def __init__(self, which_set, numOfClasses, numOfExamplesPerClass, axes=('c', 0, 1, 'b')): self.height = 32 self.width = 100 self.axes = axes self.dtype = 'uint8' self.examples = [] self.img_shape = (1, self.height, self.width) self.img_size = numpy.prod(self.img_shape) self.numOfClasses = numOfClasses self.numOfExamplesPerClass = numOfExamplesPerClass self.examplesPerClassCount = {} self.which_set = which_set if which_set == "train": self.fileToLoadFrom = "annotation_train.txt" elif which_set == "test": self.fileToLoadFrom = "annotation_test.txt" elif which_set == "valid": self.fileToLoadFrom = "annotation_val.txt" else: raise ValueError("Set not recognized") self.datapath = Config.getDatapath() self.preprocess = Config.doPreprocess() self.loadData() random.seed() view_converter = dense_design_matrix.DefaultViewConverter((self.height, self.width, 1), axes) super(MJSYNTH, self).__init__(X=numpy.cast['float32'](self.x), y=self.y, view_converter=view_converter, y_labels=self.numOfClasses)
def __init__(self, which_set, numOfClasses, numOfExamplesPerClass, axes=('c', 0, 1, 'b')): self.height = 32 self.width = 100 self.axes = axes self.dtype = 'uint8' self.examples = [] self.img_shape = (1, self.height, self.width) self.img_size = numpy.prod(self.img_shape) self.numOfClasses = numOfClasses self.numOfExamplesPerClass = numOfExamplesPerClass self.examplesPerClassCount = {} self.which_set = which_set if which_set == "train": self.fileToLoadFrom = "annotation_train.txt" elif which_set == "test": self.fileToLoadFrom = "annotation_test.txt" elif which_set == "valid": self.fileToLoadFrom = "annotation_val.txt" else: raise ValueError("Set not recognized") self.datapath = Config.getDatapath() self.preprocess = Config.doPreprocess() self.loadData() random.seed() view_converter = dense_design_matrix.DefaultViewConverter( (self.height, self.width, 1), axes) super(MJSYNTH, self).__init__(X=numpy.cast['float32'](self.x), y=self.y, view_converter=view_converter, y_labels=self.numOfClasses)
from pylearn2.config import yaml_parse from pylearn2.datasets.mjsynth.mjsynth import MJSYNTH from pylearn2.datasets.mjsynth.config import Config def output_file_string(params): string = [] for key in params.keys(): string.append(key + ": " + str(params[key])) return ' '.join(string) p = Parser() while p.has_other_configurations(): with open(Config.getYamlFilename(), 'r') as f: yaml_file = f.read() hyper_params = p.get_next_configuration() outputFile = open('tests/' + p.get_num_configuration().__str__(), 'w') sys.stdout = outputFile sys.stderr = outputFile yaml_file = yaml_file % (hyper_params) print yaml_file train = yaml_parse.load(yaml_file) try: train.main_loop() except Exception as e:
from pylearn2.datasets.mjsynth.mjsynth import MJSYNTH from pylearn2.datasets.mjsynth.config import Config def output_file_string(params): string = [] for key in params.keys(): string.append(key + ": " + str(params[key])) return " ".join(string) p = Parser() while p.has_other_configurations(): with open(Config.getYamlFilename(), "r") as f: yaml_file = f.read() hyper_params = p.get_next_configuration() outputFile = open("tests/" + p.get_num_configuration().__str__(), "w") sys.stdout = outputFile sys.stderr = outputFile yaml_file = yaml_file % (hyper_params) print yaml_file train = yaml_parse.load(yaml_file) try: train.main_loop() except Exception as e: