def spatrect_plot(outpath, base_name, order_num, obj, flat):

    pl.figure('spatially rectified', facecolor='white', figsize=(8, 5))
    pl.cla()
    pl.suptitle('spatially rectified, {}, order {}'.format(
        base_name, order_num),
                fontsize=14)
    pl.set_cmap('Blues_r')

    obj_plot = pl.subplot(2, 1, 1)
    try:
        obj_plot.imshow(exposure.equalize_hist(obj))
    except BaseException:
        obj_plot.imshow(obj)
    obj_plot.set_title('object')
    #     obj_plot.set_ylim([1023, 0])
    obj_plot.set_xlim([0, 1023])

    flat_plot = pl.subplot(2, 1, 2)
    try:
        flat_plot.imshow(exposure.equalize_hist(flat))
    except BaseException:
        flat_plot.imshow(flat)
    flat_plot.set_title('flat')
    #     flat_plot.set_ylim([1023, 0])
    flat_plot.set_xlim([0, 1023])

    pl.tight_layout()
    pl.savefig(constructFileName(outpath, base_name, order_num,
                                 'spatrect.png'))
    pl.close()
示例#2
0
文件: dgn.py 项目: hdtee/nirspec_drp
def traces_plot(outpath, base_name, order_num, obj, flat, top_trace, bot_trace):
    
    pl.figure('traces', facecolor='white', figsize=(8, 5))
    pl.cla()
    pl.suptitle('order edge traces, {}, order {}'.format(base_name, order_num), fontsize=14)
    pl.set_cmap('Blues_r')
    pl.rcParams['ytick.labelsize'] = 8

    obj_plot = pl.subplot(1, 2, 1)
    obj_plot.imshow(exposure.equalize_hist(obj))
    obj_plot.plot(np.arange(1024), top_trace, 'y-', linewidth=1.5)
    obj_plot.plot(np.arange(1024), bot_trace, 'y-', linewidth=1.5)

    obj_plot.set_title('object')
    obj_plot.set_ylim([1023, 0])
    obj_plot.set_xlim([0, 1023])

    
    flat_plot = pl.subplot(1, 2, 2)
    flat_plot.imshow(exposure.equalize_hist(flat))
    flat_plot.plot(np.arange(1024), top_trace, 'y-', linewidth=1.5)
    flat_plot.plot(np.arange(1024), bot_trace, 'y-', linewidth=1.5)    
    flat_plot.set_title('flat')
    flat_plot.set_ylim([1023, 0])
    flat_plot.set_xlim([0, 1023])
 
    pl.tight_layout()
    pl.savefig(constructFileName(outpath, base_name, order_num, 'traces.png'))
    pl.close()
def cutouts_plot(outpath, obj_base_name, flat_base_name, order_num, obj_img,
                 flat_img, top_trace, bot_trace, trace):

    pl.figure('traces', facecolor='white', figsize=(8, 5))
    pl.cla()
    pl.suptitle('order cutouts, {}, order {}'.format(obj_base_name, order_num),
                fontsize=14)
    pl.set_cmap('Blues_r')

    obj_plot = pl.subplot(2, 1, 1)
    try:
        obj_plot.imshow(exposure.equalize_hist(obj_img))
    except BaseException:
        obj_plot.imshow(obj_img)
    obj_plot.plot(np.arange(1024), top_trace, 'y-', linewidth=1.5)
    obj_plot.plot(np.arange(1024), bot_trace, 'y-', linewidth=1.5)
    obj_plot.plot(np.arange(1024), trace, 'y-', linewidth=1.5)
    obj_plot.set_title('object ' + obj_base_name)
    obj_plot.set_xlim([0, 1023])

    flat_plot = pl.subplot(2, 1, 2)
    try:
        flat_plot.imshow(exposure.equalize_hist(flat_img))
    except BaseException:
        flat_plot.imshow(flat_img)
    flat_plot.plot(np.arange(1024), top_trace, 'y-', linewidth=1.5)
    flat_plot.plot(np.arange(1024), bot_trace, 'y-', linewidth=1.5)
    flat_plot.plot(np.arange(1024), trace, 'y-', linewidth=1.5)
    flat_plot.set_title('flat ' + flat_base_name)
    flat_plot.set_xlim([0, 1023])

    pl.tight_layout()
    pl.savefig(
        constructFileName(outpath, obj_base_name, order_num, 'cutouts.png'))
    pl.close()
示例#4
0
def plot_features(im, features, num_to_plot=100, colors=["blue"]):

  plt.imshow(im)

  for i in range(min(features.shape[0], num_to_plot)):
    x = features[i,0]
    y = features[i,1]
    scale = features[i,2]
    rot = features[i,3]


    color = colors[i % len(colors)]

    box = patches.Rectangle((-scale/2,-scale/2), scale, scale, 
      edgecolor=color, facecolor="none", lw=1)
    arrow = patches.Arrow(0, -scale/2, 0, scale, 
      width=10, edgecolor=color, facecolor="none")
    t_start = plt.gca().transData
    transform = mpl.transforms.Affine2D().rotate(rot).translate(x,y) + t_start

    box.set_transform(transform)
    arrow.set_transform(transform)
    plt.gca().add_artist(box)
    plt.gca().add_artist(arrow)


  plt.axis('off')
  plt.set_cmap('gray')
  plt.show()
示例#5
0
def plot_knn_boundary():
    ## Training dataset preparation
    # use sklearn iris dataset
    iris_dataset = datasets.load_iris()


    # first two dimensions as the features
    # it's easy to plot boundary in 2D
    train_data = iris_dataset.data[:,:2] 
    print "init:",train_data

    # get labels
    labels = iris_dataset.target # labels
    print "init2:",labels

    
    ## Test dataset preparation
    h = 0.1
    
    x0_min = train_data[:,0].min() - 0.5
    x0_max = train_data[:,0].max() + 0.5
    
    x1_min = train_data[:,1].min() - 0.5
    x1_max = train_data[:,1].max() + 0.5
    
    x0_features, x1_features = np.meshgrid(np.arange(x0_min, x0_max, h), 
                                           np.arange(x1_min, x1_max, h))
    
    # test dataset are samples from the whole regions of feature domains
    test_data = np.c_[x0_features.ravel(), x1_features.ravel()]
    
    ## KNN classification
    p_labels = []   # prediction labels
    for test_sample in test_data:
        # knn prediction
        p_label = knn_predict(train_data, labels, test_sample, n_neighbors = 6)
        p_labels.append(p_label)
    
    # list to array
    p_labels = np.array(p_labels)
    p_labels = p_labels.reshape(x0_features.shape)
    
    ## Boundary plotting  边界策划
    pl.figure(1)
    pl.set_cmap(pl.cm.Paired)
    pl.pcolormesh(x0_features, x1_features, p_labels)
    
    pl.scatter(train_data[:,0], train_data[:,1], c = labels)
    # x y轴的名称
    pl.xlabel('feature 0')
    pl.ylabel('feature 1')

    # 设置x,y轴的上下限
    pl.xlim(x0_features.min(), x0_features.max())
    pl.ylim(x1_features.min(), x1_features.max())
    # 设置x,y轴记号
    pl.xticks(())
    pl.yticks(())
    
    pl.show()
示例#6
0
def cutouts_plot(outpath, base_name, order_num, obj, flat, top_trace, bot_trace, trace):
    
    pl.figure('traces', facecolor='white', figsize=(8, 5))
    pl.cla()
    pl.suptitle('order cutouts, {}, order {}'.format(base_name, order_num), fontsize=14)
    pl.set_cmap('Blues_r')

    obj_plot = pl.subplot(2, 1, 1)
    try:
        obj_plot.imshow(exposure.equalize_hist(obj))
    except:
        obj_plot.imshow(obj)
    obj_plot.plot(np.arange(1024), top_trace, 'y-', linewidth=1.5)
    obj_plot.plot(np.arange(1024), bot_trace, 'y-', linewidth=1.5)
    obj_plot.plot(np.arange(1024), trace, 'y-', linewidth=1.5)
    obj_plot.set_title('object')
#     obj_plot.set_ylim([1023, 0])
    obj_plot.set_xlim([0, 1023])
    
    flat_plot = pl.subplot(2, 1, 2)
    try:
        flat_plot.imshow(exposure.equalize_hist(flat))
    except:
        flat_plot.imshow(flat)
    flat_plot.plot(np.arange(1024), top_trace, 'y-', linewidth=1.5)
    flat_plot.plot(np.arange(1024), bot_trace, 'y-', linewidth=1.5)    
    flat_plot.plot(np.arange(1024), trace, 'y-', linewidth=1.5)    
    flat_plot.set_title('flat')
#     flat_plot.set_ylim([1023, 0])
    flat_plot.set_xlim([0, 1023])
 
    pl.tight_layout()
    pl.savefig(constructFileName(outpath, base_name, order_num, 'cutouts.png'))
    pl.close()
示例#7
0
def plot_figs(fig_num, elev, azim):
    fig = pl.figure(fig_num, figsize=(4, 3))
    pl.clf()
    ax = Axes3D(fig, rect=[0, 0, .95, 1], elev=elev, azim=azim)

    pl.set_cmap(pl.cm.hot_r)

    pts = ax.scatter(a[::10],
                     b[::10],
                     c[::10],
                     c=density,
                     marker='+',
                     alpha=.4)

    Y = np.c_[a, b, c]
    U, pca_score, V = np.linalg.svd(Y, full_matrices=False)
    x_pca_axis, y_pca_axis, z_pca_axis = V.T * pca_score / pca_score.min()

    #ax.quiver(0.1*x_pca_axis, 0.1*y_pca_axis, 0.1*z_pca_axis,
    #                x_pca_axis, y_pca_axis, z_pca_axis,
    #                color=(0.6, 0, 0))

    x_pca_axis, y_pca_axis, z_pca_axis = 3 * V.T
    x_pca_plane = np.r_[x_pca_axis[:2], -x_pca_axis[1::-1]]
    y_pca_plane = np.r_[y_pca_axis[:2], -y_pca_axis[1::-1]]
    z_pca_plane = np.r_[z_pca_axis[:2], -z_pca_axis[1::-1]]
    x_pca_plane.shape = (2, 2)
    y_pca_plane.shape = (2, 2)
    z_pca_plane.shape = (2, 2)
    ax.plot_surface(x_pca_plane, y_pca_plane, z_pca_plane)
    ax.w_xaxis.set_ticklabels([])
    ax.w_yaxis.set_ticklabels([])
    ax.w_zaxis.set_ticklabels([])
def analysis():
    feature_importances_array = np.load("Default_AlexNet.npy")
    mean_feature_importances = np.mean(feature_importances_array, axis=0)

    for feature_importance, metric in zip(mean_feature_importances, METRIC_LIST):
        print("{}\t{}".format(metric, feature_importance))

    time_indexes = np.arange(1, feature_importances_array.shape[0] + 1)
    feature_importances_cumsum = np.cumsum(feature_importances_array, axis=0)
    feature_importances_mean = feature_importances_cumsum
    for column_index in range(feature_importances_mean.shape[1]):
        feature_importances_mean[:, column_index] = feature_importances_cumsum[:, column_index] / time_indexes

    index_ranks = np.flipud(np.argsort(mean_feature_importances))

    chosen_records = np.cumsum(mean_feature_importances[index_ranks]) <= 0.95
    chosen_index_ranks = index_ranks[chosen_records]

    sorted_mean_feature_importances = mean_feature_importances[chosen_index_ranks]
    sorted_metric_list = np.array(METRIC_LIST)[chosen_index_ranks]

    remaining = np.sum(mean_feature_importances[index_ranks[~chosen_records]])
    print("remaining is {:.4f}.".format(remaining))
    sorted_mean_feature_importances = np.hstack((sorted_mean_feature_importances, remaining))
    sorted_metric_list = np.hstack((sorted_metric_list, 'others'))

    pylab.pie(sorted_mean_feature_importances, labels=sorted_metric_list, autopct='%1.1f%%', startangle=0)
    pylab.axis('equal')
    pylab.set_cmap('plasma')
    pylab.show()
示例#9
0
def plot_figs(fig_num, elev, azim):
    fig = pl.figure(fig_num, figsize=(4, 3))
    pl.clf()
    ax = Axes3D(fig, rect=[0, 0, .95, 1], elev=elev, azim=azim)

    pl.set_cmap(pl.cm.hot_r)

    pts = ax.scatter(a[::10], b[::10], c[::10], c=density,
                     marker='+', alpha=.4)

    Y = np.c_[a, b, c]
    U, pca_score, V = np.linalg.svd(Y, full_matrices=False)
    x_pca_axis, y_pca_axis, z_pca_axis = V.T*pca_score/pca_score.min()

#ax.quiver(0.1*x_pca_axis, 0.1*y_pca_axis, 0.1*z_pca_axis,
#                x_pca_axis, y_pca_axis, z_pca_axis,
#                color=(0.6, 0, 0))

    x_pca_axis, y_pca_axis, z_pca_axis = 3*V.T
    x_pca_plane = np.r_[x_pca_axis[:2], - x_pca_axis[1::-1]]
    y_pca_plane = np.r_[y_pca_axis[:2], - y_pca_axis[1::-1]]
    z_pca_plane = np.r_[z_pca_axis[:2], - z_pca_axis[1::-1]]
    x_pca_plane.shape = (2, 2)
    y_pca_plane.shape = (2, 2)
    z_pca_plane.shape = (2, 2)
    ax.plot_surface(x_pca_plane, y_pca_plane, z_pca_plane)
    ax.w_xaxis.set_ticklabels([])
    ax.w_yaxis.set_ticklabels([])
    ax.w_zaxis.set_ticklabels([])
示例#10
0
def sparect_plot(outpath, base_name, order_num, obj, flat):

    pl.figure('spatially rectified', facecolor='white', figsize=(8, 5))
    pl.cla()
    pl.suptitle('spatially rectified, {}, order {}'.format(base_name, order_num), fontsize=14)
    pl.set_cmap('Blues_r')

    obj_plot = pl.subplot(2, 1, 1)
    try:
        obj_plot.imshow(exposure.equalize_hist(obj))
    except:
        obj_plot.imshow(obj)
    obj_plot.set_title('object')
#     obj_plot.set_ylim([1023, 0])
    obj_plot.set_xlim([0, 1023])
    
    flat_plot = pl.subplot(2, 1, 2)
    try:
        flat_plot.imshow(exposure.equalize_hist(flat))
    except:
        flat_plot.imshow(flat)
    flat_plot.set_title('flat')
#     flat_plot.set_ylim([1023, 0])
    flat_plot.set_xlim([0, 1023])
 
    pl.tight_layout()
    pl.savefig(constructFileName(outpath, base_name, order_num, 'sparect.png'))
    pl.close()
示例#11
0
def twoDimOrderPlot(outpath, base_name, title, obj_name, base_filename, order_num, data, x):
    pl.figure('2d order image', facecolor='white', figsize=(8, 5))
    pl.cla()
    pl.title(title + ', ' + base_name + ", order " + str(order_num), fontsize=14)
    pl.xlabel('wavelength($\AA$)', fontsize=12)
    pl.ylabel('row (pixel)', fontsize=12)
    #pl.imshow(img, aspect='auto')
    #pl.imshow(data, vmin=0, vmax=1024, aspect='auto')
    
    pl.imshow(exposure.equalize_hist(data), origin='lower', 
                  extent=[x[0], x[-1], 0, data.shape[0]], aspect='auto')      
#     from matplotlib import colors
#     norm = colors.LogNorm(data.mean() + 0.5 * data.std(), data.max(), clip='True')
#     pl.imshow(data, norm=norm, origin='lower',
#                   extent=[x[0], x[-1], 0, data.shape[0]], aspect='auto')               
    pl.colorbar()
    pl.set_cmap('jet')
#     pl.set_cmap('Blues_r')
    fn = constructFileName(outpath, base_name, order_num, base_filename)
    pl.savefig(fn)
    log_fn(fn)
    pl.close()
    
#     np.save(fn[:fn.rfind('.')], data)
    
    return
示例#12
0
def saveBEVImageWithAxes(data, outputname, cmap = None, xlabel = 'x [m]', ylabel = 'z [m]', rangeX = [-10, 10], rangeXpx = None, numDeltaX = 5, rangeZ = [7, 62], rangeZpx = None, numDeltaZ = 5, fontSize = 16):
    '''
    
    :param data:
    :param outputname:
    :param cmap:
    '''
    aspect_ratio = float(data.shape[1])/data.shape[0]
    fig = pylab.figure()
    Scale = 8
    # add +1 to get axis text
    fig.set_size_inches(Scale*aspect_ratio+1,Scale*1)
    ax = pylab.gca()
    #ax.set_axis_off()
    #fig.add_axes(ax)
    if cmap != None:
        pylab.set_cmap(cmap)
    
    #ax.imshow(data, interpolation='nearest', aspect = 'normal')
    ax.imshow(data, interpolation='nearest')
    
    if rangeXpx == None:
        rangeXpx = (0, data.shape[1])
    
    if rangeZpx == None:
        rangeZpx = (0, data.shape[0])
        
    modBev_plot(ax, rangeX, rangeXpx, numDeltaX, rangeZ, rangeZpx, numDeltaZ, fontSize, xlabel = xlabel, ylabel = ylabel)
    #plt.savefig(outputname, bbox_inches='tight', dpi = dpi)
    pylab.savefig(outputname, dpi = data.shape[0]/Scale)
    pylab.close()
    fig.clear()
示例#13
0
def imshow_matches__(im, title):
    fig = plt.figure()
    ax = fig.add_subplot(111)
    ax.set_xlabel('PW Level')
    ax.set_ylabel('S Level')
    ax.set_title(title)
    plt.set_cmap(plt.get_cmap('hot'))
    plt.imshow(im)
示例#14
0
 def display_FFT_magnitude():
     global currnt_img
     f_img = np.fft.fft2(currnt_img)
     fshift = np.fft.fftshift(f_img)#shifting
     mag = 20*np.log(np.abs(fshift))
     plt.imshow(mag)
     plt.set_cmap('gray')
     plt.show() 
示例#15
0
def part_b():
    img_data = np.loadtxt('blur.txt')
    shape = img_data.shape
    blur = [[gaussian(x, y, shape[0], shape[1]) for x in range(shape[0])]
            for y in range(shape[1])]
    pylab.imshow(blur)
    pylab.set_cmap('Greys_r')
    pylab.show()
示例#16
0
 def display_FFT_phase():
     global currnt_img
     f_img = np.fft.fft2(currnt_img)
     fshift = np.fft.fftshift(f_img)
     phase = np.arctan(fshift.imag/fshift.real)#phase calculation
     plt.imshow(phase)
     plt.set_cmap('gray')
     plt.show()
示例#17
0
    def draw_grids(self, rewards, trajectory=None, title=None):
        R = np.zeros([self.dim, self.dim])
        for i in range(self.dim):
            for j in range(self.dim):
                R[i, j] = rewards[self.coord_to_index([i, j])]

        if title is None:
            pylab.title('Close window to continue')
        else:
            pylab.title(title)
        pylab.set_cmap('gray')
        pylab.axis([0, self.grids[0], self.grids[1], 0])
        c = pylab.pcolor(R, edgecolors='w', linewidths=1)

        x = []
        y = []
        for i in range(0, self.dim / 2):
            j = i + self.dim / 2 - 2
            if j < self.dim and j >= self.dim / 2:
                x.append(j)
                y.append(i)
                x.append(j + 1)
                y.append(i)
            elif j < self.dim - 2:
                x.append(self.dim / 2)
                y.append(i)
        for j in range(self.dim / 2 + self.dim / 2 - 2, self.dim + 1):
            x.append(j)
            y.append(self.dim / 2)

        pylab.plot(x, y, 'r')

        x = []
        y = []
        for i in range(0, self.dim / 2):
            j = i + self.dim / 2 - 2
            if j < self.dim and j >= self.dim / 2:
                y.append(j)
                x.append(i)
                y.append(j + 1)
                x.append(i)
            elif j < self.dim - 1:
                y.append(self.dim / 2)
                x.append(i)
        for j in range(self.dim / 2 + self.dim / 2 - 2, self.dim + 1):
            y.append(j)
            x.append(self.dim / 2)
        pylab.plot(x, y, 'r')

        y = []
        x = []
        if trajectory != None:
            for trans in trajectory:
                coord = self.index_to_coord(trans[-1])
                y.append(coord[0])
                x.append(coord[1])
                pylab.plot(x, y, 'bo', x, y, 'b-', [x[-1]], [y[-1]], 'ro')
        pylab.show()
示例#18
0
def specrect_plot(outpath, base_name, order_num, before, after):

    if const.upgrade:
        endPix = 2048
    else:
        endPix = 1024

    pl.figure('before, after spectral rectify',
              facecolor='white',
              figsize=(10, 10))
    pl.cla()
    pl.suptitle('before, after spectral rectify, {}, order {}'.format(
        base_name, order_num),
                fontsize=14)
    pl.set_cmap('Blues_r')

    before_plot = pl.subplot(2, 1, 1)

    #before = imresize(before, (500, endPix), interp='bilinear')

    try:
        before[np.where(before < 0)] = np.median(before)
        norm = ImageNormalize(before,
                              interval=ZScaleInterval(),
                              stretch=SquaredStretch())
        before_plot.imshow(before, origin='lower', aspect='auto', norm=norm)
        #before_plot.imshow(exposure.equalize_hist(before), aspect='auto', origin='lower')
    except:
        before_plot.imshow(before, aspect='auto', origin='lower')
    before_plot.set_title('before')
    #     obj_plot.set_ylim([1023, 0])
    before_plot.set_xlim([0, endPix - 1])

    after_plot = pl.subplot(2, 1, 2)

    #after = imresize(after, (500, endPix), interp='bilinear')

    try:
        after[np.where(after < 0)] = np.median(after)
        norm = ImageNormalize(after,
                              interval=ZScaleInterval(),
                              stretch=SquaredStretch())
        after_plot.imshow(after, origin='lower', aspect='auto', norm=norm)
        #after_plot.imshow(exposure.equalize_hist(after), aspect='auto', origin='lower')
    except:
        after_plot.imshow(after, aspect='auto', origin='lower')
    after_plot.set_title('after')
    #     flat_plot.set_ylim([1023, 0])
    after_plot.set_xlim([0, endPix - 1])

    before_plot.minorticks_on()
    after_plot.minorticks_on()
    #pl.tight_layout()
    pl.savefig(constructFileName(outpath, base_name, order_num,
                                 'specrect.png'),
               bbox_inches='tight')
    pl.close()
示例#19
0
def plot_sa_diff_figure(control_dataset, data, sa_mask):
    f = plt.figure('sa_diff')
    plt.set_cmap('RdGy_r')
    graph_settings = (
	    ((-4, 4), np.arange(-4, 4.1, 2)),
	    ((-6, 6), np.arange(-6, 6.1, 3)),
	    ((-0.7, 0.7), np.arange(-0.6, 0.61, 0.3)),
	    ((-4, 4), np.arange(-4, 4.1, 2)),
	    ((-0.2, 0.2), np.arange(-0.2, 0.21, 0.1)))

    variables = ['precip', 'surf_temp', 'q', 'field1389', 'field1385']
    nice_names = {'precip': '$\Delta$Precip (mm/day)', 
		  'surf_temp': '$\Delta$Surf temp (K)', 
		  'q':'$\Delta$Humidity (g/kg)', 
		  'field1389': '$\Delta$NPP (g/m$^2$/day)', 
		  'field1385': '$\Delta$Soil moisture'}

    f.subplots_adjust(hspace=0.2, wspace=0.1)
    for i in range(len(variables)):
	variable = variables[i]
	ax = plt.subplot(2, 3, i + 1)
	ax.set_title(nice_names[variable])
	variable_diff = data['data']['1pct'][variable] - data['data']['ctrl'][variable]
	if variable == 'field1389':
	    variable_diff *= 24*60*60*1000 # per s to per day, kg to g.
	lons, lats = get_vars_from_control_dataset(control_dataset)
	vmin, vmax = graph_settings[i][0]
	#general_plot(control_dataset, variable_diff.mean(axis=0), vmin=graph_settings[i][0][0], vmax=graph_settings[i][0][1], loc='sa', sa_mask=sa_mask)
	plot_data = variable_diff.mean(axis=0)
	#plot_south_america(lons, lats, sa_mask, plot_data, vmin, vmax)

	if variable in ('surf_temp', 'precip', 'q'):
	    # unmasked.
	    data_masked = plot_data
	    plot_lons, plot_data = extend_data(lons, lats, data_masked)
	else:
	    data_masked = np.ma.array(plot_data, mask=sa_mask)
	    plot_lons, plot_data = extend_data(lons, lats, data_masked)

	lons, lats = np.meshgrid(plot_lons, lats)

	m = Basemap(projection='cyl', resolution='c', llcrnrlat=-60, urcrnrlat=15, llcrnrlon=-85, urcrnrlon=-32)
	x, y = m(lons, lats)

	m.pcolormesh(x, y, plot_data, vmin=vmin, vmax=vmax)

	m.drawcoastlines()
	if i == 0 or i == 3:
	    m.drawparallels(np.arange(-60.,15.,10.), labels=[1, 0, 0, 0], fontsize=10)
	elif i == 2 or i == 4:
	    m.drawparallels(np.arange(-60.,15.,10.), labels=[0, 1, 0, 0], fontsize=10)
	else:
	    m.drawparallels(np.arange(-60.,15.,10.))

	m.drawmeridians(np.arange(-90.,-30.,10.), labels=[0, 0, 0, 1], fontsize=10)

	cbar = m.colorbar(location='bottom', pad='7%', ticks=graph_settings[i][1])
示例#20
0
def imshow_matches(im, title):
    fig = plt.figure()
    ax = fig.add_subplot(111)
    # ax.set_xlabel('PW Level')
    # ax.set_ylabel('S Level')
    # ax.set_xticks(s_label)
    # ax.set_yticks(pw_label)
    ax.set_title(title)
    plt.set_cmap(plt.get_cmap('hot'))
    plt.imshow(im)
示例#21
0
def plotting():
    conf = [[0 for x in range(L)] for y in range(L)]
    for k in range(N):
        x, y = x_y(k, L)
        conf[x][y] = S[k]
    pylab.imshow(conf, extent=[0, L, 0, L], interpolation='nearest')
    pylab.set_cmap('hot')
    pylab.title('Local_' + str(T) + '_' + str(L))
    pylab.savefig('plot_A2_local_' + str(T) + '_' + str(L) + '.png')
    pylab.show()
示例#22
0
def plotting():
    conf = [[0 for x in range(L)] for y in range(L)]
    for k in range(N):
        x, y = x_y(k, L)
        conf[x][y] = S[k]
    pylab.imshow(conf, extent=[0, L, 0, L], interpolation='nearest')
    pylab.set_cmap('hot')
    pylab.title('Local_'+ str(T) + '_' + str(L))
    pylab.savefig('plot_A2_local_'+ str(T) + '_' + str(L)+ '.png')
    pylab.show()
示例#23
0
def make_image(data, outputname, size=(20, 2), dpi=1000):
    fig = plt.figure()
    fig.set_size_inches(size)
    ax = plt.Axes(fig, [0., 0., 1., 1.])
    ax.set_axis_off()
    fig.add_axes(ax)
    plt.set_cmap('jet')

    ax.imshow(data, aspect='equal')
    plt.savefig(outputname, dpi=dpi)
    plt.close()
示例#24
0
def cutouts_plot(outpath, obj_base_name, flat_base_name, order_num, obj_img,
                 flat_img, top_trace, bot_trace, trace):

    if const.upgrade:
        endPix = 2048
    else:
        endPix = 1024

    pl.figure('traces', facecolor='white', figsize=(10, 10))
    pl.cla()
    pl.suptitle('order cutouts, {}, order {}'.format(obj_base_name, order_num),
                fontsize=14)
    pl.set_cmap('Blues_r')

    obj_plot = pl.subplot(2, 1, 1)

    norm = ImageNormalize(obj_img,
                          interval=ZScaleInterval(),
                          stretch=SquaredStretch())
    obj_plot.imshow(obj_img, origin='lower', aspect='auto', norm=norm)
    #try:
    #    obj_plot.imshow(exposure.equalize_hist(obj_img), aspect='auto', origin='lower')
    #except:
    #    obj_plot.imshow(obj_img, aspect='auto', origin='lower')
    obj_plot.plot(np.arange(endPix), top_trace, 'y-', linewidth=1.5)
    obj_plot.plot(np.arange(endPix), bot_trace, 'y-', linewidth=1.5)
    obj_plot.plot(np.arange(endPix), trace, 'y-', linewidth=1.5)
    obj_plot.set_title('object ' + obj_base_name)
    #obj_plot.set_xlim([0, endPix-1])

    flat_plot = pl.subplot(2, 1, 2)

    norm = ImageNormalize(flat_img,
                          interval=ZScaleInterval(),
                          stretch=SquaredStretch())
    flat_plot.imshow(flat_img, origin='lower', aspect='auto', norm=norm)
    #try:
    #    flat_plot.imshow(exposure.equalize_hist(flat_img), aspect='auto', origin='lower')
    #except:
    #    flat_plot.imshow(flat_img, aspect='auto', origin='lower')
    flat_plot.plot(np.arange(endPix), top_trace, 'y-', linewidth=1.5)
    flat_plot.plot(np.arange(endPix), bot_trace, 'y-', linewidth=1.5)
    flat_plot.plot(np.arange(endPix), trace, 'y-', linewidth=1.5)
    flat_plot.set_title('flat ' + flat_base_name)
    #flat_plot.set_xlim([0, endPix-1])

    obj_plot.minorticks_on()
    flat_plot.minorticks_on()
    #pl.tight_layout()
    pl.savefig(constructFileName(outpath, obj_base_name, order_num,
                                 'cutouts.png'),
               bbox_inches='tight')
    pl.close()
示例#25
0
 def draw(self):
     plt.imshow(
         self._original_values.T,
         interpolation='none',
         origin='lower',
         extent=[
             self._origin[X],
             self._origin[X] + self._values.shape[0] * self._resolution,
             self._origin[Y],
             self._origin[Y] + self._values.shape[1] * self._resolution
         ])
     plt.set_cmap('gray_r')
示例#26
0
def plot_classification(X, y, y_pred, keys, title, clf):
    print 'plot_classification(X=%s, y=%s, y_pred=%s, keys=%s, title=%s)' % (X.shape, 
        y.shape, y_pred.shape, keys, title)
    h = .02 # step size in the mesh
    
    n_plots = len(keys)*(len(keys)-1)//2
    n_side = int(math.sqrt(float(n_plots)))

    cnt = 1
    for i0 in range(len(keys)):
        for i1 in range(i0+1, len(keys)): 
            # create a mesh to plot in
            x_min, x_max = X[:,i0].min()-1, X[:,i0].max()+1
            y_min, y_max = X[:,i1].min()-1, X[:,i1].max()+1
            xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
            
            pl.set_cmap(pl.cm.Paired)

            # Plot the decision boundary. For that, we will assign a color to each
            # point in the mesh [x_min, m_max]x[y_min, y_max].
            print 'subplot(%d, %d, cnt=%d)' % (n_side, n_side, cnt)
            pl.subplot(n_side, n_side, cnt)
            print 'xx.size=%s, xx.shape=%s, X.shape=%s' % (xx.size, xx.shape, X.shape)
            points = np.zeros([xx.size, X.shape[1]])
            points[:,i0] = xx.ravel() 
            points[:,i1] = yy.ravel()
            Z = clf.predict(points)

            # Put the result into a color plot
            Z = Z.reshape(xx.shape)
            pl.set_cmap(pl.cm.Paired)
            pl.contourf(xx, yy, Z)
            pl.axis('tight')
            
            #pl.xlabel(keys[0])
            #pl.ylabel(keys[1])

            # Plot also the training points
            #pl.scatter(X[:,0], X[:,1], c=y)
            
            plot_2d_histo_raw(X[:,i0], X[:,i1], y, keys[i0], keys[i1], x_max-x_min, y_max-y_min)

            #pl.title('%s vs %s' % (keys[i1], keys[i0]))

            pl.axis('tight')
            cnt +=1 
            if cnt > n_side ** 2:
                break
        if cnt > n_side ** 2:
            break
            
    pl.savefig(os.path.join('results', '%s.png' % title)) 
    pl.show()
示例#27
0
文件: fgcmPlotmaps.py 项目: lsst/fgcm
def set_cmap(name='viridis'):
    try:
        import matplotlib.colormaps as cmaps
        plt.register_cmap(name='viridis', cmap=cmaps.viridis)
    except ImportError:
        # this is the local version
        from . import colormaps as cmaps
        plt.register_cmap(name='viridis', cmap=cmaps.viridis)
    finally:
        plt.set_cmap(name)
        # For some reason set_cmap creates a figure, so close it.
        plt.close(plt.gcf())
示例#28
0
def cmap_smooth(I=None,axh=None,Nlevels=256,cmap_lin=None):
  if cmap_lin is None:
    cmap_lin = pl.cm.jet
  if I is None:
    if not axh:
      axh = pl.gca()
    ihandles = axh.findobj(matplotlib.image.AxesImage)
    ih = ihandles[-1]
    I = ih.get_array()
  levels = np.percentile(I.ravel(),list(np.linspace(0,100,Nlevels)))
  cmap_nonlin = nlcmap(cmap_lin,levels)
  pl.set_cmap(cmap_nonlin)
示例#29
0
def saveBEVImageWithAxes(data,
                         outputname,
                         cmap=None,
                         xlabel='x [m]',
                         ylabel='z [m]',
                         rangeX=[-10, 10],
                         rangeXpx=None,
                         numDeltaX=5,
                         rangeZ=[7, 62],
                         rangeZpx=None,
                         numDeltaZ=5,
                         fontSize=16):
    '''
    
    :param data:
    :param outputname:
    :param cmap:
    '''
    aspect_ratio = float(data.shape[1]) / data.shape[0]
    fig = pylab.figure()
    Scale = 8
    # add +1 to get axis text
    fig.set_size_inches(Scale * aspect_ratio + 1, Scale * 1)
    ax = pylab.gca()
    #ax.set_axis_off()
    #fig.add_axes(ax)
    if cmap is not None:
        pylab.set_cmap(cmap)

    #ax.imshow(data, interpolation='nearest', aspect = 'normal')
    ax.imshow(data, interpolation='nearest')

    if rangeXpx is None:
        rangeXpx = (0, data.shape[1])

    if rangeZpx is None:
        rangeZpx = (0, data.shape[0])

    modBev_plot(ax,
                rangeX,
                rangeXpx,
                numDeltaX,
                rangeZ,
                rangeZpx,
                numDeltaZ,
                fontSize,
                xlabel=xlabel,
                ylabel=ylabel)
    #plt.savefig(outputname, bbox_inches='tight', dpi = dpi)
    pylab.savefig(outputname, dpi=data.shape[0] / Scale)
    pylab.close()
    fig.clear()
示例#30
0
 def plotConfiguration(self, S, L, saveFigure=False):
     """Plots configuration of given 2D Ising Lattice
     """
     conf = [[0 for x in range(L)] for y in range(L)]
     for k in range(L * L):
         x, y = self.x_y(k, L)
         conf[x][y] = S[k]
     pylab.imshow(conf, extent=[0, L, 0, L], interpolation='nearest')
     pylab.set_cmap('hot')
     pylab.title('Local_'+ str(T) + '_' + str(L))
     if (saveFigure):
         pylab.savefig('plot_A2_local_'+ str(T) + '_' + str(L)+ '.png')
     pylab.show()
示例#31
0
def plot(polylines, img=None):
    import pylab as plt
    plt.figure(1)

    for n, c in enumerate(polylines):
        x = c[:, 0]
        y = c[:, 1]
        plt.plot(x, y, linewidth=3)
        plt.text(x[-1], y[-1], str(n + 1))
    if img is not None:
        plt.imshow(img, interpolation='none')
        plt.set_cmap('gray')
    plt.show()
 def _heatmap_engine(self, suptitle, numIter=None, filter_count=None, saveas=None, show=True, cmap="Blues"):
     '''
     An alternative way to visualize the annotations per iterative via
     a heat-map like construct. The rows are the GO annotations and the columns
     are iterations. The color intensity indicates how much a given annotation
     was present in a given iteration
     '''
     res = self.annotation_dat if numIter is None else self.annotation_dat[0:numIter]
     depth = self.depth
     
     pl.figure(num=1,figsize=(20,8))
 
     #AS is complete Annotation Set, max_count is the maximum number
     # of genes that appears in any single annotation entry
     (AS, max_count) = self._common_Y()
     
     #map is a grid Y=annotation X=iteration M(X,Y) = scaled count (c/max c)
     M = sp.zeros( (len(AS), len(res) ) )
     for (col, dat, _) in res:
         if len(dat) < 1: continue
         for (l,d,c,_) in dat:
             row = AS.index((d,l))
             M[row,col] = c #(c*1.0)/max_count
         
     #filter rows / pathways which dont show up often
     if not filter_count is None:
         assert type(filter_count) == int
         vals = sp.sum(M, axis=1)
         M = M[ vals >= filter_count, :]  #only pathways with at least filter count over all iterations
         AS = [ x for i,x in enumerate(AS) if vals[i] >= filter_count ]
         
     pl.imshow(M, interpolation='nearest', aspect=len(res)*1.0/len(AS), origin='lower')
     #for (l,d) in AS:
     #    row = AS.index((d,l))
     #    pl.text(-0.5, row, d[0:40], color="white", verticalalignment='center', fontsize=9)
     
     (descs, _labels) = zip(*AS)
     descs = [ d[0:30] for d in descs]  #truncate long descriptions
     ylocations = sp.array(range(len(descs)))
     pl.yticks(ylocations, descs, fontsize=9, verticalalignment='center')
     
     pl.set_cmap(cmap)
     pl.xticks(range(len(res)), range(1, len(res)+1))
     pl.ylabel("GO Annotation at Depth %d"%depth, fontsize=16)
     pl.xlabel("Iteration", fontsize=16)
     pl.colorbar(ticks=range(1, max_count+1))       
     if not suptitle is None:
         pl.title("Ontology Annotations per Iteration: %s"%suptitle, fontsize=18)
     if not saveas is None:
         pl.savefig(saveas)   
     if show: pl.show()
示例#33
0
def main():
    altitudes = pl.loadtxt('altitude.txt')
    # print(altitudes.shape)
    partial_x = np.zeros(altitudes.shape)
    partial_y = np.zeros(altitudes.shape)
    size_y, size_x = altitudes.shape
    for y in range(altitudes.shape[0] - 1):
        for x in range(altitudes.shape[1] - 1):
            partial_x[y][x] = (altitudes[y][x + 1] - altitudes[y][x]) / 30000
            partial_y[y][x] = (altitudes[y + 1][x] - altitudes[y][x]) / 30000
    for x in range(altitudes.shape[1] - 1):
        partial_x[size_y - 1][x] = (altitudes[size_y - 1][x - 1] -
                                    altitudes[size_y - 1][x]) / 30000
        partial_y[size_y - 1][x] = (altitudes[size_y - 1][x] -
                                    altitudes[size_y - 2][x]) / 30000
    for y in range(altitudes.shape[0] - 1):
        partial_x[y][size_x - 1] = (altitudes[y][size_x - 1] -
                                    altitudes[y][size_x - 2]) / 30000
        partial_y[y][size_x - 1] = (altitudes[y + 1][size_x - 1] -
                                    altitudes[y][size_x - 1]) / 30000
    intensity = np.zeros(altitudes.shape)
    for y in range(size_y):
        for x in range(size_x):
            intensity[y][x] = I(partial_x[y][x], partial_y[y][x], pi / 4)
    pl.set_cmap('Greys')
    pl.imshow(intensity)
    pl.show()
    altitudes = pl.loadtxt('stm.txt')
    partial_x = np.zeros(altitudes.shape)
    partial_y = np.zeros(altitudes.shape)
    size_y, size_x = altitudes.shape
    for y in range(altitudes.shape[0] - 1):
        for x in range(altitudes.shape[1] - 1):
            partial_x[y][x] = (altitudes[y][x + 1] - altitudes[y][x]) / 2.50
            partial_y[y][x] = (altitudes[y + 1][x] - altitudes[y][x]) / 2.50
    for x in range(altitudes.shape[1] - 1):
        partial_x[size_y - 1][x] = (altitudes[size_y - 1][x - 1] -
                                    altitudes[size_y - 1][x]) / 2.50
        partial_y[size_y - 1][x] = (altitudes[size_y - 1][x] -
                                    altitudes[size_y - 2][x]) / 2.50
    for y in range(altitudes.shape[0] - 1):
        partial_x[y][size_x - 1] = (altitudes[y][size_x - 1] -
                                    altitudes[y][size_x - 2]) / 2.50
        partial_y[y][size_x - 1] = (altitudes[y + 1][size_x - 1] -
                                    altitudes[y][size_x - 1]) / 2.50
    intensity = np.zeros(altitudes.shape)
    for y in range(size_y):
        for x in range(size_x):
            intensity[y][x] = I(partial_x[y][x], partial_y[y][x], pi / 4)
    pl.imshow(intensity)
    pl.show()
示例#34
0
def spatrect_plot(outpath, base_name, order_num, obj, flat):

    if const.upgrade:
        endPix = 2048
    else:
        endPix = 1024

    pl.figure('spatially rectified', facecolor='white', figsize=(10, 10))
    pl.cla()
    pl.suptitle('spatially rectified, {}, order {}'.format(
        base_name, order_num),
                fontsize=14)
    pl.set_cmap('Blues_r')

    obj_plot = pl.subplot(2, 1, 1)

    norm = ImageNormalize(obj,
                          interval=ZScaleInterval(),
                          stretch=SquaredStretch())
    obj_plot.imshow(obj, origin='lower', aspect='auto', norm=norm)
    #try:
    #    obj_plot.imshow(exposure.equalize_hist(obj), aspect='auto', origin='lower')
    #except:
    #    obj_plot.imshow(obj, aspect='auto', origin='lower')
    obj_plot.set_title('object')
    #     obj_plot.set_ylim([1023, 0])
    obj_plot.set_xlim([0, endPix - 1])

    flat_plot = pl.subplot(2, 1, 2)

    norm = ImageNormalize(flat,
                          interval=ZScaleInterval(),
                          stretch=SquaredStretch())
    flat_plot.imshow(flat, origin='lower', aspect='auto', norm=norm)
    #try:
    #    flat_plot.imshow(exposure.equalize_hist(flat), aspect='auto', origin='lower')
    #except:
    #    flat_plot.imshow(flat, aspect='auto', origin='lower')
    flat_plot.set_title('flat')
    #     flat_plot.set_ylim([1023, 0])
    flat_plot.set_xlim([0, endPix - 1])

    obj_plot.minorticks_on()
    flat_plot.minorticks_on()
    #pl.tight_layout()
    pl.savefig(constructFileName(outpath, base_name, order_num,
                                 'spatrect.png'),
               bbox_inches='tight')
    pl.close()
示例#35
0
 def draw_grids(self, rewards=None, title=None):
     # Draw the reward mapping of the grid world with grey scale
     if rewards is None:
         rewards = self.M.R
     R = np.zeros([self.dim, self.dim])
     for i in range(self.dim):
         for j in range(self.dim):
             R[i, j] = rewards[self.__coord_to_index__([i, j])]
     if title is None:
         title = 'Reward mapping'
     pylab.title(title)
     pylab.set_cmap('gray')
     pylab.axis([0, self.dim, self.dim, 0])
     c = pylab.pcolor(R, edgecolors='w', linewidths=1)
     pylab.show()
def convertBinToLabelMap(segImage, saveIntermediate=False, figFilePath="./"):
    """
    Convert the binary segmentation image to a label map.
    Each component of the label map will be labelled using
    a separate label (labels are numbers, shown as colors).
    The labels should be separate cells, or closely clumped
    groups of cells.

    Inputs:
    - segImage: the binary segmentation image (sitk Image)
    - saveIntermediate: flag to indicate whether to save
                        intermediate images (boolean)
    - figFilePath: the path to the location where the figure
                   will be saved (string)
    
    Returns:
    - labelImage: the label map image (sitk Image)
    """
    # Set up label map filter
    convertToLabelMap = sitk.BinaryImageToLabelMapFilter()
    labelMap = convertToLabelMap.Execute(segImage)
    labelImageFilter = sitk.LabelMapToLabelImageFilter()
    labelImageFilter.SetNumberOfThreads(4)
    labelImage = labelImageFilter.Execute(labelMap)

    # Show the label map
    pylab.set_cmap('terrain')
    pylab.imshow(sitk.GetArrayFromImage(labelImage))

    # Print information about the label image
    labelArray = sitk.GetArrayFromImage(labelImage)
    print("Number of labels in the label map (including background):",
          np.amax(labelArray) - np.amin(labelArray) + 1)

    # Need to change the pixel types
    castFilter = sitk.CastImageFilter()
    castFilter.SetOutputPixelType(sitk.sitkUInt8)
    labelImage = castFilter.Execute(labelImage)

    # The pixel type should be "8-bit unsigned integer"
    assert labelImage.GetPixelIDTypeAsString() == "8-bit unsigned integer"

    if saveIntermediate:
        outFn = figFilePath + "02-labelmap.png"
        segArray = sitk.GetArrayFromImage(segImage)
        plt.imsave(outFn, labelArray, cmap='nipy_spectral')

    return labelImage
示例#37
0
def traces_plot(outpath, obj_base_name, flat_base_name, order_num, obj_img,
                flat_img, top_trace, bot_trace):

    if const.upgrade:
        endPix = 2048
    else:
        endPix = 1024

    pl.figure('traces', facecolor='white', figsize=(10, 6))
    pl.cla()
    pl.suptitle('order edge traces, {}, order {}'.format(
        obj_base_name, order_num),
                fontsize=14)
    pl.set_cmap('Blues_r')
    pl.rcParams['xtick.labelsize'] = 8
    pl.rcParams['ytick.labelsize'] = 8

    obj_plot = pl.subplot(1, 2, 1)
    try:
        obj_plot.imshow(exposure.equalize_hist(obj_img), origin='lower')
    except:
        obj_plot.imshow(obj_img, origin='lower')
    obj_plot.plot(np.arange(endPix), top_trace, 'y-', linewidth=1.5)
    obj_plot.plot(np.arange(endPix), bot_trace, 'y-', linewidth=1.5)

    obj_plot.set_title('object ' + obj_base_name)
    #obj_plot.set_ylim([endPix-1, 0])
    #obj_plot.set_xlim([0, endPix-1])

    flat_plot = pl.subplot(1, 2, 2)
    try:
        flat_plot.imshow(exposure.equalize_hist(flat_img), origin='lower')
    except:
        flat_plot.imshow(flat_img, origin='lower')

    flat_plot.plot(np.arange(endPix), top_trace, 'y-', linewidth=1.5)
    flat_plot.plot(np.arange(endPix), bot_trace, 'y-', linewidth=1.5)
    flat_plot.set_title('flat ' + flat_base_name)
    #flat_plot.set_ylim([endPix-1, 0])
    #flat_plot.set_xlim([0, endPix-1])

    obj_plot.minorticks_on()
    flat_plot.minorticks_on()
    #pl.tight_layout()
    pl.savefig(constructFileName(outpath, obj_base_name, order_num,
                                 'traces.png'),
               bbox_inches='tight')
    pl.close()
示例#38
0
def part_c():
    img_data = np.loadtxt('blur.txt')
    shape = img_data.shape
    blur = [[gaussian(x, y, shape[0], shape[1]) for x in range(shape[0])]
            for y in range(shape[1])]
    fft_img = np.fft.rfft2(img_data)
    fft_blur = np.fft.rfft2(blur)
    fft_unblured = fft_img
    for i, row in enumerate(fft_unblured):
        for j, elem in enumerate(row):
            if fft_blur[i][j] > 1e-3:
                fft_unblured[i][j] /= (fft_blur[i][j])
    unblured = np.fft.irfft2(fft_unblured)
    pylab.imshow(unblured)
    pylab.set_cmap('Greys_r')
    pylab.show()
def showIMG(IMG, extent = None, ticks = False):
	pylab.imshow(IMG, origin = 'lower', extent = extent)

	pylab.set_cmap(pylab.cm.gray)
	
	if extent == None:
		pylab.ylim((0, IMG.shape[0] - 1))
		pylab.xlim((0, IMG.shape[1] - 1))
	else:
		pylab.ylim((extent[2], extent[3]))
		pylab.xlim((extent[0], extent[1]))
	
	if not ticks:
		pylab.gca().get_xaxis().set_ticks([])
		pylab.gca().get_yaxis().set_ticks([])
	pylab.gca().invert_yaxis()
示例#40
0
def plot_sa_seasonal_figure(control_dataset, data, sa_mask):
    f = plt.figure('sa_seasonal')
    plt.set_cmap('RdGy_r')
    graph_settings = (
	    ((-4, 4), np.arange(-4, 4.1, 2)),
	    ((-6, 6), np.arange(-6, 6.1, 3)))

    variables = ['precip', 'surf_temp']
    nice_names = {'precip': '$\Delta$Precip (mm/day)', 
		  'surf_temp': '$\Delta$Surf temp (K)'}
    f.subplots_adjust(hspace=0.2, wspace=0.1)

    for j in range(len(variables)):
	for i, roll in enumerate([1, 10, 7, 4]):
	    titles = ('DJF', 'MAM', 'JJA', 'SON')
	    variable = variables[j]
	    ax = plt.subplot(2, 4, i + j * 4 + 1)
	    ax.set_title(titles[i])
	    variable_diff = data['data']['1pct'][variable] - data['data']['ctrl'][variable]
	    lons, lats = get_vars_from_control_dataset(control_dataset)
	    vmin, vmax = graph_settings[j][0]
	    plot_data = np.roll(variable_diff, roll, axis=0)[:3].mean(axis=0)

	    # unmasked.
	    data_masked = plot_data
	    plot_lons, plot_data = extend_data(lons, lats, data_masked)

	    lons, lats = np.meshgrid(plot_lons, lats)

	    m = Basemap(projection='cyl', resolution='c', llcrnrlat=-60, urcrnrlat=15, llcrnrlon=-85, urcrnrlon=-32)
	    x, y = m(lons, lats)

	    m.pcolormesh(x, y, plot_data, vmin=vmin, vmax=vmax)

	    m.drawcoastlines()
	    if i == 0:
		m.drawparallels(np.arange(-60.,15.,10.), labels=[1, 0, 0, 0], fontsize=10)
		ax.set_ylabel(nice_names[variable])
		ax.get_yaxis().set_label_coords(-0.25, 0.5)
	    elif i == 3:
		m.drawparallels(np.arange(-60.,15.,10.), labels=[0, 1, 0, 0], fontsize=10)
	    else:
		m.drawparallels(np.arange(-60.,15.,10.))

	    m.drawmeridians(np.arange(-90.,-30.,10.), labels=[0, 0, 0, 1], fontsize=10)

	    cbar = m.colorbar(location='bottom', pad='7%', ticks=graph_settings[j][1])
示例#41
0
文件: b2.py 项目: phubaba/coursera
def _show(S, L, T, nsteps, suffix, show):
    def x_y(k, L):
        y = k // L
        x = k - y * L
        return x, y

    conf = [[0 for x in range(L)] for y in range(L)]
    for k in range(N):
        x, y = x_y(k, L)
        conf[x][y] = S[k]

    pylab.imshow(conf, extent=[0, L, 0, L], interpolation='nearest')
    pylab.set_cmap('hot')
    pylab.title('Local_'+ str(T) + '_' + str(L))
    pylab.savefig('plot_A2_local_'+ str(T) + '_' + str(L)+ suffix + '_' + str(nsteps) + '.png')
    if show:
        pylab.show()
示例#42
0
def plot_classifier(X, Y, models, classMap=None):
  """ Plots classifier or classifiers on 2d plot """
  #handle single model
  if not isinstance(models, types.ListType):
    models = [models]
    titles = ["classifier"]
  else:
    titles = []
    for model in models:
      titles.append("Classifier...")
  
  #colors for different decisions
  colors = ["red", "green", "blue", "yellow", "black"]

  # create a mesh to plot in
  h = 500  # step size in mesh
  x_min, x_max = X[:, 0].min() - .002, X[:, 0].max() + .002
  y_min, y_max = X[:, 1].min() - .002, X[:, 1].max() + .002
  xx, yy = np.meshgrid(np.arange(x_min, x_max, (x_max-x_min)/h),
                       np.arange(y_min, y_max, (y_max-y_min)/h))
  
  #set cmap
  pl.set_cmap(pl.cm.Paired)
  for mi, clf in enumerate( models ):
    # Plot the decision boundary. For that, we will asign a color to each
    # point in the mesh [x_min, m_max]x[y_min, y_max].
    pl.subplot(1, len(models), mi + 1)
    Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])

    # Put the result into a color plot
    Z = Z.reshape(xx.shape)
    pl.set_cmap(pl.cm.Paired)
    pl.contourf(xx, yy, Z)
    #pl.axis('off')

    # Plot also the training points
    if classMap:
      for c,i in classMap.iteritems():
        x = X[Y==i] 
        pl.plot(x[:,0], x[:,1], "o", c=colors[i], label=c) 

    #legend and title
    pl.legend()
    pl.title(titles[mi])
  pl.show()
示例#43
0
def plot_classifier(X, Y, models, classMap=None):
    """ Plots classifier or classifiers on 2d plot """
    #handle single model
    if not isinstance(models, types.ListType):
        models = [models]
        titles = ["classifier"]
    else:
        titles = []
        for model in models:
            titles.append("Classifier...")

    #colors for different decisions
    colors = ["red", "green", "blue", "yellow", "black"]

    # create a mesh to plot in
    h = 50  # step size in mesh
    x_min, x_max = X[:, 0].min() - .002, X[:, 0].max() + .002
    y_min, y_max = X[:, 1].min() - .002, X[:, 1].max() + .002
    xx, yy = np.meshgrid(np.arange(x_min, x_max, (x_max - x_min) / h),
                         np.arange(y_min, y_max, (y_max - y_min) / h))

    #set cmap
    pl.set_cmap(pl.cm.Paired)
    for mi, clf in enumerate(models):
        # Plot the decision boundary. For that, we will asign a color to each
        # point in the mesh [x_min, m_max]x[y_min, y_max].
        pl.subplot(1, len(models), mi + 1)
        Z = clf.predict(np.c_[xx.ravel(), yy.ravel()])

        # Put the result into a color plot
        Z = Z.reshape(xx.shape)
        pl.set_cmap(pl.cm.Paired)
        pl.contourf(xx, yy, Z)
        #pl.axis('off')

        # Plot also the training points
        if classMap:
            for c, i in classMap.iteritems():
                x = X[Y == i]
                pl.plot(x[:, 0], x[:, 1], "o", c=colors[i], label=c)

        #legend and title
        pl.legend()
        pl.title(titles[mi])
    pl.show()
示例#44
0
文件: c2.py 项目: phubaba/coursera
def show_spins(S0, S1, L, label):
    pylab.set_cmap('hot')
    conf0 = [[0 for x in range(L)] for y in range(L)]
    conf1 = [[0 for x in range(L)] for y in range(L)]
    for k in range(N):
        y = k // L
        x = k - y * L
        conf0[x][y] = S0[k]
        conf1[x][y] = S1[k]
    pylab.subplot(1, 2, 1)
    pylab.imshow(conf0, extent=[0, L, 0, L], interpolation='nearest')
    pylab.title('S0 ' + label)
    pylab.subplot(1, 2, 2)
    pylab.imshow(conf1, extent=[0, L, 0, L], interpolation='nearest')
    pylab.title('S1 ' + label)
    pylab.tight_layout()
    pylab.savefig('plot_' + label + '.png')
    pylab.close()
示例#45
0
文件: C2.py 项目: buwantaiji/SMAC
def show_spins(S0, S1, L, label):
    pylab.set_cmap('hot')
    conf0 = [[0 for x in range(L)] for y in range(L)]
    conf1 = [[0 for x in range(L)] for y in range(L)]
    for k in range(N):
        y = k // L
        x = k - y * L
        conf0[x][y] = S0[k]
        conf1[x][y] = S1[k]
    pylab.subplot(1, 2, 1)
    pylab.imshow(conf0, extent=[0, L, 0, L], interpolation='nearest')
    pylab.title('S0 ' + label)
    pylab.subplot(1, 2, 2)
    pylab.imshow(conf1, extent=[0, L, 0, L], interpolation='nearest')
    pylab.title('S1 ' + label)
    pylab.tight_layout()
    pylab.savefig('plot_' + label + '.png')
    pylab.close()
def twoDimNoiseOrderPlot(outpath,
                         base_name,
                         title,
                         base_filename,
                         order_num,
                         data,
                         x_scale,
                         wave_note='unknown'):
    """
    Produces a generic 2-d image plot.
    
    Arguments:
        output: Directory path of root products directory.
        base_name: Base name of object frame.
        title: Title of plot, e.g. rectified order image.
        base_filename:
        order_num:
        data:
        x_scale:
    """
    pl.figure('2d order image', facecolor='white', figsize=(8, 5))
    pl.cla()
    pl.title(title + ', ' + base_name + ", order " + str(order_num),
             fontsize=14)
    pl.xlabel('wavelength($\AA$) (' + wave_note + ')', fontsize=12)
    pl.ylabel('row (pixel)', fontsize=12)

    pl.imshow(exposure.equalize_hist(data),
              origin='lower',
              extent=[x_scale[0], x_scale[-1], 0, data.shape[0]],
              aspect='auto')

    #    pl.colorbar()
    #    pl.set_cmap('jet')
    pl.set_cmap('gray')
    #     pl.set_cmap('Blues_r')
    pl.minorticks_on()

    fn = constructFileName(outpath, base_name, order_num, base_filename)
    savePreviewPlot(fn)
    log_fn(fn)
    pl.close()

    return
def saveCurvatureOverlay(origImage, curves, curvatures, figFilePath='./'):
    """
    Show the curvatures of the cells on the original image.
    
    Inputs:
    - origImage: the original greyscale image (sitk Image)
    - curves: the locations of the cell curves (list of lists of ints)
    - curvatures: the curvatures of the curves (list of floats)
    - figFilePath: the path to the location where the figure
                   will be saved (string)
                   
    Effects:
    - Makes a composite image consisting of the original image
    overlaid with colored versions of the curvatures. Also includes
    a colorbar.
    """
    # Make a new figure and show the original image
    pylab.figure(figsize=(35, 25))
    pylab.set_cmap('gray')
    pylab.imshow(sitk.GetArrayFromImage(origImage))

    # Set up the overlay image
    shape = origImage.GetSize()
    overlay = np.zeros((shape[1], shape[0]))
    # Make the value 0.0 appear transparent
    overlay[overlay == 0.0] = np.nan

    # Iterate through the curve points and curvatures
    for point, value in zip(curves, curvatures):
        # Since we're capping the curvature value at 1 (potential miscalculations),
        # make sure the curvature values being plotted are at most 1.
        if value < 1:
            overlay[point[0], point[1]] = value
        else:
            overlay[point[0], point[1]] = 1

    # Combine the overlay image and the original image
    pylab.imshow(overlay, 'rainbow', alpha=1)
    # Add a colorbar
    pylab.colorbar()

    # Save the image with the curvatures
    outFn = figFilePath + 'curvatures.png'
    pylab.savefig(outFn, bbox_inches='tight')
示例#48
0
def order_location_plot(outpath, obj_base_name, flat_base_name, flat_img, obj_img, orders):
    
    pl.figure('orders', facecolor='white', figsize=(8, 5))
    pl.cla()
    pl.suptitle('order location and identification', fontsize=14)
    pl.set_cmap('Blues_r')
    pl.rcParams['ytick.labelsize'] = 8

    obj_plot = pl.subplot(1, 2, 1)
    try:
        obj_plot.imshow(exposure.equalize_hist(obj_img))
    except:
        obj_plot.imshow(obj_img)
    obj_plot.set_title('object ' + obj_base_name)
    obj_plot.set_ylim([1023, 0])
    obj_plot.set_xlim([0, 1023])

    
    flat_plot = pl.subplot(1, 2, 2)
    try:
        flat_plot.imshow(exposure.equalize_hist(flat_img))
    except:
        flat_plot.imshow(flat_img)
    flat_plot.set_title('flat ' + flat_base_name)
    flat_plot.set_ylim([1023, 0])
    flat_plot.set_xlim([0, 1023])
    
    for order in orders:
        obj_plot.plot(np.arange(1024), order.flatOrder.topEdgeTrace, 'k-', linewidth=1.0)
        obj_plot.plot(np.arange(1024), order.flatOrder.botEdgeTrace, 'k-', linewidth=1.0)
        obj_plot.plot(np.arange(1024), order.flatOrder.smoothedSpatialTrace, 'y-', linewidth=1.0)
        obj_plot.text(10, order.flatOrder.topEdgeTrace[0] - 10, str(order.flatOrder.orderNum), 
                fontsize=10)
        
        flat_plot.plot(np.arange(1024), order.flatOrder.topEdgeTrace, 'k-', linewidth=1.0)
        flat_plot.plot(np.arange(1024), order.flatOrder.botEdgeTrace, 'k-', linewidth=1.0)  
        flat_plot.plot(np.arange(1024), order.flatOrder.smoothedSpatialTrace, 'y-', linewidth=1.0)  
        flat_plot.text(10, order.flatOrder.topEdgeTrace[0] - 10, str(order.flatOrder.orderNum), 
                fontsize=10)

    pl.tight_layout()
    pl.savefig(constructFileName(outpath, obj_base_name, None, 'traces.png'))
    pl.close()
示例#49
0
def plot2DHist(points, name, x_dimension, y_dimension, fig):
  
  #add points to data at each corner, truncate data past corners.

  x = points[x_dimension]
  y = points[y_dimension]

  #truncate any data outside off -2,-2 2,2 borders
  index = []
  for i in range(0, len(x)):
    if x[i] > 2 or x[i] < -2:
      index = numpy.append(index, i)
    if y[i] > 2 or y[i] < -2:
      index = numpy.append(index, i)
  x = numpy.delete(x, index)
  y = numpy.delete(y, index)

  #fix borders of histogram with edge points
  x = numpy.append(x, -2)
  y = numpy.append(y, -2)
  x = numpy.append(x, -2)
  y = numpy.append(y, 2)
  x = numpy.append(x, 2)
  y = numpy.append(y, -2)
  x = numpy.append(x, 2)
  y = numpy.append(y, 2)

  #pylab.axis("off")
  
  #fig = pylab.figure()
  dpi = fig.get_dpi()
  inches = 512.0 / dpi
  fig.set_size_inches(inches,inches)
  
  ax = pylab.Axes(fig, [0., 0., 1., 1.])
  ax.set_axis_off()
  fig.add_axes(ax)
  pylab.hist2d(x, y, bins=100)
  pylab.set_cmap('gray')
  pylab.savefig(name + '.png')
  pylab.clf()
示例#50
0
def order_location_plot(outpath, base_name, flat, obj, orders):
    
    pl.figure('orders', facecolor='white', figsize=(8, 5))
    pl.cla()
    pl.suptitle('order location and identification, {}'.format(base_name), fontsize=14)
    pl.set_cmap('Blues_r')
    pl.rcParams['ytick.labelsize'] = 8

    obj_plot = pl.subplot(1, 2, 1)
    try:
        obj_plot.imshow(exposure.equalize_hist(obj))
    except:
        obj_plot.imshow(obj)
    obj_plot.set_title('object')
    obj_plot.set_ylim([1023, 0])
    obj_plot.set_xlim([0, 1023])

    
    flat_plot = pl.subplot(1, 2, 2)
    try:
        flat_plot.imshow(exposure.equalize_hist(flat))
    except:
        flat_plot.imshow(flat)
    flat_plot.set_title('flat')
    flat_plot.set_ylim([1023, 0])
    flat_plot.set_xlim([0, 1023])
    
    for order in orders:
        obj_plot.plot(np.arange(1024), order.topTrace, 'k-', linewidth=1.0)
        obj_plot.plot(np.arange(1024), order.botTrace, 'k-', linewidth=1.0)
        obj_plot.plot(np.arange(1024), order.smoothedTrace, 'y-', linewidth=1.0)
        obj_plot.text(10, order.topTrace[0] - 10, str(order.orderNum), fontsize=10)
        
        flat_plot.plot(np.arange(1024), order.topTrace, 'k-', linewidth=1.0)
        flat_plot.plot(np.arange(1024), order.botTrace, 'k-', linewidth=1.0)  
        flat_plot.plot(np.arange(1024), order.smoothedTrace, 'y-', linewidth=1.0)  
        flat_plot.text(10, order.topTrace[0] - 10, str(order.orderNum), fontsize=10)

    pl.tight_layout()
    pl.savefig(constructFileName(outpath, base_name, None, 'traces.png'))
    pl.close()
示例#51
0
def plot2DHist(points, name, x_dimension, y_dimension, fig):

    #add points to data at each corner, truncate data past corners.

    x = points[x_dimension]
    y = points[y_dimension]

    #truncate any data outside off -2,-2 2,2 borders
    index = []
    for i in range(0, len(x)):
        if x[i] > 2 or x[i] < -2:
            index = numpy.append(index, i)
        if y[i] > 2 or y[i] < -2:
            index = numpy.append(index, i)
    x = numpy.delete(x, index)
    y = numpy.delete(y, index)

    #fix borders of histogram with edge points
    x = numpy.append(x, -2)
    y = numpy.append(y, -2)
    x = numpy.append(x, -2)
    y = numpy.append(y, 2)
    x = numpy.append(x, 2)
    y = numpy.append(y, -2)
    x = numpy.append(x, 2)
    y = numpy.append(y, 2)

    #pylab.axis("off")

    #fig = pylab.figure()
    dpi = fig.get_dpi()
    inches = 512.0 / dpi
    fig.set_size_inches(inches, inches)

    ax = pylab.Axes(fig, [0., 0., 1., 1.])
    ax.set_axis_off()
    fig.add_axes(ax)
    pylab.hist2d(x, y, bins=100)
    pylab.set_cmap('gray')
    pylab.savefig(name + '.png')
    pylab.clf()
def Hist_Equal(img):

    image = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)  # convert image to grayscal

    # count values for each pixels(image histogram)
    x, y = image.shape  # get image size x*y, for a image with x rows and y columns
    histo = [0.0] * 256  # Initializes a 256 array to hold the number of
    # occurrences of each gray level
    for i in range(0, x):  # count each pixel value(gray level) from 0 to x
        for j in range(0, y):  # count each pixel value(gray level) from 0 to y
            histo[image[
                i,
                j]] += 1  # count the number of occurrences of each gray level

    # cdf and new pixels values
    cdf = np.cumsum(np.array(histo))  # cumulative distribution function
    trans_val = np.uint8(
        (cdf - cdf[0]) / ((x * y) - cdf[0]) * 255)  # calculate transfer value

    # applying transfered values for each pixels
    new_img = np.zeros_like(
        image)  # Return an empty array new_img with shape and type of input.
    for i in range(0, x):  # count each pixel value(gray level) from 0 to x
        for j in range(0, y):  # count each pixel value(gray level) from 0 to y
            new_img[i, j] = trans_val[image[
                i, j]]  #fill the equalization result in the array

    # show original and equalized image
    pl.subplot(121)  # image position 1 row, 2 column, first position
    pl.imshow(image)  # show image "grayimg"
    pl.title('original image')  # graph title "original image"
    pl.set_cmap('gray')  # show in gray scale

    pl.subplot(122)  # image position 1 row, 2 column, second position
    pl.imshow(new_img)  # show image "grayimg"
    pl.title('equalized image')  # graph title "original image"
    pl.set_cmap('gray')  # show in gray scale

    pl.show()  # output image
# Gemerate grid along first two principal components
multiples = np.arange(-2, 2, 0.1)
# steps along first component
first = multiples[:, np.newaxis] * pca.components_[0, :]
# steps along second component
second = multiples[:, np.newaxis] * pca.components_[1, :]
# combine
grid = first[np.newaxis, :, :] + second[:, np.newaxis, :]
flat_grid = grid.reshape(-1, data.shape[1])

# title for the plots
titles = ['SVC with rbf kernel',
          'SVC (linear kernel) with rbf feature map\n n_components=100']

pl.figure(figsize=(12, 5))
pl.set_cmap(pl.cm.Paired)


# predict and plot
for i, clf in enumerate((kernel_svm, approx_kernel_svm)):
    # Plot the decision boundary. For that, we will asign a color to each
    # point in the mesh [x_min, m_max]x[y_min, y_max].
    pl.subplot(1, 2, i + 1)
    Z = clf.predict(flat_grid)

    # Put the result into a color plot
    Z = Z.reshape(grid.shape[:-1])
    pl.set_cmap(pl.cm.Paired)
    pl.contourf(multiples, multiples, Z)
    pl.axis('off')
示例#54
0
文件: lab4_1.py 项目: borsh/moevm_cg
    nbin = len(unI)
    h  = histogram(im, unI)
    P = h[0].astype(float)/sum(h[0])
    
    w = cumsum(P)
    nbin = len(P)
    mu = cumsum(arange(1, nbin+1) * P)
    sigma2B = (mu[-1] * w[1:-1] - mu[1:-1])** 2 / w[1:-1]/(1-w[1:-1])
    idx = where(sigma2B == max(sigma2B))[0][0]
    return h[1][idx]

# ------------------------------------------------------------------------------
    
im = array(Image.open('textures/structure/015.jpg').convert("L")) / 255.
bg = ndimage.grey_opening(im, footprint = circle(5))
pb.set_cmap(pb.cm.gray)

pb.figure()
pb.title("Original")
pb.imshow(im,vmin=0, vmax=1)
pb.savefig('result/structure/001.png', dpi=150)    

imbgadj = imadjust(im)
pb.figure()
pb.title("Normalized")
pb.imshow(imbgadj, vmin = 0, vmax=1)
pb.savefig('result/structure/002.png', dpi=150)    

t = otsu(imbgadj)
print t
segm = imbgadj > t + 0.12
    import sys
    import pylab as plt
    import cv2
    s0, s1 = 100, 100
    arr = np.zeros((s0, s1))
    # draw shape:
    arr[10:70, 20] = 1
    arr[30, 2:99] = 1
    # ellipse
    cv2.ellipse(arr, (20, 20), (30, 30), 0, 10, 200, 1)
    # remove few points from ellipse:
    arr[30:50, 30:50] *= np.random.rand(20, 20) > 0.2
    # add noise
    arr += np.random.rand(s0, s1) > 0.95
    contours = polylinesFromBinImage(arr)

    if 'no_window' not in sys.argv:
        plt.figure(0)
        plt.imshow(arr, interpolation='none')

        plt.figure(1)
        for n, c in enumerate(contours):
            if len(c) > 1:
                x = c[:, 0]
                y = c[:, 1]
                plt.plot(x, y, linewidth=3)
                plt.text(x[-1], y[-1], str(n + 1))
        plt.imshow(arr, interpolation='none')
        plt.set_cmap('gray')
        plt.show()
示例#56
0
def plot_wfront(mwf, title_fig, isHlog, isVlog, i_x_min, i_y_min, orient, onePlot, bPlotPha=None):
    """
        Plot 2D wavefront (a slice).
        
        :param mwf: 2D wavefront structure 
        :param title_fig: Figure title
        :param isHlog: if True, plot the horizontal cut in logarithmic scale
        :param isVlog: if True, plot the vertical cut in logarithmic scale
        :param i_x_min: Intensity threshold for horizontral cut, i.e. x-axis  limits are [min(where(i_x<i_x_min):max(where(i_x<i_x_min)]
        :param i_y_min: Intensity threshold for vertical cut,
        :param orient: 'x' for returning horizontal cut, 'y' for vertical cut
        :param onePlot: if True, put intensity map and plot of cuts on one plot, as  subplots
        :param bPlotPha: if True, plot the cuts of WF phase
        :return: 2-column array containing horizontal or vertical cut data in dependence of 'orient' parameter
        """
    if isHlog:
        print 'FWHMx[um]:', calculate_fwhm_x(mwf) * 1e6
    else:
        print 'FWHMx [mm]:', calculate_fwhm_x(mwf) * 1e3
    if isVlog:
        print 'FWHMy [um]:', calculate_fwhm_y(mwf) * 1e6
    else:
        print 'FWHMy [mm]:', calculate_fwhm_y(mwf) * 1e3
    [xc, yc] = calculate_peak_pos(mwf)
    print 'Coordinates of center, [mm]:', xc * 1e3, yc * 1e3
    ii = mwf.get_intensity(slice_number=0, polarization='vertical')
    imax = numpy.max(ii)
    [nx, ny, xmin, xmax, ymin, ymax] = get_mesh(mwf)
    ph = mwf.get_phase(slice_number=0, polarization='vertical')
    print 'stepX, stepY [um]:', -(xmin - xmax) / (nx - 1) * 1e6, -(ymin - ymax) / (ny - 1) * 1e6, '\n'
    xa = numpy.linspace(xmin, xmax, nx)
    ya = numpy.linspace(ymin, ymax, ny)

    pylab.figure(figsize=(15,10))
    if onePlot:
        pylab.subplot(221)
    [x1, x2, y1, y2] = mwf.get_limits()
    pylab.imshow(ii, extent=[x1 * 1e3, x2 * 1e3, y1 * 1e3, y2 * 1e3])
    pylab.set_cmap('bone')
    pylab.set_cmap('hot')
    pylab.axis('auto')
    pylab.colorbar()
    pylab.xlabel('x (mm)')
    pylab.ylabel('y (mm)')
    pylab.title(title_fig)

    irr_y = ii[:, numpy.max(numpy.where(xa == xc))]
    irr_x = ii[numpy.max(numpy.where(ya == yc)), :]
    pha_y = ph[:, numpy.max(numpy.where(xa == xc))]
    pha_x = ph[numpy.max(numpy.where(ya == yc)), :]

    if onePlot:
        pylab.subplot(222)
    else:
        pylab.figure()
    if isVlog and max(irr_y) > 0:
        #ya = ya*1e6
        pylab.semilogy(ya * 1e6, irr_y, '-vk')
        pylab.xlabel('(um)')
        pylab.xlim(min(ya[numpy.where(irr_y >= imax * i_y_min)])
                   * 1e6, max(ya[numpy.where(irr_y >= imax * i_y_min)]) * 1e6)
    else:
        #ya = ya*1e3
        pylab.plot(ya * 1e3, irr_y)
        pylab.xlabel('y (mm)')
        pylab.xlim(min(ya[numpy.where(irr_y >= imax * i_y_min)])
                   * 1e3, max(ya[numpy.where(irr_y >= imax * i_y_min)]) * 1e3)
    pylab.title('Vertical cut,  xc = ' + str(int(xc * 1e6)) + ' um')
    pylab.grid(True)
    if onePlot:
        pylab.subplot(223)
    else:
        pylab.figure()
    if isHlog and max(irr_x) > 0:
        #xa = xa*1e6
        pylab.semilogy(xa * 1e6, irr_x, '-vr')
        pylab.xlabel('x, (um)')
        pylab.xlim(min(xa[numpy.where(irr_x >= imax * i_x_min)])
                   * 1e6, max(xa[numpy.where(irr_x >= imax * i_x_min)]) * 1e6)
    else:
        #xa = xa*1e3
        pylab.plot(xa * 1e3, irr_x)
        pylab.xlabel('x (mm)')
        pylab.xlim(min(xa[numpy.where(irr_x >= imax * i_x_min)])
                   * 1e3, max(xa[numpy.where(irr_x >= imax * i_x_min)]) * 1e3)
    pylab.title('Horizontal cut, yc = ' + str(int(yc * 1e6)) + ' um')
    pylab.grid(True)

    if bPlotPha:
        pylab.figure()
        pylab.plot(ya * 1e3, pha_y, '-ok')
        pylab.xlim(min(ya[numpy.where(irr_y >= imax * i_y_min)])
                   * 1e3, max(ya[numpy.where(irr_y >= imax * i_y_min)]) * 1e3)
        pylab.ylim(-numpy.pi, numpy.pi)
        pylab.xlabel('y (mm)')
        pylab.title('phase, vertical cut, x=0')
        pylab.grid(True)

        pylab.figure()
        pylab.plot(xa * 1e3, pha_x, '-or')
        pylab.xlim(min(xa[numpy.where(irr_x >= imax * i_x_min)])
                   * 1e3, max(xa[numpy.where(irr_x >= imax * i_x_min)]) * 1e3)
        pylab.ylim(-numpy.pi, numpy.pi)
        pylab.xlabel('x (mm)')
        pylab.title('phase, horizontal cut, y=0')
        pylab.grid(True)

    if orient == 'x':
        dd = numpy.zeros(shape=(nx, 2), dtype=float)
        dd[:, 0] = xa
        #for idx in range(nx): dd[idx, 1] = sum(ii[:, idx])
        dd[:, 1] = irr_x
    if orient == 'y':
        dd = numpy.zeros(shape=(ny, 2), dtype=float)
        dd[:, 0] = ya
        #for idx in range(ny): dd[idx, 1] = sum(ii[idx, :])
        dd[:, 1] = irr_y
    return dd
示例#57
0
文件: wfrutils.py 项目: meyerann/WPG
def plot_wfront(mwf, title_fig, isHlog, isVlog, i_x_min, i_y_min, orient, onePlot, bPlotPha=None,saveDir=None):
    """
        Plot 2D wavefront (a slice).
        
        :param mwf: 2D wavefront structure 
        :param title_fig: Figure title
        :param isHlog: if True, plot the horizontal cut in logarithmic scale
        :param isVlog: if True, plot the vertical cut in logarithmic scale
        :param i_x_min: Intensity threshold for horizontral cut, i.e. x-axis  limits are [min(where(i_x<i_x_min):max(where(i_x<i_x_min)]
        :param i_y_min: Intensity threshold for vertical cut,
        :param orient: 'x' for returning horizontal cut, 'y' for vertical cut
        :param onePlot: if True, put intensity map and plot of cuts on one plot, as  subplots
        :param bPlotPha: if True, plot the cuts of WF phase
        :return: 2-column array containing horizontal or vertical cut data in dependence of 'orient' parameter
        """
    if isHlog:
        print 'FWHMx[um]:', calculate_fwhm_x(mwf) * 1e6
    else:
        print 'FWHMx [mm]:', calculate_fwhm_x(mwf) * 1e3
    if isVlog:
        print 'FWHMy [um]:', calculate_fwhm_y(mwf) * 1e6
    else:
        print 'FWHMy [mm]:', calculate_fwhm_y(mwf) * 1e3
    [xc, yc] = calculate_peak_pos(mwf)
    print 'Coordinates of center, [mm]:', xc * 1e3, yc * 1e3
    ii = mwf.get_intensity(slice_number=0, polarization='horizontal')
    # [LS14-06-02] 
    # for 2D Gaussian the intrincic SRW GsnBeam wave field units Nph/mm^2/0.1%BW 
    # to get fluence W/mm^2 
    # (Note: coherence time for Gaussian beam duration should be specified):  
    ii = ii*mwf.params.photonEnergy/J2EV#*1e3
    imax = numpy.max(ii)
    [nx, ny, xmin, xmax, ymin, ymax] = get_mesh(mwf)
    ph = mwf.get_phase(slice_number=0, polarization='horizontal')
    dx = (xmax-xmin)/(nx-1); dy = (ymax-ymin)/(ny-1)
    print 'stepX, stepY [um]:', dx * 1e6, dy * 1e6, '\n'
    xa = numpy.linspace(xmin, xmax, nx); 
    ya = numpy.linspace(ymin, ymax, ny); 

    if mwf.params.wEFieldUnit <> 'arbitrary':
        print 'Total power (integrated over full range): %g [GW]' %(ii.sum(axis=0).sum(axis=0)*dx*dy*1e6*1e-9) 
        print 'Peak power calculated using FWHM:         %g [GW]' %(imax*1e-9*1e6*2*numpy.pi*(calculate_fwhm_x(mwf)/2.35)*(calculate_fwhm_y(mwf)/2.35))
        print 'Max irradiance: %g [GW/mm^2]'    %(imax*1e-9) 
        label4irradiance = 'Irradiance (W/$mm^2$)'
    else:
        ii = ii / imax
        label4irradiance = 'Irradiance (a.u.)'
    
    pylab.figure(figsize=(21,6))
    if onePlot:
        pylab.subplot(131)
    [x1, x2, y1, y2] = mwf.get_limits()
    pylab.imshow(ii, extent=[x1 * 1e3, x2 * 1e3, y1 * 1e3, y2 * 1e3])
    pylab.set_cmap('bone')
    #pylab.set_cmap('hot')
    pylab.axis('tight')
    #pylab.colorbar(orientation='horizontal')
    pylab.xlabel('x (mm)')
    pylab.ylabel('y (mm)')
    pylab.title(title_fig)

    irr_y = ii[:, numpy.max(numpy.where(xa == xc))]
    irr_x = ii[numpy.max(numpy.where(ya == yc)), :]
    pha_y = ph[:, numpy.max(numpy.where(xa == xc))]
    pha_x = ph[numpy.max(numpy.where(ya == yc)), :]

    if onePlot:
        pylab.subplot(132)
    else:
        pylab.figure()
    if isVlog and numpy.max(irr_y) > 0:
        #ya = ya*1e6
        pylab.semilogy(ya * 1e6, irr_y, '-vk')
        pylab.xlabel('(um)')
        pylab.xlim(numpy.min(ya[numpy.where(irr_y >= imax * i_y_min)])
                   * 1e6, numpy.max(ya[numpy.where(irr_y >= imax * i_y_min)]) * 1e6)
    else:
        #ya = ya*1e3
        pylab.plot(ya * 1e3, irr_y)
        pylab.xlabel('y (mm)')
        pylab.xlim(numpy.min(ya[numpy.where(irr_y >= imax * i_y_min)])
                   * 1e3, numpy.max(ya[numpy.where(irr_y >= imax * i_y_min)]) * 1e3)
    pylab.ylim(0,numpy.max(ii)*1.1)
    pylab.ylabel(label4irradiance)
    pylab.title('Vertical cut,  xc = ' + str(int(xc * 1e6)) + ' um')
    pylab.grid(True)
    if onePlot:
        pylab.subplot(133)
    else:
        pylab.figure()
    if isHlog and numpy.max(irr_x) > 0:
        #xa = xa*1e6
        pylab.semilogy(xa * 1e6, irr_x, '-vr')
        pylab.xlabel('x, (um)')
        pylab.xlim(numpy.min(xa[numpy.where(irr_x >= imax * i_x_min)])
                   * 1e6, numpy.max(xa[numpy.where(irr_x >= imax * i_x_min)]) * 1e6)
    else:
        #xa = xa*1e3
        pylab.plot(xa * 1e3, irr_x)
        pylab.xlabel('x (mm)')
        pylab.xlim(numpy.min(xa[numpy.where(irr_x >= imax * i_x_min)])
                   * 1e3, numpy.max(xa[numpy.where(irr_x >= imax * i_x_min)]) * 1e3)
    pylab.ylim(0,numpy.max(ii)*1.1)
    pylab.ylabel(label4irradiance)
    pylab.title('Horizontal cut, yc = ' + str(int(yc * 1e6)) + ' um')
    pylab.grid(True)
    
    if saveDir is not None: 
        epsname="%s/%s.eps" % (saveDir,title_fig.split("at ")[1].split(" m")[0])
        pylab.savefig(epsname)
        #pylab.close(epsfig)
    
    if bPlotPha:
        pylab.figure()
        pylab.plot(ya * 1e3, pha_y, '-ok')
        pylab.xlim(numpy.min(ya[numpy.where(irr_y >= imax * i_y_min)])
                   * 1e3, numpy.max(ya[numpy.where(irr_y >= imax * i_y_min)]) * 1e3)
        pylab.ylim(-numpy.pi, numpy.pi)
        pylab.xlabel('y (mm)')
        pylab.title('phase, vertical cut, x=0')
        pylab.grid(True)

        pylab.figure()
        pylab.plot(xa * 1e3, pha_x, '-or')
        pylab.xlim(numpy.min(xa[numpy.where(irr_x >= imax * i_x_min)])
                   * 1e3, numpy.max(xa[numpy.where(irr_x >= imax * i_x_min)]) * 1e3)
        pylab.ylim(-numpy.pi, numpy.pi)
        pylab.xlabel('x (mm)')
        pylab.title('phase, horizontal cut, y=0')
        pylab.grid(True)

    if orient == 'x':
        dd = numpy.zeros(shape=(nx, 2), dtype=float)
        dd[:, 0] = xa
        #for idx in range(nx): dd[idx, 1] = sum(ii[:, idx])
        dd[:, 1] = irr_x
    if orient == 'y':
        dd = numpy.zeros(shape=(ny, 2), dtype=float)
        dd[:, 0] = ya
        #for idx in range(ny): dd[idx, 1] = sum(ii[idx, :])
        dd[:, 1] = irr_y
    return dd
示例#58
0
文件: a2.py 项目: grasingerm/statsmek
    delta_E = 2.0 * S[k] * sum(S[nn] for nn in nbr[k])
    if random.uniform(0.0, 1.0) < math.exp(-beta * delta_E):
        S[k] *= -1
        Energy += delta_E
    E.append(Energy)
    if step % math.floor(nsteps / 10) == 0:
        print 'step: ', step

print 'mean energy per spin:', sum(E) / float(len(E) * N)

f = open(filename, 'w')
for a in S:
   f.write(str(a) + '\n')
f.close()

def x_y(k, L):
    y = k // L
    x = k - y * L
    return x, y

conf = [[0 for x in range(L)] for y in range(L)]
for k in range(N):
    x, y = x_y(k, L)
    conf[x][y] = S[k]

pylab.imshow(conf, extent=[0, L, 0, L], interpolation='nearest')
pylab.set_cmap('hot')
pylab.title('Local_'+ str(T) + '_' + str(L))
pylab.savefig('plot_A2_local_'+ str(T) + '_' + str(L)+ '.png')
pylab.show()
示例#59
0
#run pyfusion/examples/small_65.py
import numpy as np
import pylab as pl

size_scale=30

cind = 0
colorset=('b,g,r,c,m,y,k,orange,purple,lightgreen,gray'.split(',')) # to be rotated

DA65MPH=DA('DA65MP2010HMPno612b5_M_N_fmax.npz',load=1)
DA65MPH.extract(locals())
pyfusion.config.set('Plots',"FT_Axis","[0.5,4,0,80000]")
"""
run -i pyfusion/examples/plot_specgram.py shot_number=65139 channel_number=1 NFFT=1024
pl.set_cmap(cm.gray_r)
pl.clim(-60,-0)
"""
sc_kw=dict(edgecolor='k',linewidth = 0.3)

for n in (-1,0,1):
    for m in (-2, -1,1,2):
        w =np.where((N==n) & (M==m) & (_binary_svs < 99) & bw(freq,frlow,frhigh))[0]
        if len(w) != 0:
            col = colorset[cind]
            pl.scatter(t_mid[w], freq[w], size_scale*amp[w], color=col, label='m,n=~{m},{n}'.format(m=m, n=n),**sc_kw)
            cind += 1
w=where((_binary_svs < 99) & bw(freq,frlow,frhigh)  & bw(MM, 0,130) & (NN== -4))[0]
col = colorset[cind] ; cind+=1
m = 1; n=0
pl.scatter(t_mid[w], freq[w], size_scale*amp[w], color=col, label='m,n=~{m},{n}'.format(m=m, n=n),**sc_kw)
def rthetaz_pop():
# Creates a 1.e3 x 1.e3 x 1.e3 array of random numbers
    randa=scipy.random.random_sample(size=(10000,3))

# IAU Galactic constants
    R0 = 8500.0
    V0 = 220.0

# R is the radius, phi is the azimuth 
# Populate the cylinder
    phi = -math.pi + 2*math.pi*randa[:,0]
    R = 25000.*randa[:,1]
    z = -100. + 200*randa[:,2]

    # Transform the the (R, phi, z) into cartesian.  To be consistent with l,b standards:
    # coordinates (X,Y,Z), centred on the Galactic Centre. +Y should point towards the Sun
    # +X should point in the direction of rotation, and
    # +Z should point above the plane (positive b, North Galactic Pole).
    # Defined this way, phi is zero at the Sun-Centre line and increases in the direction of Galactic rotation.
    x = R * np.sin(phi) 
    y = R * np.cos(phi) 
    z = z
    
    print "Min x: %.2f   Max x: %.2f" % (min(x),max(x))
    print "Min y: %.2f   Max y: %.2f" % (min(y),max(y))
    print "Min z: %.2f   Max z: %.2f" % (min(z),max(z))

    # Make a spiral of the model used for velocity field
    X1 = np.arange(-10000, 10000, 100)
    Y1 = np.arange(-10000, 10000, 100)
    X1, Y1 = np.meshgrid(X1, Y1)
    R1 =np.sqrt(X1**2 + Y1**2)
    Z1 = 1/np.tan(math.pi/2) * R1

    # To Transform to the Galactic positions Y is along the Sun-GC line increasing away from the GC
    yprime=R0-1.0*y  # Shift to the position of the Sun
    d = np.sqrt(yprime**2 + x**2 + z**2)
       
    lat = np.degrees(np.arcsin(z/d))
    lon = np.degrees(np.arctan2(x,yprime))
    for i in range(len(R)):
        if R[i] >= R0 * abs(np.sin(np.radians(lon[i]))) -10. and R[i] <= R0 * abs(np.sin(np.radians(lon[i]))) +10.0:
            print " %.2f  %.2f %.2f %.2f %.2f" % (R[i], lon[i], d[i], x[i],y[i])
            print lon[i],np.degrees(phi[i])


    # Get the LSR velocity
    # NOTE phi is in radians whereas lon, and lat are in degrees
    vel = vlsr(R,z,d,lon,lat,phi)   # Standard Galactic rotation
    #vel = vnoncirc(R,z,d,lon,lat,phi)
    #vel = vel2(R,z,d,lon,lat,phi)    # Burton & Liszt (1978) tilted disk

    # Plot the distribution of points on a 3d plot
    fig = pylab.figure(2)
    pylab.clf()
    ax = Axes3D(fig)
    ax.scatter(x,y,z,marker='o',s=40, c=vel)
    surf = ax.plot_surface(X1, Y1, Z1,linewidth=0, antialiased=False)

    ax.set_xlabel('X (pc)')
    ax.set_ylabel('Y (pc)')
    ax.set_zlabel('Z (pc)')

    # Plot the x, y disk
    pylab.figure(1)
    pylab.clf()
    CS=pylab.scatter(x,y,s=20,c=vel)
    pylab.clim(-250,250)
    pylab.set_cmap('jet')
    CB=pylab.colorbar(CS)
    pylab.xlim(-25000,25000)
    pylab.ylim(-25000,25000)
    #pylab.contour(x,y,xi)
    pylab.xlabel("X (pc)")
    pylab.minorticks_on()
    pylab.ylabel("Y (pc)")
    pylab.savefig("sim_xyv.pdf")

    # Plot the l,b,v clouds
    pylab.figure(2)
    pylab.clf()
    CS=pylab.scatter(lon,lat,s=40,c=vel)
    pylab.clim(-250,250)
    pylab.set_cmap('jet')
    CB=pylab.colorbar(CS)
    pylab.xlim(180,-180)
    pylab.ylim(-5,5)
    pylab.xlabel("GALACTIC Longitude (deg)")
    pylab.ylabel("GALACTIC Latitude (deg)")
    pylab.savefig("sim_lb.pdf")

    return lon,lat,vel