def test_fshape_scp_specific(self): ############################################################ from pykeops.numpy.shape_distance import FshapeScp for k, t in itertools.product(['gaussian', 'cauchy'], self.type_to_test): # Call cuda kernel kgeom = k ksig = 'gaussian' ksphere = 'gaussian_oriented' sigma_geom = 1.0 sigma_sig = 1.0 sigma_sphere = np.pi / 2 # Call cuda kernel my_fshape_scp = FshapeScp(kernel_geom=kgeom, kernel_sig=ksig, kernel_sphere=ksphere, dtype=t) gamma = my_fshape_scp(self.x.astype(t), self.y.astype(t), self.f.astype(t), self.g.astype(t), self.a.astype(t), self.b.astype(t), sigma_geom=sigma_geom, sigma_sig=sigma_sig, sigma_sphere=sigma_sphere).ravel() # Python version areaa = np.linalg.norm(self.a, axis=1) areab = np.linalg.norm(self.b, axis=1) nalpha = self.a / areaa[:, np.newaxis] nbeta = self.b / areab[:, np.newaxis] gamma_py = np.sum((areaa[:, np.newaxis] * areab[np.newaxis, :]) * np_kernel(self.x, self.y, sigma_geom, kgeom) * np_kernel(self.f, self.g, sigma_sig, ksig) * np_kernel_sphere(nalpha, nbeta, sigma_sphere, ksphere), axis=1) # compare output print("ee") self.assertTrue(np.allclose(gamma, gamma_py, atol=1e-6))
from pykeops.numpy.utils import np_kernel, np_kernel_sphere M, N, D, E = 100, 100, 3, 3 x = np.random.rand(M, D) a = np.random.rand(M, E) f = np.random.rand(M, 1) y = np.random.rand(N, D) b = np.random.rand(N, E) g = np.random.rand(N, 1) sigma_geom = 1.0 sigma_sig = 1.0 sigma_sphere = np.pi / 2 kgeom = 'gaussian' ksig = 'gaussian' ksphere = 'gaussian_oriented' myconv = FshapeScp(kernel_geom=kgeom, kernel_sig=ksig, kernel_sphere=ksphere) gamma = myconv(x, y, f, g, a, b, sigma_geom=sigma_geom, sigma_sig=sigma_sig, sigma_sphere=sigma_sphere).ravel() areaa = np.linalg.norm(a, axis=1) areab = np.linalg.norm(b, axis=1) nalpha = a / areaa[:, np.newaxis] nbeta = b / areab[:, np.newaxis]