        for crange in range(0,170,10):
        #            imrange = cv2.inRange(image, numpy.array((crange, 64, 64)), numpy.array((crange+10, 255, 255)))
        #            print(crange)
        #            cv2.imshow('range',imrange)
        #            cv2.waitKey(0)

        # Find the contours
        #contour_img, contours, hierarchy = cv2.findContours(thresh_img.copy(), cv2.RETR_LIST,
        #                                                     cv2.CHAIN_APPROX_SIMPLE)
        #if debug:
        #    cv2.imshow('contour', contour_img)
        #    cv2.waitKey(0)
        # cv2.RETR_EXTERNAL - just outermost contour
        # cv2.RETR_LIST - all contours, no heirarchy
        contours = cv2.findContours(thresh_img.copy(), cv2.RETR_LIST,
                                    cv2.CHAIN_APPROX_SIMPLE)
        contours = contours[0] if imutils.is_cv2() else contours[1]
        print('count of contours={}'.format(len(contours)))

        sd = ShapeDetector()
        cl = ColorLabeler()

        # Go through each contour
        #foundArea = -1
        #foundX = -1
        #foundY = -1

        squares = []
        sc = []
        for idx, contour in enumerate(contours):
            #print('contour={}'.f5ormat(contour))
            x, y, w, h = cv2.boundingRect(contour)
            if w <= 15 or h <= 15 or w > 50 or h > 50:
                continue
            sc.append(contour)
            print('x={} y={} w={} h={}'.format(x, y, h, w))
            cx = x + (w / 2)
            cy = y + (h / 2)
            area = w * h
            print('  cx={} cy={} area={}'.format(cx, cy, area))
            shape = sd.detect(contour)
            colour = cl.label(lab_img, contour)
            print('  shape={} color={}'.format(shape, colour))
            squares.append([idx, x, y, h, w, cx, cy, area, colour])
            #if foundArea < area:
            #    foundArea = area
            #    foundX = cx
            #    foundY = cy
        #if foundArea > 0:
        #    ball = [foundX, foundY, foundArea]
        #else:
        #    ball = None
        ## Set drives or report ball status
        #self.SetSpeedFromBall(ball)
        print('Found {} shapes.'.format(len(squares)))
        print('Shapes={}'.format(squares))
        #print([i[0] for i in squares])
        for sq in squares:
            cv2.rectangle(image, (sq[1], sq[2]),
                          (sq[1] + sq[3], sq[2] + sq[4]),
                          (0, 0, 255) if sq[8] == 'red' else (255, 0, 0),
                          cv2.FILLED)
        cv2.drawContours(image, sc, -1, (255, 0, 0), cv2.FILLED)
        cv2.imshow('filled', image)
        cv2.waitKey(0)
        cv2.destroyAllWindows()

        #sort by cy
        ysorted_sqs = OrderedDict()
        min_x = squares[0][0]
        min_y = squares[0][1]
        for sq in squares:
            # add cx, cy, h, v, colour
            ysorted_sqs[sq[6]] = (sq[5], sq[6], sq[3], sq[4], sq[8])
            if sq[0] < min_x:
                min_x = sq[0]
            if sq[1] < min_y:
                min_y = sq[1]

        #group by rows, centres differ by less than a 3rd.
        rows = []
        for idx, ssq in enumerate(ysorted_sqs):
            if idx != 0:
                # 0=cx, 1=cy, 2=h, 3=v, 4=colour
                if abs(ssq[1] -
                       ysorted_sqs[idx - 1][1]) > ysorted_sqs[idx - 1][3] / 3:
                    # not same row, add to new row
                    rows.append([ssq])
            # add square to current row
            rows.extend([ssq])

        #sort by cx
        for row in rows:
            xsorted_sqs = OrderedDict()
            for ssq in row:
                xsorted_sqs[ssq[0]] = ssq
示例#9
0
def main(argv):

    # Read the image data from argument

    image = cv2.imread(argv[1])

    # Resize if it is necessary(faster but not accurate)
    resized = imutils.resize(image, width=800)
    ratio = image.shape[0] / float(resized.shape[0])

    blurred = cv2.GaussianBlur(resized, (5, 5), 0)
    gray = cv2.cvtColor(blurred, cv2.COLOR_BGR2GRAY)
    lab = cv2.cvtColor(blurred, cv2.COLOR_BGR2LAB)
    thresh = cv2.threshold(gray, 60, 255, cv2.THRESH_BINARY)[1]

    # Get the edge by canny effect

    canny = cv2.Canny(gray.copy(), 80, 120)

    # Set the kernel for dilation(make the white line thicker)

    kernel = np.ones((3, 3), np.uint8)
    dilation = cv2.dilate(canny.copy(), kernel, iterations=7)
    cv2.imwrite('dilate.jpg', dilation)

    # Get the contour from dilated picture, EXTERNAL contour used

    cnts = cv2.findContours(dilation.copy(), cv2.RETR_EXTERNAL,
                            cv2.CHAIN_APPROX_NONE)
    cnts = imutils.grab_contours(cnts)

    # ColorLabel

    # initialize the ShapeDetector class

    sd = ShapeDetector()
    cl = ColorLabeler()

    oracle = []
    for c in cnts:
        try:

            # Do if the contourarea is larger than specific area

            if cv2.contourArea(
                    c) > np.shape(image)[0] / 40 * np.shape(image)[1] / 40:

                # Get the moments of the shapes

                M = cv2.moments(c)
                cX = int(M['m10'] / M['m00'])
                cY = int(M['m01'] / M['m00'])

                # Detect the shape

                shape = sd.detect(c)
                color = cl.label(lab, c)

                # Put additional information in the image

                c = c.astype('float')
                c *= ratio
                c = c.astype('int')
                cv2.drawContours(image, [c], -1, (0, 255, 0), 2)
                cv2.putText(
                    image,
                    shape,
                    (cX, cY),
                    cv2.FONT_HERSHEY_SIMPLEX,
                    0.5,
                    (0, 0, 255),
                    2,
                )

                # Store the shape information to oracle

                oracle.append([shape, np.array([cX, cY]), color])
        except:
            continue

    # Save the image file

    cv2.imwrite('Shape_recognized.jpg', image)
    alsoOracle = oracle
    oracle = np.array(oracle)
    #print(oracle)
    # Create the json file to return the following value to PHP
    # ["Type of shape", "RowID", "number of shape in the same row"]

    jsonfile = get_block(image, oracle, (6, 6), alsoOracle)
    print(jsonfile)