def getrmsdiff(ref_file_glob, test_file_glob, columns): refFiles = [] testFiles = [] #print "I'm in the function and the globs are %s and %s" %(ref_file_glob,test_file_glob) refFiles.extend(glob.glob(ref_file_glob)) testFiles.extend(glob.glob(test_file_glob)) refTrigs = SnglInspiralUtils.ReadSnglInspiralFromFiles(refFiles) testTrigs = SnglInspiralUtils.ReadSnglInspiralFromFiles(testFiles) if len(refTrigs) != len(testTrigs): #print "unequal number of triggers: %d %d" % (len(refTrigs), len(testTrigs)) meandiff = ["NaN"] else: meandiff = [] for c in columns: refcolumn = refTrigs.get_column(c) testcolumn = testTrigs.get_column(c) tmpmeandiff = sqrt(mean(pow(refcolumn - testcolumn, 2.0))) meandiff.append(tmpmeandiff) #print "%s %s" % (c,meandiff) return len(refTrigs), len(testTrigs), meandiff
def get_coincs_from_coire(self, files, stat='snr'): """ uses CoincInspiralUtils to get data from old-style (coire'd) coincs """ coincTrigs = CoincInspiralUtils.coincInspiralTable() inspTrigs = SnglInspiralUtils.ReadSnglInspiralFromFiles(files, \ mangle_event_id = True,verbose=None) statistic = CoincInspiralUtils.coincStatistic(stat, None, None) coincTrigs = CoincInspiralUtils.coincInspiralTable( inspTrigs, statistic) try: inspInj = SimInspiralUtils.ReadSimInspiralFromFiles(files) coincTrigs.add_sim_inspirals(inspInj) #FIXME: name the exception! except: pass #now extract the relevant information into CoincData objects for ctrig in coincTrigs: coinc = CoincData() coinc.set_ifos(ctrig.get_ifos()[1]) coinc.set_gps( dict( (trig.ifo, LIGOTimeGPS(trig.get_end())) for trig in ctrig)) coinc.set_snr( dict((trig.ifo, getattr(ctrig, trig.ifo).snr) for trig in ctrig)) coinc.set_effDs( dict((trig.ifo, getattr(ctrig, trig.ifo).eff_distance) for trig in ctrig)) coinc.set_masses(dict((trig.ifo,getattr(ctrig,trig.ifo).mass1) for trig in ctrig), \ dict((trig.ifo,getattr(ctrig,trig.ifo).mass2) for trig in ctrig)) try: effDs_inj = {} for ifo in coinc.ifo_list: if ifo == 'H1': effDs_inj[ifo] = getattr(ctrig, 'sim').eff_dist_h elif ifo == 'L1': effDs_inj[ifo] = getattr(ctrig, 'sim').eff_dist_l elif ifo == 'V1': effDs_inj[ifo] = getattr(ctrig, 'sim').eff_dist_v dist_inj = getattr(ctrig, 'sim').distance coinc.set_inj_params(getattr(ctrig,'sim').latitude,getattr(ctrig,'sim').longitude, \ getattr(ctrig,'sim').mass1,getattr(ctrig,'sim').mass2,dist_inj,effDs_inj) coinc.is_injection = True #FIXME: name the exception! except: pass self.append(coinc)
def plot_triggers(trig_file, center_time, center_time_ns, title, dest, new_snr=False): start_time = center_time - 10 end_time = center_time + 10 triggers = SnglInspiralUtils.ReadSnglInspiralFromFiles([trig_file]) triggers = [ t for t in triggers if t.end_time >= start_time and t.end_time < end_time ] xs = [t.end_time + t.end_time_ns * 1.0e-9 - center_time for t in triggers] ys = new_snr and [get_new_snr(t) for t in triggers] or [t.snr for t in triggers] zs = [t.tau0 for t in triggers] pylab.figure() pylab.scatter(xs, ys, c=zs, edgecolor='none') if max(ys) > 10: pylab.yscale('log') pylab.ylim(min(ys), max(ys)) pylab.xlabel('Time (s since %.3f)' % center_time) pylab.ylabel(new_snr and 'New SNR' or 'SNR') pylab.title(title) cb = pylab.colorbar() cb.ax.set_ylabel('Tau 0') pylab.savefig(dest) loudest_snr = max(ys) pos = 0 for i in range(len(ys)): if ys[i] == loudest_snr: pos = i # Find the original trigger so we can report on it's chisq, etc orig = [ t for t in triggers if t.end_time == center_time and t.end_time_ns == center_time_ns ][0] return orig.chisq, get_new_snr(orig), triggers[pos].end_time, triggers[ pos].end_time_ns, triggers[pos].snr
def readCoinc(CoincFile): ''' Reads the coinc file. Finds the highest SNR IFO and returns the point estimates of the same. ''' coinc = SnglInspiralUtils.ReadSnglInspiralFromFiles(CoincFile) ifo=[]; mass1=[]; mass2=[]; chi1=[]; snr= np.array([]) for row in coinc: ifo.append(row.ifo) mass1.append(row.mass1) mass2.append(row.mass2) chi1.append(row.spin1z) snr = np.append(snr, row.snr) index = np.argmax(snr) ## To return highest SNR IFO point estimates return [mass1[index], mass2[index], chi1[index], snr[index], str(ifo[index])]
# warn_msg if no_bkg_frgnd: warn_msg = 'No foreground or background in files:\n' for idx in sorted(no_bkg_frgnd.items(), key=itemgetter(1), reverse=True): warn_msg = warn_msg + ' ' + os.path.basename(corsefiles.pop( idx[1])) + '\n' # check if still have a corsefiles list; if all the files that were globbed # don't have foreground and background, just make a generic plot with # warn_msg on it; this avoids future errors if not corsefiles: warn_msg = warn_msg + 'These were all the globbed files.' sys.exit(0) coincStat = CoincInspiralUtils.coincStatistic("far") for thisfile in corsefiles: insptrigs = SnglInspiralUtils.ReadSnglInspiralFromFiles([thisfile]) coincT[thisfile] = CoincInspiralUtils.coincInspiralTable( insptrigs, coincStat) coincT[thisfile].sort() # sort by descending FAN # if this file has no_bkg, but does have foreground, get the ifo coincident # type from the first foreground trigger if thisfile in no_bkg: coincifos[thisfile] = coincT[thisfile][0].get_ifos()[0] #for thisfile in corsefiles: # if NormTime[corsefiles[0]] != NormTime[thisfile]: # print >> sys.stderr, "Can't combine experiments with " + \ # "different analysis times." # sys.exit( 1 ) maxFANs = [] # for storing max FAN of bkg (the dict is hard to sort by value) FANc = [] # for storing the combined FANs of foreground triggers zero_fanc = []
(events.L1.get_effective_snr())**2) return {"H1L1_eff_snr": H1L1_eff_snr} elif hasattr(events, "H2") and hasattr(events, "L1"): H2L1_eff_snr = math.sqrt((events.H2.get_effective_snr())**2 + (events.L1.get_effective_snr())**2) return {"H2L1_eff_snr": H2L1_eff_snr} statistic = CoincInspiralUtils.coincStatistic(opts.statistic) ############################################################################### # read in zero lag coinc triggers zerolagTriggers = None zerolagTriggers = SnglInspiralUtils.ReadSnglInspiralFromFiles( zerolagfiles, mangle_event_id=True) # construct the zero lag coincs zerolagCoincTriggers= \ CoincInspiralUtils.coincInspiralTable(zerolagTriggers, statistic) slidesTriggers = None slidesTriggers = SnglInspiralUtils.ReadSnglInspiralFromFiles( slidesfiles, mangle_event_id=True) # construct the time slides coincs for single. slidesCoincs= \ CoincInspiralUtils.coincInspiralTable(slidesTriggers, statistic) # Construct the time slides for double in triple times. if opts.coincs == "H1H2":
def investigateTimeseries(self, triggerFiles, inj, ifoName, stage, number ): """ Investigate inspiral triggers and create a time-series of the SNRs around the injected time @param triggerFiles: List of files containing the inspiral triggers @param inj: the current missed injection @param ifoName: the IFO for which the plot is made @param stage: the name of the stage (FIRST, SECOND) @param number: the consecutive number for this inspiral followup """ # read the inspiral file(s) if self.verbose: print "Processing INSPIRAL triggers from files ", triggerFiles snglTriggers = SnglInspiralUtils.ReadSnglInspiralFromFiles( \ triggerFiles , verbose=False) # create a figure and initialize some lists fig=figure() foundSet = set() loudest_details = {} noTriggersFound = True if snglTriggers is None: # put message on the plot instead self.putText( 'No sngl_inspiral triggers in %s' % str(triggerFiles)) else: # selection segment timeInjection = self.getTimeSim( inj ) segSmall = segments.segment( timeInjection-self.injection_window, \ timeInjection+self.injection_window ) segLarge = segments.segment( timeInjection-self.time_window, \ timeInjection+self.time_window ) # create coincidences for THINCA stage coincTriggers = None if 'THINCA' in stage: coincTriggers = CoincInspiralUtils.coincInspiralTable( snglTriggers, \ CoincInspiralUtils.coincStatistic("snr") ) selectedCoincs = coincTriggers.vetoed( segSmall ) # loop over the IFOs (although this is a plot for IFO 'ifoName') for ifo in self.colors.keys(): # get the singles for this ifo snglInspiral = snglTriggers.ifocut(ifo) # select a range of triggers selectedLarge = snglInspiral.vetoed( segLarge ) timeLarge = [ self.getTimeTrigger( sel )-timeInjection \ for sel in selectedLarge ] selectedSmall = snglInspiral.vetoed( segSmall ) timeSmall = [ self.getTimeTrigger( sel )-timeInjection \ for sel in selectedSmall ] # use the set of selected coincident triggers in the THINCA stages if coincTriggers: selectedSmall = selectedCoincs.cluster(2* self.injection_window).getsngls(ifo) timeSmall = [ self.getTimeTrigger( sel )-timeInjection \ for sel in selectedSmall ] # skip if no triggers in the large time window if len(timeLarge)==0: continue noTriggersFound = False # add IFO to this set; the injection is found for this IFO and stage if len(timeSmall)>0: foundSet.add(ifo) # record details of the loudest trigger loudest_details[ifo] = {} loudest = selectedSmall[selectedSmall.get_column('snr').argmax()] loudest_details[ifo]["snr"] = loudest.snr loudest_details[ifo]["mchirp"] = loudest.mchirp loudest_details[ifo]["eff_dist"] = loudest.eff_distance loudest_details[ifo]["chisq"] = loudest.chisq loudest_details[ifo]["timeTrigger"] = self.getTimeTrigger( loudest ) timeTrigger = self.getTimeTrigger( loudest ) vetoSegs = self.vetodict[ifoName] # plot the triggers plot( timeLarge, selectedLarge.get_column('snr'),\ self.colors[ifo]+'o', label="_nolegend_") plot( timeSmall, selectedSmall.get_column('snr'), \ self.colors[ifo]+'s', label=ifo) # draw the injection times and other stuff if noTriggersFound: self.putText( 'No triggers/coincidences found within time window') ylims=axes().get_ylim() plot( [0,0], ylims, 'g--', label="_nolegend_") plot( [-self.injection_window, -self.injection_window], ylims, 'c:',\ label="_nolegend_") plot( [+self.injection_window, +self.injection_window], ylims, 'c:',\ label="_nolegend_") self.highlightVeto( timeInjection, segLarge, ifoName, ylims ) # save the plot grid(True) legend() ylims=axes().get_ylim() axis([-self.time_window, +self.time_window, ylims[0], ylims[1]]) xlabel('time [s]') ylabel('SNR') title(stage+'_'+str(self.number)) fname = self.savePlot( stage ) close(fig) result = {'filename':fname, 'foundset':foundSet, 'loudest_details':loudest_details} return result
timefile=open(opts.gps_time_file,'r') for time in timefile: if not p.match(time): continue if float(time) in times: print 'Skipping duplicate time %s'%(time) continue print 'Read time %s'%(time) times.append(float(time)) timefile.close() starttime=min(times) endtime=max(times) if opts.single_triggers: from pylal import SnglInspiralUtils trigTable=SnglInspiralUtils.ReadSnglInspiralFromFiles([opts.single_triggers]) times=[trig.get_end() for trig in trigTable] starttime=min(times) endtime=max(times) if opts.coinc_triggers: from pylal.xlal.datatypes.ligotimegps import LIGOTimeGPS from glue.ligolw import table from glue.ligolw import lsctables from glue.ligolw import utils CoincInspiralTriggers=None doc = utils.load_filename(opts.coinc_triggers, gz=(opts.coinc_triggers or "stdin").endswith(".gz"), verbose=False) # extract the sim inspiral table try: CoincInspiralTable = \ table.get_table(doc, lsctables.CoincInspiralTable.tableName)