示例#1
0
def interpret(func, env, args, storage=None, **kwds):
    assert len(args) == len(func.args)

    # Make a copy, since we're going to mutate our IR!
    func, _ = copy_function(func)

    # If it's a BLZ output, we want an interpreter that streams
    # the processing through in chunks
    if storage is not None:
        if len(func.type.restype.shape) == 0:
            raise TypeError('Require an array, not a scalar, for outputting to BLZ')
        env['stream-outer'] = True
        result_ndim = env['result-ndim'] = len(func.type.restype.shape)
    else:
        # Convert any persistent inputs to memory
        # TODO: should stream the computation in this case
        for i, arg in enumerate(args):
            if isinstance(arg._data, BLZDataDescriptor):
                args[i] = arg[:]

    # Update environment with dynd type information
    dynd_types = dict((arg, get_dynd_type(array))
                          for arg, array in zip(func.args, args)
                              if isinstance(array._data, DyNDDataDescriptor))
    env['dynd-types'] = dynd_types

    # Lift ckernels
    func, env = run_pipeline(func, env, run_time_passes)

    if storage is None:
        # Evaluate once
        values = dict(zip(func.args, args))
        interp = CKernelInterp(values)
        visit(interp, func)
        return interp.result
    else:
        res_shape, res_dt = datashape.to_numpy(func.type.restype)
        dim_size = operator.index(res_shape[0])
        row_size = ndt.type(str(func.type.restype.subarray(1))).data_size
        chunk_size = min(max(1, (1024*1024) // row_size), dim_size)
        # Evaluate by streaming the outermost dimension,
        # and using the BLZ data descriptor's append
        dst_dd = BLZDataDescriptor(blz.zeros((0,)+res_shape[1:], res_dt,
                                             rootdir=storage.path))
        # Loop through all the chunks
        for chunk_start in range(0, dim_size, chunk_size):
            # Tell the interpreter which chunk size to use (last
            # chunk might be smaller)
            chunk_size = min(chunk_size, dim_size - chunk_start)
            # Evaluate the chunk
            args_chunk = [arg[chunk_start:chunk_start+chunk_size]
                            if len(arg.dshape.shape) == result_ndim
                            else arg for arg in args]
            values = dict(zip(func.args, args_chunk))
            interp = CKernelChunkInterp(values, chunk_size, result_ndim)
            visit(interp, func)
            chunk = interp.result._data.dynd_arr()
            dst_dd.append(chunk)
        return blaze.Array(dst_dd)
示例#2
0
def inline(func, call):
    """
    Inline the call instruction into func.

    :return: { old_op : new_op }
    """
    callee = call.args[0]
    callblock = call.block
    # assert_inlinable(func, call, callee, uses)

    builder = Builder(func)
    builder.position_before(call)
    inline_header, inline_exit = builder.splitblock()
    new_callee, valuemap = copy_function(callee, temper=func.temp)
    result = rewrite_return(new_callee)

    # Fix up arguments
    for funcarg, arg in zip(new_callee.args, call.args[1]):
        funcarg.replace_uses(arg)

    # Copy blocks
    new_blocks = list(new_callee.blocks)
    after = inline_header
    for block in new_blocks:
        block.parent = None
        func.add_block(block, after=after)
        after = block

    # Fix up wiring
    builder.jump(new_callee.startblock)
    with builder.at_end(new_callee.exitblock):
        builder.jump(inline_exit)

    stretch_exception_block(builder, callblock, new_blocks)

    # Fix up final result of call
    if result is not None:
        # non-void return
        result.unlink()
        result.result = call.result
        call.replace(result)
    else:
        call.delete()

    func.reset_uses()
    #verify(func)

    return valuemap
示例#3
0
文件: inline.py 项目: B-Rich/pykit
def inline(func, call, uses=None):
    """
    Inline the call instruction into func.

    :param uses: defuse information
    """
    callee = call.args[0]
    # assert_inlinable(func, call, callee, uses)

    builder = Builder(func)
    builder.position_before(call)
    inline_header, inline_exit = builder.splitblock()
    new_callee = copy_function(callee, temper=func.temp)
    result = rewrite_return(new_callee)

    # Fix up arguments
    for funcarg, arg in zip(new_callee.args, call.args[1]):
        funcarg.replace_uses(arg)

    # Copy blocks
    after = inline_header
    for block in new_callee.blocks:
        block.parent = None
        func.add_block(block, after=after)
        after = block

    # Fix up wiring
    builder.jump(new_callee.startblock)
    with builder.at_end(new_callee.exitblock):
        builder.jump(inline_exit)

    # Fix up final result of call
    if result is not None:
        # non-void return
        result.unlink()
        result.result = call.result
        call.replace(result)
    else:
        call.delete()

    func.reset_uses()
    verify(func)
示例#4
0
def interpret(func, env, args, **kwds):
    assert len(args) == len(func.args)

    # Make a copy, since we're going to mutate our IR!
    func = copy_function(func)

    # Update environment with dynd type information
    dynd_types = dict((arg, get_dynd_type(array))
                          for arg, array in zip(func.args, args)
                              if isinstance(array._data, DyNDDataDescriptor))
    env['dynd-types'] = dynd_types

    # Lift ckernels
    func, env = run_pipeline(func, env, run_time_passes)

    print(func)

    # Evaluate
    values = dict(zip(func.args, args))
    interp = CKernelInterp(values)
    visit(interp, func)
    return interp.result
示例#5
0
def copy_func(func, env):
    new_func, _ = copy_function(func)
    new_func.name = temper(new_func.name)
    return new_func
示例#6
0
文件: copying.py 项目: pombreda/flypy
def copy_func(func, env):
    new_func, _ = copy_function(func)
    new_func.name = temper(new_func.name)
    return new_func