示例#1
0
文件: lds.py 项目: HIPS/pgmult
    def initialize_from_gaussian_lds(self, N_samples=100):
        """
        Initialize z, A, C, sigma_states using a Gaussian LDS
        :return:
        """
        from pylds.models import DefaultLDS
        init_model = DefaultLDS(n=self.n, p=self.K)

        for data in self.data_list:
            init_model.add_data(data["x"])

        print("Initializing with Gaussian LDS")
        for smpl in range(20):
            init_model.resample_model()

        # Use the init model's parameters
        self.A = init_model.A.copy()
        self.C = init_model.C[:self.K-1,:].copy()
        self.sigma_states = init_model.sigma_states.copy()
        self.mu_init = init_model.mu_init.copy()
        self.sigma_init = init_model.sigma_init.copy()

        # Use the init model's latent state sequences too
        for data, init_data in zip(self.data_list, init_model.states_list):
            data["z"] = init_data.stateseq.copy()

        # Now resample omega
        self.emission_distn.resample_omega(self.data_list)
示例#2
0
def random_model(n, p, T):
    data = np.random.randn(T, p)
    model = DefaultLDS(n, p)
    model.A = 0.99 * random_rotation(n, 0.01)
    model.C = np.random.randn(p, n)

    J, h = lds_to_dense_infoparams(model, data)
    model.add_data(data)

    return model, (J, h)
示例#3
0
def fit_lds_gibbs(seq, inputs, guessed_dim, num_update_samples):
    """Fits LDS model via Gibbs sampling and EM. Returns fitted eigenvalues."""
    if inputs is None:
        model = DefaultLDS(D_obs=1, D_latent=guessed_dim, D_input=0)
    else:
        model = DefaultLDS(D_obs=1, D_latent=guessed_dim, D_input=1)
    model.add_data(seq, inputs=inputs)
    ll = np.zeros(num_update_samples)
    # Run the Gibbs sampler
    for i in xrange(num_update_samples):
        try:
            model.resample_model()
        except AssertionError as e:
            warnings.warn(str(e), sm_exceptions.ConvergenceWarning)
            eigs = np.linalg.eigvals(model.A)
            return eigs[np.argsort(np.abs(eigs))[::-1]]
        ll[i] = model.log_likelihood()
    # Rough estimate of convergence: judge converged if the change of maximum
    # log likelihood is less than tolerance.
    recent_steps = int(num_update_samples / 10)
    tol = 1.0
    if np.max(ll[-recent_steps:]) - np.max(ll[:-recent_steps]) > tol:
        warnings.warn(
            'Questionable convergence. Log likelihood values: ' + str(ll),
            sm_exceptions.ConvergenceWarning)
    eigs = np.linalg.eigvals(model.A)
    return eigs[np.argsort(eigs.real)[::-1]]
示例#4
0
文件: dna_lds.py 项目: fivejjs/pgmult
def fit_gaussian_lds_model(Xs, Xtest, D_gauss_lds, N_samples=100):
    print("Fitting Gaussian (Raw) LDS with %d states" % D_gauss_lds)
    model = DefaultLDS(n=D_gauss_lds, p=K)

    Xs_centered = [X - np.mean(X, axis=0)[None,:] + 1e-3*np.random.randn(*X.shape) for X in Xs]
    for X in Xs_centered:
        model.add_data(X)

    # TODO: Get initial pred ll
    init_results = (0, None, np.nan, np.nan, np.nan)


    def resample():
        tic = time.time()
        model.resample_model()
        toc = time.time() - tic

        # Monte Carlo sample to get pi density implied by Gaussian LDS
        Tpred = Xtest.shape[0]
        Npred = 1000

        preds = model.sample_predictions(Xs_centered[0], Tpred, Npred=Npred)

        # Convert predictions to a distribution by finding the
        # largest dimension for each predicted Gaussian.
        # Preds is T x K x Npred, inds is TxNpred
        inds = np.argmax(preds, axis=1)
        pi = np.array([np.bincount(inds[t], minlength=K) for t in xrange(Tpred)]) / float(Npred)
        assert np.allclose(pi.sum(axis=1), 1.0)

        pi = np.clip(pi, 1e-8, 1.0)
        pi /= pi.sum(axis=1)[:,None]

        # Compute the log likelihood under pi
        pred_ll = np.sum([Multinomial(weights=pi[t], K=K).log_likelihood(Xtest[t][None,:])
                          for t in xrange(Tpred)])

        return toc, None, np.nan, \
            np.nan, \
            pred_ll

    n_retries = 0
    max_attempts = 5
    while n_retries < max_attempts:
        try:
            times, samples, lls, test_lls, pred_lls = \
                map(np.array, zip(*([init_results] + [resample() for _ in progprint_xrange(N_samples)])))
            timestamps = np.cumsum(times)
            return Results(lls, test_lls, pred_lls, samples, timestamps)
        except Exception as e:
            print("Caught exception: ", e.message)
            print("Retrying")
            n_retries += 1

    raise Exception("Failed to fit the Raw Gaussian LDS model in %d attempts" % max_attempts)
示例#5
0
def random_model(n, p, d, T):
    data = np.random.randn(T, p)
    inputs = np.random.randn(T, d)
    model = DefaultLDS(p, n, d)
    model.A = 0.99 * random_rotation(n, 0.01)
    model.B = 0.1 * np.random.randn(n, d)
    model.C = np.random.randn(p, n)
    model.D = 0.1 * np.random.randn(p, d)

    J, h = lds_to_dense_infoparams(model, data, inputs)
    model.add_data(data, inputs=inputs)

    return model, (J, h)
示例#6
0
文件: lds.py 项目: yinsenm/pgmult
    def initialize_from_gaussian_lds(self, N_samples=100):
        """
        Initialize z, A, C, sigma_states using a Gaussian LDS
        :return:
        """
        from pylds.models import DefaultLDS
        init_model = DefaultLDS(n=self.n, p=self.K)

        for data in self.data_list:
            init_model.add_data(data["x"])

        print("Initializing with Gaussian LDS")
        for smpl in range(20):
            init_model.resample_model()

        # Use the init model's parameters
        self.A = init_model.A.copy()
        self.C = init_model.C[:self.K - 1, :].copy()
        self.sigma_states = init_model.sigma_states.copy()
        self.mu_init = init_model.mu_init.copy()
        self.sigma_init = init_model.sigma_init.copy()

        # Use the init model's latent state sequences too
        for data, init_data in zip(self.data_list, init_model.states_list):
            data["z"] = init_data.stateseq.copy()

        # Now resample omega
        self.emission_distn.resample_omega(self.data_list)
示例#7
0
def fit_gaussian_lds_model(Xs, N_samples=100):
    testmodel = DefaultLDS(n=D, p=K)

    for X in Xs:
        testmodel.add_data(X)

    samples = []
    lls = []
    for smpl in progprint_xrange(N_samples):
        testmodel.resample_model()

        samples.append(testmodel.copy_sample())
        lls.append(testmodel.log_likelihood())

    lls = np.array(lls)
    return lls
示例#8
0
def random_model(n, p, T):
    data = np.random.randn(T, p)
    model = DefaultLDS(n, p)
    model.A = 0.99 * random_rotation(n, 0.01)
    model.C = np.random.randn(p, n)

    J, h = lds_to_dense_infoparams(model, data)
    model.add_data(data)

    return model, (J, h)
示例#9
0
def fit_gaussian_lds_model(Xs, N_samples=100):
    testmodel = DefaultLDS(n=D,p=K)

    for X in Xs:
        testmodel.add_data(X)

    samples = []
    lls = []
    for smpl in progprint_xrange(N_samples):
        testmodel.resample_model()

        samples.append(testmodel.copy_sample())
        lls.append(testmodel.log_likelihood())

    lls = np.array(lls)
    return lls
示例#10
0
from pybasicbayes.distributions import Regression, DiagonalRegression
from pybasicbayes.util.text import progprint_xrange

from pylds.models import LDS, DefaultLDS

npr.seed(0)

# Parameters
D_obs = 1
D_latent = 2
D_input = 0
T = 2000

# Simulate from an LDS with diagonal observation noise
truemodel = DefaultLDS(D_obs, D_latent, D_input, sigma_obs=0.1 * np.eye(D_obs))
inputs = np.random.randn(T, D_input)
data, stateseq = truemodel.generate(T, inputs=inputs)

# Fit with an LDS with diagonal observation noise
diag_model = LDS(dynamics_distn=Regression(
    nu_0=D_latent + 2,
    S_0=D_latent * np.eye(D_latent),
    M_0=np.zeros((D_latent, D_latent + D_input)),
    K_0=(D_latent + D_input) * np.eye(D_latent + D_input)),
                 emission_distn=DiagonalRegression(D_obs, D_latent + D_input))
diag_model.add_data(data, inputs=inputs)

# Also fit a model with a full covariance matrix
full_model = DefaultLDS(D_obs, D_latent, D_input)
full_model.add_data(data, inputs=inputs)
示例#11
0
import matplotlib.pyplot as plt

from pybasicbayes.distributions import Regression, DiagonalRegression
from pybasicbayes.util.text import progprint_xrange

from pylds.models import DefaultLDS, MissingDataLDS

npr.seed(0)

# Model parameters
D_obs = 4
D_latent = 4
T = 1000

# Simulate from an LDS
truemodel = DefaultLDS(D_obs, D_latent)
data, stateseq = truemodel.generate(T)

# Mask off a chunk of data
mask = np.ones_like(data, dtype=bool)
chunksz = 100
for i,offset in enumerate(range(0,T,chunksz)):
    j = i % (D_obs + 1)
    if j < D_obs:
        mask[offset:min(offset+chunksz, T), j] = False
    if j == D_obs:
        mask[offset:min(offset+chunksz, T), :] = False

# Fit with another LDS
model = MissingDataLDS(
    dynamics_distn=Regression(
示例#12
0
def fit_gaussian_lds_model(Xs, Xtest, D_gauss_lds, N_samples=100):
    print("Fitting Gaussian (Raw) LDS with %d states" % D_gauss_lds)
    model = DefaultLDS(n=D_gauss_lds, p=K)

    Xs_centered = [
        X - np.mean(X, axis=0)[None, :] + 1e-3 * np.random.randn(*X.shape)
        for X in Xs
    ]
    for X in Xs_centered:
        model.add_data(X)

    # TODO: Get initial pred ll
    init_results = (0, None, np.nan, np.nan, np.nan)

    def resample():
        tic = time.time()
        model.resample_model()
        toc = time.time() - tic

        # Monte Carlo sample to get pi density implied by Gaussian LDS
        Tpred = Xtest.shape[0]
        Npred = 1000

        preds = model.sample_predictions(Xs_centered[0], Tpred, Npred=Npred)

        # Convert predictions to a distribution by finding the
        # largest dimension for each predicted Gaussian.
        # Preds is T x K x Npred, inds is TxNpred
        inds = np.argmax(preds, axis=1)
        pi = np.array(
            [np.bincount(inds[t], minlength=K)
             for t in xrange(Tpred)]) / float(Npred)
        assert np.allclose(pi.sum(axis=1), 1.0)

        pi = np.clip(pi, 1e-8, 1.0)
        pi /= pi.sum(axis=1)[:, None]

        # Compute the log likelihood under pi
        pred_ll = np.sum([
            Multinomial(weights=pi[t], K=K).log_likelihood(Xtest[t][None, :])
            for t in xrange(Tpred)
        ])

        return toc, None, np.nan, \
            np.nan, \
            pred_ll

    n_retries = 0
    max_attempts = 5
    while n_retries < max_attempts:
        try:
            times, samples, lls, test_lls, pred_lls = \
                map(np.array, zip(*([init_results] + [resample() for _ in progprint_xrange(N_samples)])))
            timestamps = np.cumsum(times)
            return Results(lls, test_lls, pred_lls, samples, timestamps)
        except Exception as e:
            print("Caught exception: ", e.message)
            print("Retrying")
            n_retries += 1

    raise Exception("Failed to fit the Raw Gaussian LDS model in %d attempts" %
                    max_attempts)
示例#13
0
def createExactPongData(T, D_obs, Start, Per, Amp):
    exactData = np.empty((T, D_obs))
    exactData[0] = [Start] * D_obs

    for t in range(1, T):
        exactData[t] = calcDotPosition(t, Start, Per, Amp)

    return exactData


data = createExactPongData(T, D_obs, Start, Per, Amp)

#pp.pprint(data)

# Fit with another LDS
model = DefaultLDS(D_obs, D_latent)
model.add_data(data)

# Initialize with a few iterations of Gibbs
for _ in progprint_xrange(10):
    model.resample_model()


# Run EM
def update(model):
    vlb = model.meanfield_coordinate_descent_step()
    return vlb


vlbs = [update(model) for _ in progprint_xrange(50)]
示例#14
0
num_mc_samples = 10
"""Model selection / Hypothesis tesing"""
# Now calculate
# log posterior_odds = log prior_odds + log likelihood_ratio
#  - log posterior_odds         = log p(H1|DI)/P(H2|DI)
#  - log prior_odds             = log P(H1|I)/P(H2I)
#  - log likelihood_ratio       = log P(D|H1I)/P(D|H2I)
# The variable I represents all our background information

# Let's assume our prior belief in both hypotheses is equal: P(H1|I) = P(H2I)
# Now log_prior_odds is then log(1) = 0
log_prior_odds = 0

# Calculate log P(D|HI) by integrating out theta in p(Dtheta|HI)=p(D|thetaHI)p(theta|HI)
print('Hypothesis 1')
model = DefaultLDS(D_obs=1, D_latent=2)

log_p_D_given_H1I = []
for _ in range(num_mc_samples):
    model.resample_parameters()
    log_p_D_given_H1I.append(
        np.sum([
            model.log_likelihood(np.expand_dims(data[n], 1))
            for n in range(num_samples)
        ]))
# In the next line, we do a log-sum-exp over our list.
#  - The outer log puts the evidence on log scale
#  - The sum is over the MC samples
#  - The exp cancels the log in the distribution.logpdf()
log_p_D_given_H1I = logsumexp(log_p_D_given_H1I) - np.log(num_mc_samples)
示例#15
0
truemodel = LDS(dynamics_distn=AutoRegression(A=A, sigma=sigma_states),
                emission_distn=Regression(A=C, sigma=sigma_obs))

data, stateseq = truemodel.generate(2000)

###############
#  fit model  #
###############


def update(model):
    model.resample_model()
    return model.log_likelihood()


model = DefaultLDS(n=2, p=data.shape[1]).add_data(data)
vlbs = [update(model) for _ in progprint_xrange(100)]

plt.figure(figsize=(3, 4))
plt.plot(vlbs)
plt.xlabel('iteration')
plt.ylabel('variational lower bound')

################
#  predicting  #
################

Npredict = 100
prediction_seed = data[:1700]

predictions = model.sample_predictions(prediction_seed,
示例#16
0
truemodel = LDS(
    dynamics_distn=AutoRegression(A=A,sigma=sigma_states),
    emission_distn=Regression(A=C,sigma=sigma_obs))

data, stateseq = truemodel.generate(2000)


###############
#  fit model  #
###############

def update(model):
    return model.meanfield_coordinate_descent_step()

model = DefaultLDS(n=2,p=data.shape[1]).add_data(data)

for _ in progprint_xrange(100):
    model.resample_model()

vlbs = [update(model) for _ in progprint_xrange(50)]

plt.figure(figsize=(3,4))
plt.plot(vlbs)
plt.xlabel('iteration')
plt.ylabel('variational lower bound')


################
#  predicting  #
################
示例#17
0
C = np.array([[10.,0.]])
sigma_obs = 0.01*np.eye(1)
# C = np.eye(2)
# sigma_obs = 0.01*np.eye(2)

###################
#  generate data  #
###################

truemodel = LDS(
    dynamics_distn=AutoRegression(A=A,sigma=sigma_states),
    emission_distn=Regression(A=C,sigma=sigma_obs))

data, stateseq = truemodel.generate(2000)

###############
#  fit model  #
###############

model = DefaultLDS(n=2,p=data.shape[1]).add_data(data)

likes = []
for _ in progprint_xrange(50):
    model.EM_step()
    likes.append(model.log_likelihood())

plt.plot(likes)
plt.show()

示例#18
0
文件: EM.py 项目: mnonnenm/pylds
    dynamics_distn=AutoRegression(A=A,sigma=sigma_states),
    emission_distn=Regression(A=C,sigma=sigma_obs))

data, stateseq = truemodel.generate(2000)


###############
#  fit model  #
###############

def update(model):
    model.EM_step()
    return model.log_likelihood()


model = DefaultLDS(n=2,p=data.shape[1]).add_data(data)
likes = [update(model) for _ in progprint_xrange(50)]

plt.figure(figsize=(3,4))
plt.plot(likes)
plt.xlabel('iteration')
plt.ylabel('training likelihood')


################
#  predicting  #
################

Npredict = 100
prediction_seed = data[:1700]
示例#19
0
from pybasicbayes.distributions import Regression, DiagonalRegression
from pybasicbayes.util.text import progprint_xrange

from pylds.models import LDS, DefaultLDS

npr.seed(0)

# Parameters
D_obs = 1
D_latent = 2
D_input = 0
T = 2000

# Simulate from an LDS
truemodel = DefaultLDS(D_obs, D_latent, D_input)
inputs = np.random.randn(T, D_input)
data, stateseq = truemodel.generate(T, inputs=inputs)

# Fit with an LDS with diagonal observation noise
model = LDS(dynamics_distn=Regression(
    nu_0=D_latent + 2,
    S_0=D_latent * np.eye(D_latent),
    M_0=np.zeros((D_latent, D_latent + D_input)),
    K_0=(D_latent + D_input) * np.eye(D_latent + D_input)),
            emission_distn=DiagonalRegression(D_obs, D_latent + D_input))
model.add_data(data, inputs=inputs)


# Fit with mean field
def update(model):
示例#20
0
import matplotlib.pyplot as plt

from pybasicbayes.distributions import Regression, DiagonalRegression
from pybasicbayes.util.text import progprint_xrange

from pylds.models import DefaultLDS, LDS

npr.seed(0)

# Model parameters
D_obs = 4
D_latent = 4
T = 1000

# Simulate from an LDS
truemodel = DefaultLDS(D_obs, D_latent)
data, stateseq = truemodel.generate(T)

# Mask off a chunk of data
mask = np.ones_like(data, dtype=bool)
chunksz = 100
for i, offset in enumerate(range(0, T, chunksz)):
    j = i % (D_obs + 1)
    if j < D_obs:
        mask[offset:min(offset + chunksz, T), j] = False
    if j == D_obs:
        mask[offset:min(offset + chunksz, T), :] = False

# Fit with another LDS
model = LDS(dynamics_distn=Regression(nu_0=D_latent + 3,
                                      S_0=D_latent * np.eye(D_latent),
示例#21
0
文件: EM.py 项目: yorkerlin/pylds
import matplotlib.pyplot as plt

from pybasicbayes.util.text import progprint_xrange

from pylds.models import DefaultLDS

npr.seed(0)

# Set parameters
D_obs = 1
D_latent = 2
D_input = 0
T = 2000

# Simulate from one LDS
truemodel = DefaultLDS(D_obs, D_latent, D_input)
inputs = np.random.randn(T, D_input)
data, stateseq = truemodel.generate(T, inputs=inputs)

# Fit with another LDS
model = DefaultLDS(D_obs, D_latent, D_input)
model.add_data(data, inputs=inputs)

# Initialize with a few iterations of Gibbs
for _ in progprint_xrange(10):
    model.resample_model()


# Run EM
def update(model):
    model.EM_step()
示例#22
0
except:
    colors = ['b', 'r', 'y', 'g']

from pybasicbayes.util.text import progprint_xrange
from pylds.models import DefaultLDS

npr.seed(3)

# Set parameters
D_obs = 1
D_latent = 2
D_input = 0
T = 2000

# Simulate from one LDS
true_model = DefaultLDS(D_obs, D_latent, D_input, sigma_obs=np.eye(D_obs))
inputs = npr.randn(T, D_input)
data, stateseq = true_model.generate(T, inputs=inputs)

# Fit with another LDS
test_model = DefaultLDS(D_obs, D_latent, D_input)
test_model.add_data(data, inputs=inputs)

# Run the Gibbs sampler
N_samples = 100


def update(model):
    model.resample_model()
    return model.log_likelihood()