def setUp(self): self.u = CorrectInput() # setup temp and spat domain spat_domain = sim.Domain((0, 1), num=3) nodes, ini_funcs = sf.cure_interval(sf.LagrangeFirstOrder, spat_domain.bounds, node_count=3) register_base("init_funcs", ini_funcs, overwrite=True) # enter string with mass equations for testing int1 = ph.IntegralTerm( ph.Product(ph.TemporalDerivedFieldVariable("init_funcs", 2), ph.TestFunction("init_funcs")), spat_domain.bounds) s1 = ph.ScalarTerm( ph.Product( ph.TemporalDerivedFieldVariable("init_funcs", 2, location=0), ph.TestFunction("init_funcs", location=0))) int2 = ph.IntegralTerm( ph.Product(ph.SpatialDerivedFieldVariable("init_funcs", 1), ph.TestFunction("init_funcs", order=1)), spat_domain.bounds) s2 = ph.ScalarTerm( ph.Product(ph.Input(self.u), ph.TestFunction("init_funcs", location=1)), -1) string_pde = sim.WeakFormulation([int1, s1, int2, s2]) self.cf = sim.parse_weak_formulation(string_pde) self.ic = np.zeros((3, 2))
def test_rd(): # trajectory bound_cond_type = 'robin' actuation_type = 'dirichlet' u = tr.RadTrajectory(l, T, param, bound_cond_type, actuation_type) # integral terms int1 = ph.IntegralTerm( ph.Product( ph.TemporalDerivedFieldVariable("init_funcs_2", order=1), ph.TestFunction("init_funcs_2", order=0)), dz.bounds) int2 = ph.IntegralTerm( ph.Product( ph.SpatialDerivedFieldVariable("init_funcs_2", order=0), ph.TestFunction("init_funcs_2", order=2)), dz.bounds, -a2) int3 = ph.IntegralTerm( ph.Product( ph.SpatialDerivedFieldVariable("init_funcs_2", order=1), ph.TestFunction("init_funcs_2", order=0)), dz.bounds, -a1) int4 = ph.IntegralTerm( ph.Product( ph.SpatialDerivedFieldVariable("init_funcs_2", order=0), ph.TestFunction("init_funcs_2", order=0)), dz.bounds, -a0) # scalar terms from int 2 s1 = ph.ScalarTerm( ph.Product( ph.SpatialDerivedFieldVariable("init_funcs_2", order=1, location=l), ph.TestFunction("init_funcs_2", order=0, location=l)), -a2) s2 = ph.ScalarTerm( ph.Product( ph.SpatialDerivedFieldVariable("init_funcs_2", order=0, location=0), ph.TestFunction("init_funcs_2", order=0, location=0)), a2 * alpha) s3 = ph.ScalarTerm( ph.Product( ph.SpatialDerivedFieldVariable("init_funcs_2", order=0, location=0), ph.TestFunction("init_funcs_2", order=1, location=0)), -a2) s4 = ph.ScalarTerm( ph.Product( ph.Input(u), ph.TestFunction("init_funcs_2", order=1, location=l)), a2) # derive state-space system rad_pde = sim.WeakFormulation( [int1, int2, int3, int4, s1, s2, s3, s4]) cf = sim.parse_weak_formulation(rad_pde) ss = cf.convert_to_state_space() # simulate system t, q = sim.simulate_state_space(ss, np.zeros(ini_funcs_2.shape), dt) return t, q
def setUp(self): self.u = np.sin self.input = ph.Input(self.u) # control input nodes, self.ini_funcs = cure_interval(LagrangeFirstOrder, (0, 1), node_count=3) register_base("ini_funcs", self.ini_funcs, overwrite=True) self.phi = ph.TestFunction( "ini_funcs") # eigenfunction or something else self.dphi = ph.TestFunction("ini_funcs", order=1) # eigenfunction or something else self.dphi_at1 = ph.TestFunction( "ini_funcs", order=1, location=1) # eigenfunction or something else self.field_var = ph.FieldVariable("ini_funcs") self.field_var_at1 = ph.FieldVariable("ini_funcs", location=1)
def setUp(self): self.input = ph.Input(np.sin) self.phi = np.array([cr.Function(lambda x: 2 * x)]) register_base("phi", self.phi, overwrite=True) self.test_func = ph.TestFunction("phi") nodes, self.ini_funcs = cure_interval(LagrangeFirstOrder, (0, 1), node_count=2) register_base("ini_funcs", self.ini_funcs, overwrite=True) self.xdt = ph.TemporalDerivedFieldVariable("ini_funcs", order=1) self.xdz_at1 = ph.SpatialDerivedFieldVariable("ini_funcs", order=1, location=1) self.prod = ph.Product(self.input, self.xdt)
def setUp(self): self.input = ph.Input(np.sin) phi = cr.Function(np.sin) psi = cr.Function(np.cos) self.t_funcs = np.array([phi, psi]) register_base("funcs", self.t_funcs, overwrite=True) self.test_funcs = ph.TestFunction("funcs") self.s_funcs = np.array([cr.Function(self.scale)])[[0, 0]] register_base("scale_funcs", self.s_funcs, overwrite=True) self.scale_funcs = ph.ScalarFunction("scale_funcs") nodes, self.ini_funcs = cure_interval(LagrangeFirstOrder, (0, 1), node_count=2) register_base("prod_ini_funcs", self.ini_funcs, overwrite=True) self.field_var = ph.FieldVariable("prod_ini_funcs") self.field_var_dz = ph.SpatialDerivedFieldVariable("prod_ini_funcs", 1)
def setUp(self): self.psi = cr.Function(np.sin) register_base("funcs", self.psi, overwrite=True) self.funcs = ph.TestFunction("funcs")
def test_dr(): # trajectory bound_cond_type = 'dirichlet' actuation_type = 'robin' u = tr.RadTrajectory(l, T, param, bound_cond_type, actuation_type) # integral terms int1 = ph.IntegralTerm( ph.Product( ph.TemporalDerivedFieldVariable("init_funcs_1", order=1), ph.TestFunction("init_funcs_1", order=0)), dz.bounds) int2 = ph.IntegralTerm( ph.Product( ph.SpatialDerivedFieldVariable("init_funcs_1", order=1), ph.TestFunction("init_funcs_1", order=1)), dz.bounds, a2) int3 = ph.IntegralTerm( ph.Product( ph.SpatialDerivedFieldVariable("init_funcs_1", order=0), ph.TestFunction("init_funcs_1", order=1)), dz.bounds, a1) int4 = ph.IntegralTerm( ph.Product( ph.SpatialDerivedFieldVariable("init_funcs_1", order=0), ph.TestFunction("init_funcs_1", order=0)), dz.bounds, -a0) # scalar terms from int 2 s1 = ph.ScalarTerm( ph.Product( ph.SpatialDerivedFieldVariable("init_funcs_1", order=0, location=l), ph.TestFunction("init_funcs_1", order=0, location=l)), -a1) s2 = ph.ScalarTerm( ph.Product( ph.SpatialDerivedFieldVariable("init_funcs_1", order=0, location=l), ph.TestFunction("init_funcs_1", order=0, location=l)), a2 * beta) s3 = ph.ScalarTerm( ph.Product( ph.SpatialDerivedFieldVariable("init_funcs_1", order=1, location=0), ph.TestFunction("init_funcs_1", order=0, location=0)), a2) s4 = ph.ScalarTerm( ph.Product( ph.Input(u), ph.TestFunction("init_funcs_1", order=0, location=l)), -a2) # derive state-space system rad_pde = sim.WeakFormulation( [int1, int2, int3, int4, s1, s2, s3, s4]) cf = sim.parse_weak_formulation(rad_pde) ss = cf.convert_to_state_space() # simulate system t, q = sim.simulate_state_space(ss, np.zeros(ini_funcs_1.shape), dt) # check if (x'(0,t_end) - 1.) < 0.1 self.assertLess( np.abs(ini_funcs_1[0].derive(1)(sys.float_info.min) * (q[-1, 0] - q[-1, 1])) - 1, 0.1) return t, q
def test_modal(self): order = 8 def char_eq(w): return w * (np.sin(w) + self.params.m * w * np.cos(w)) def phi_k_factory(freq, derivative_order=0): def eig_func(z): return np.cos( freq * z) - self.params.m * freq * np.sin(freq * z) def eig_func_dz(z): return -freq * (np.sin(freq * z) + self.params.m * freq * np.cos(freq * z)) def eig_func_ddz(z): return freq**2 * (-np.cos(freq * z) + self.params.m * freq * np.sin(freq * z)) if derivative_order == 0: return eig_func elif derivative_order == 1: return eig_func_dz elif derivative_order == 2: return eig_func_ddz else: raise ValueError # create eigenfunctions eig_frequencies = ut.find_roots(char_eq, n_roots=order, grid=np.arange(0, 1e3, 2), rtol=-2) print("eigenfrequencies:") print(eig_frequencies) # create eigen function vectors class SWMFunctionVector(cr.ComposedFunctionVector): """ String With Mass Function Vector, necessary due to manipulated scalar product """ @property def func(self): return self.members["funcs"][0] @property def scalar(self): return self.members["scalars"][0] eig_vectors = [] for n in range(order): eig_vectors.append( SWMFunctionVector( cr.Function(phi_k_factory(eig_frequencies[n]), derivative_handles=[ phi_k_factory(eig_frequencies[n], der_order) for der_order in range(1, 3) ], domain=self.dz.bounds, nonzero=self.dz.bounds), phi_k_factory(eig_frequencies[n])(0))) # normalize eigen vectors norm_eig_vectors = [cr.normalize_function(vec) for vec in eig_vectors] norm_eig_funcs = np.array([vec.func for vec in norm_eig_vectors]) register_base("norm_eig_funcs", norm_eig_funcs, overwrite=True) norm_eig_funcs[0](1) # debug print eigenfunctions if 0: func_vals = [] for vec in eig_vectors: func_vals.append(np.vectorize(vec.func)(self.dz)) norm_func_vals = [] for func in norm_eig_funcs: norm_func_vals.append(np.vectorize(func)(self.dz)) clrs = ["r", "g", "b", "c", "m", "y", "k", "w"] for n in range(1, order + 1, len(clrs)): pw_phin_k = pg.plot(title="phin_k for k in [{0}, {1}]".format( n, min(n + len(clrs), order))) for k in range(len(clrs)): if k + n > order: break pw_phin_k.plot(x=np.array(self.dz), y=norm_func_vals[n + k - 1], pen=clrs[k]) app.exec_() # create terms of weak formulation terms = [ ph.IntegralTerm(ph.Product( ph.FieldVariable("norm_eig_funcs", order=(2, 0)), ph.TestFunction("norm_eig_funcs")), self.dz.bounds, scale=-1), ph.ScalarTerm(ph.Product( ph.FieldVariable("norm_eig_funcs", order=(2, 0), location=0), ph.TestFunction("norm_eig_funcs", location=0)), scale=-1), ph.ScalarTerm( ph.Product(ph.Input(self.u), ph.TestFunction("norm_eig_funcs", location=1))), ph.ScalarTerm(ph.Product( ph.FieldVariable("norm_eig_funcs", location=1), ph.TestFunction("norm_eig_funcs", order=1, location=1)), scale=-1), ph.ScalarTerm( ph.Product( ph.FieldVariable("norm_eig_funcs", location=0), ph.TestFunction("norm_eig_funcs", order=1, location=0))), ph.IntegralTerm( ph.Product(ph.FieldVariable("norm_eig_funcs"), ph.TestFunction("norm_eig_funcs", order=2)), self.dz.bounds) ] modal_pde = sim.WeakFormulation(terms, name="swm_lib-modal") eval_data = sim.simulate_system(modal_pde, self.ic, self.dt, self.dz, der_orders=(2, 0)) # display results if show_plots: win = vis.PgAnimatedPlot(eval_data[0:2], title="modal approx and derivative") win2 = vis.PgSurfacePlot(eval_data[0]) app.exec_() # test for correct transition self.assertTrue( np.isclose(eval_data[0].output_data[-1, 0], self.y_end, atol=1e-3))
def test_fem(self): """ use best documented fem case to test all steps in simulation process """ # enter string with mass equations # nodes, ini_funcs = sf.cure_interval(sf.LagrangeFirstOrder, nodes, ini_funcs = sf.cure_interval(sf.LagrangeSecondOrder, self.dz.bounds, node_count=11) register_base("init_funcs", ini_funcs, overwrite=True) int1 = ph.IntegralTerm(ph.Product( ph.TemporalDerivedFieldVariable("init_funcs", 2), ph.TestFunction("init_funcs")), self.dz.bounds, scale=self.params.sigma * self.params.tau**2) s1 = ph.ScalarTerm(ph.Product( ph.TemporalDerivedFieldVariable("init_funcs", 2, location=0), ph.TestFunction("init_funcs", location=0)), scale=self.params.m) int2 = ph.IntegralTerm(ph.Product( ph.SpatialDerivedFieldVariable("init_funcs", 1), ph.TestFunction("init_funcs", order=1)), self.dz.bounds, scale=self.params.sigma) s2 = ph.ScalarTerm( ph.Product(ph.Input(self.u), ph.TestFunction("init_funcs", location=1)), -self.params.sigma) # derive sate-space system string_pde = sim.WeakFormulation([int1, s1, int2, s2], name="fem_test") self.cf = sim.parse_weak_formulation(string_pde) ss = self.cf.convert_to_state_space() # generate initial conditions for weights q0 = np.array([ cr.project_on_base(self.ic[idx], ini_funcs) for idx in range(2) ]).flatten() # simulate t, q = sim.simulate_state_space(ss, q0, self.dt) # calculate result data eval_data = [] for der_idx in range(2): eval_data.append( sim.evaluate_approximation( "init_funcs", q[:, der_idx * ini_funcs.size:(der_idx + 1) * ini_funcs.size], t, self.dz)) eval_data[-1].name = "{0}{1}".format( self.cf.name, "_" + "".join(["d" for x in range(der_idx)]) + "t" if der_idx > 0 else "") # display results if show_plots: win = vis.PgAnimatedPlot(eval_data[:2], title="fem approx and derivative") win2 = vis.PgSurfacePlot(eval_data[0]) app.exec_() # test for correct transition self.assertTrue( np.isclose(eval_data[0].output_data[-1, 0], self.y_end, atol=1e-3)) # save some test data for later use root_dir = os.getcwd() if root_dir.split(os.sep)[-1] == "tests": res_dir = os.sep.join([os.getcwd(), "resources"]) else: res_dir = os.sep.join([os.getcwd(), "tests", "resources"]) if not os.path.isdir(res_dir): os.makedirs(res_dir) file_path = os.sep.join([res_dir, "test_data.res"]) with open(file_path, "w+b") as f: dump(eval_data, f)
def setUp(self): # scalars self.scalars = ph.Scalars(np.vstack(list(range(3)))) # inputs self.u = np.sin self.input = ph.Input(self.u) self.input_squared = ph.Input(self.u, exponent=2) nodes, self.ini_funcs = sf.cure_interval(sf.LagrangeFirstOrder, (0, 1), node_count=3) # TestFunctions register_base("ini_funcs", self.ini_funcs, overwrite=True) self.phi = ph.TestFunction("ini_funcs") self.phi_at0 = ph.TestFunction("ini_funcs", location=0) self.phi_at1 = ph.TestFunction("ini_funcs", location=1) self.dphi = ph.TestFunction("ini_funcs", order=1) self.dphi_at1 = ph.TestFunction("ini_funcs", order=1, location=1) # FieldVars self.field_var = ph.FieldVariable("ini_funcs") self.field_var_squared = ph.FieldVariable("ini_funcs", exponent=2) self.odd_weight_field_var = ph.FieldVariable( "ini_funcs", weight_label="special_weights") self.field_var_at1 = ph.FieldVariable("ini_funcs", location=1) self.field_var_at1_squared = ph.FieldVariable("ini_funcs", location=1, exponent=2) self.field_var_dz = ph.SpatialDerivedFieldVariable("ini_funcs", 1) self.field_var_dz_at1 = ph.SpatialDerivedFieldVariable("ini_funcs", 1, location=1) self.field_var_ddt = ph.TemporalDerivedFieldVariable("ini_funcs", 2) self.field_var_ddt_at0 = ph.TemporalDerivedFieldVariable("ini_funcs", 2, location=0) self.field_var_ddt_at1 = ph.TemporalDerivedFieldVariable("ini_funcs", 2, location=1) # create all possible kinds of input variables self.input_term1 = ph.ScalarTerm(ph.Product(self.phi_at1, self.input)) self.input_term1_swapped = ph.ScalarTerm( ph.Product(self.input, self.phi_at1)) self.input_term1_squared = ph.ScalarTerm( ph.Product(self.input_squared, self.phi_at1)) self.input_term2 = ph.ScalarTerm(ph.Product(self.dphi_at1, self.input)) self.func_term = ph.ScalarTerm(self.phi_at1) # same goes for field variables self.field_term_at1 = ph.ScalarTerm(self.field_var_at1) self.field_term_at1_squared = ph.ScalarTerm(self.field_var_at1_squared) self.field_term_dz_at1 = ph.ScalarTerm(self.field_var_dz_at1) self.field_term_ddt_at1 = ph.ScalarTerm(self.field_var_ddt_at1) self.field_int = ph.IntegralTerm(self.field_var, (0, 1)) self.field_squared_int = ph.IntegralTerm(self.field_var_squared, (0, 1)) self.field_dz_int = ph.IntegralTerm(self.field_var_dz, (0, 1)) self.field_ddt_int = ph.IntegralTerm(self.field_var_ddt, (0, 1)) self.prod_term_fs_at1 = ph.ScalarTerm( ph.Product(self.field_var_at1, self.scalars)) self.prod_int_fs = ph.IntegralTerm( ph.Product(self.field_var, self.scalars), (0, 1)) self.prod_int_f_f = ph.IntegralTerm( ph.Product(self.field_var, self.phi), (0, 1)) self.prod_int_f_squared_f = ph.IntegralTerm( ph.Product(self.field_var_squared, self.phi), (0, 1)) self.prod_int_f_f_swapped = ph.IntegralTerm( ph.Product(self.phi, self.field_var), (0, 1)) self.prod_int_f_at1_f = ph.IntegralTerm( ph.Product(self.field_var_at1, self.phi), (0, 1)) self.prod_int_f_at1_squared_f = ph.IntegralTerm( ph.Product(self.field_var_at1_squared, self.phi), (0, 1)) self.prod_int_f_f_at1 = ph.IntegralTerm( ph.Product(self.field_var, self.phi_at1), (0, 1)) self.prod_int_f_squared_f_at1 = ph.IntegralTerm( ph.Product(self.field_var_squared, self.phi_at1), (0, 1)) self.prod_term_f_at1_f_at1 = ph.ScalarTerm( ph.Product(self.field_var_at1, self.phi_at1)) self.prod_term_f_at1_squared_f_at1 = ph.ScalarTerm( ph.Product(self.field_var_at1_squared, self.phi_at1)) self.prod_int_fddt_f = ph.IntegralTerm( ph.Product(self.field_var_ddt, self.phi), (0, 1)) self.prod_term_fddt_at0_f_at0 = ph.ScalarTerm( ph.Product(self.field_var_ddt_at0, self.phi_at0)) self.prod_term_f_at1_dphi_at1 = ph.ScalarTerm( ph.Product(self.field_var_at1, self.dphi_at1)) self.temp_int = ph.IntegralTerm( ph.Product(self.field_var_ddt, self.phi), (0, 1)) self.spat_int = ph.IntegralTerm( ph.Product(self.field_var_dz, self.dphi), (0, 1)) self.spat_int_asymmetric = ph.IntegralTerm( ph.Product(self.field_var_dz, self.phi), (0, 1)) self.alternating_weights_term = ph.IntegralTerm( self.odd_weight_field_var, (0, 1))