示例#1
0
def evalExp(data, coeffs):
    x,y = data
    b, loga = coeffs
    a = 2**loga # y = a * 2*(b**x)
    y_est = a * pylab.exp2(b*x)
    r2 = rSquare(y, y_est)
    return y_est, r2
示例#2
0
def generatePlots(datasets):
    """
    Generate plots to compare the different fit functions for the given
    data sets.

    Parameters:
    datasets - a list of data sets stored as (x, y) tuples, where x and y
        are each a list of data points (x or y values)
    """
    xdata1, ydata1 = datasets[0]
    m = 2
    n = 6
    funcs = [ polyFit(xdata1, ydata1, 1),
              polyFit(xdata1, ydata1, 2),
              polyFit(xdata1, ydata1, 4),
              expFit(xdata1, ydata1) ]
    
    pylab.figure()
    pylab.title("Comparison of fit functions to space cow data sets")
    # Generate the polynomial plots
    for i in range(0, m*n - 3, 3):
        p = funcs[i/3]

        for j, data in enumerate(datasets):
            x = data[0]
            y = data[1]
            pylab.subplot(m, n, i+j+1)
            ey = [ f(p, xval) for xval in x ]
            pylab.plot(x, y, 'bo', x, ey, 'r-')
            pylab.title("R2 = %s" % round(rSquare(y, ey), 6))
            pylab.xlabel("Time")
            pylab.ylabel("# of cows")
            
    # Generate the exponential plots
    i = 9
    for j, data in enumerate(datasets):
        x = data[0]
        y = data[1]
        pylab.subplot(m, n, i+j+1)

## TWICE-FIXED CODE
        b, ln_a = funcs[3] #WRONG: expFit(x, y)
        a = pylab.exp2(ln_a)
        ey = [a * math.pow(2, b * xval) for xval in x]
        pylab.plot(x, y, 'bo', x, ey, 'r-')
        pylab.title("R2 = %s" % round(rSquare(y, ey), 6))
        pylab.xlabel("Time")
        pylab.ylabel("# of cows")

    pylab.subplots_adjust(wspace = 0.75, hspace = 0.35)
    pylab.show()
示例#3
0
    def createPlots(data, prtData):
        """
        This function saves 4 pylab plots, modeling:
        1. Linear
        2. Quadratic
        3. Quartic
        4. Exponential
        """
        degree = [1, 2, 4]
        iterList = [1, 2, 3]

        x = data[0]
        y = data[1]

        #use for 3 calls to polyFit()
        for i in iterList:
            #generate unique figure
            figure = i + ((prtData - 1) * 4)

            #index for degree list
            index = i - 1
            coef = polyFit(x, y, degree[index])

            #reset pylab plotter
            pylab.figure(figure)

            estimate = pylab.polyval(coef, x)
            ##print rSquare(y, estimate)

            #plots
            pylab.scatter(x, y)
            pylab.plot(x, estimate)
            pylab.savefig(str(figure), format=None)

        #single call to expFit()
        pylab.figure(4 * prtData)
        b, a = expFit(x, y)
        a = pylab.exp2(a)

        #exponential function
        estimate = (a * (2**(b * x)))
        ##print rSquare(y, estimate)

        pylab.scatter(x, y)
        pylab.plot(x, estimate)
        pylab.savefig(str(4 * prtData), format=None)
示例#4
0
文件: ps9a.py 项目: moeamaya/mit600
    def createPlots(data, prtData):
        """
        This function saves 4 pylab plots, modeling:
        1. Linear
        2. Quadratic
        3. Quartic
        4. Exponential
        """
        degree = [1, 2, 4]
        iterList = [1,2,3]
        
        x = data[0]
        y = data[1]

        #use for 3 calls to polyFit()
        for i in iterList:
            #generate unique figure
            figure = i + ((prtData-1) * 4)

            #index for degree list
            index = i-1
            coef = polyFit(x, y, degree[index])
            
            #reset pylab plotter
            pylab.figure(figure)

            estimate = pylab.polyval(coef, x)
            ##print rSquare(y, estimate)

            #plots
            pylab.scatter(x, y)
            pylab.plot(x, estimate)
            pylab.savefig(str(figure), format=None)

        #single call to expFit()
        pylab.figure(4 * prtData)
        b, a = expFit(x,y)
        a = pylab.exp2(a)

        #exponential function
        estimate = ( a * ( 2 ** (b * x) ) )
        ##print rSquare(y, estimate)

        pylab.scatter(x, y)
        pylab.plot(x, estimate)
        pylab.savefig(str(4 * prtData), format=None)