def main_train(epochs, batchsize, solution='', sparse_penalty=0, sparsityTarget=0, sparsityTargetPenalty=0): # Experiment specific arguments conf_dataset = { 'dataset': 'avicenna', 'expname': 'dummy', # Used to create the submission file 'transfer': True, 'normalize': True, # (Default = True) 'normalize_on_the_fly': False, # (Default = False) 'randomize_valid': True, # (Default = True) 'randomize_test': True, # (Default = True) 'saving_rate': 0, # (Default = 0) 'savedir': './outputs', } # First layer = PCA-75 whiten pca_layer = { 'name': '1st-PCA', 'num_components': 75, 'min_variance': -50, 'whiten': True, 'pca_class': 'CovEigPCA', # Training properties 'proba': [1, 0, 0], 'savedir': './outputs', } # Load the dataset data = utils.load_data(conf_dataset) if conf_dataset['transfer']: # Data for the ALC proxy label = data[3] data = data[:3] # First layer : train or load a PCA pca = create_pca(conf_dataset, pca_layer, data, model=pca_layer['name']) data = [ utils.sharedX(pca.function()(set.get_value(borrow=True)), borrow=True) for set in data ] ''' if conf_dataset['transfer']: data_train, label_train = utils.filter_labels(data[0], label) alc = embed.score(data_train, label_train) print '... resulting ALC on train (for PCA) is', alc ''' nvis = utils.get_constant(data[0].shape[1]).item() conf = { 'corruption_level': 0.1, 'nhid': 200, 'nvis': nvis, 'anneal_start': 100, 'base_lr': 0.001, 'tied_weights': True, 'act_enc': 'sigmoid', 'act_dec': None, #'lr_hb': 0.10, #'lr_vb': 0.10, 'tied_weights': True, 'solution': solution, 'sparse_penalty': sparse_penalty, 'sparsityTarget': sparsityTarget, 'sparsityTargetPenalty': sparsityTargetPenalty, 'irange': 0, } # A symbolic input representing your minibatch. minibatch = tensor.matrix() # Allocate a denoising autoencoder with binomial noise corruption. corruptor = GaussianCorruptor(conf['corruption_level']) da = DenoisingAutoencoder(corruptor, conf['nvis'], conf['nhid'], conf['act_enc'], conf['act_dec'], conf['tied_weights'], conf['solution'], conf['sparse_penalty'], conf['sparsityTarget'], conf['sparsityTargetPenalty']) # Allocate an optimizer, which tells us how to update our model. # TODO: build the cost another way cost = SquaredError(da)(minibatch, da.reconstruct(minibatch)).mean() trainer = SGDOptimizer(da, conf['base_lr'], conf['anneal_start']) updates = trainer.cost_updates(cost) # Finally, build a Theano function out of all this. train_fn = theano.function([minibatch], cost, updates=updates) # Suppose we want minibatches of size 10 proba = utils.getboth(conf, pca_layer, 'proba') iterator = BatchIterator(data, proba, batchsize) # Here's a manual training loop. I hope to have some classes that # automate this a litle bit. final_cost = 0 for epoch in xrange(epochs): c = [] for minibatch_data in iterator: minibatch_err = train_fn(minibatch_data) c.append(minibatch_err) final_cost = numpy.mean(c) print "epoch %d, cost : %f" % (epoch, final_cost) print '############################## Fin de l\'experience ############################' print 'Calcul de l\'ALC : ' if conf_dataset['transfer']: data_train, label_train = utils.filter_labels(data[0], label) alc = embed.score(data_train, label_train) print 'Solution : ', solution print 'sparse_penalty = ', sparse_penalty print 'sparsityTarget = ', sparsityTarget print 'sparsityTargetPenalty = ', sparsityTargetPenalty print 'Final denoising error is : ', final_cost print '... resulting ALC on train is', alc return (alc, final_cost)
'act_dec': None, #'lr_hb': 0.10, #'lr_vb': 0.10, 'irange': 0.001, } # A symbolic input representing your minibatch. minibatch = tensor.matrix() minibatch = theano.printing.Print('min')(minibatch) # Allocate a denoising autoencoder with binomial noise corruption. cae = ContractiveAutoencoder(conf['nvis'], conf['nhid'], conf['act_enc'], conf['act_dec']) # Allocate an optimizer, which tells us how to update our model. cost = SquaredError(cae)(minibatch, cae.reconstruct(minibatch)).mean() cost += cae.contraction_penalty(minibatch).mean() trainer = SGDOptimizer(cae, conf['base_lr'], conf['anneal_start']) updates = trainer.cost_updates(cost) # Finally, build a Theano function out of all this. train_fn = theano.function([minibatch], cost, updates=updates) # Suppose we want minibatches of size 10 batchsize = 10 # Here's a manual training loop. I hope to have some classes that # automate this a litle bit. for epoch in xrange(5): for offset in xrange(0, data.shape[0], batchsize): minibatch_err = train_fn(data[offset:(offset + batchsize)])
# A symbolic input representing your minibatch. minibatch = tensor.matrix() # Allocate a denoising autoencoder with binomial noise corruption. corruptor = GaussianCorruptor(corruption_level=conf['corruption_level']) da = DenoisingAutoencoder(corruptor, conf['nvis'], conf['nhid'], conf['act_enc'], conf['act_dec'], tied_weights=conf['tied_weights'], irange=conf['irange']) # Allocate an optimizer, which tells us how to update our model. # TODO: build the cost another way cost = SquaredError(da)(minibatch, da.reconstruct(minibatch)).mean() trainer = SGDOptimizer(da.params(), conf['base_lr'], conf['anneal_start']) # Finally, build a Theano function out of all this. train_fn = theano.function([minibatch], cost, updates=trainer.cost_updates(cost)) # Suppose we want minibatches of size 10 batchsize = 10 # Here's a manual training loop. I hope to have some classes that # automate this a litle bit. for epoch in xrange(10): for offset in xrange(0, train_data.shape[0], batchsize): minibatch_err = train_fn(train_data[offset:(offset + batchsize)])