def test_zca_dataset(): """ Tests the ZCA_Dataset class. """ # Preparation rng = np.random.RandomState([2014, 11, 4]) start = 0 stop = 990 num_examples = 1000 num_feat = 5 num_classes = 2 # random_dense_design_matrix has values that are centered and of # unit stdev, which is not useful to test the ZCA. # So, we replace its value by an uncentered uniform one. raw = random_dense_design_matrix(rng, num_examples, num_feat, num_classes) x = rng.uniform(low=-0.5, high=2.0, size=(num_examples, num_feat)) x = x.astype(np.float32) raw.X = x zca = ZCA(filter_bias=0.0) zca.apply(raw, can_fit=True) zca_dataset = ZCA_Dataset(raw, zca, start, stop) # Testing general behaviour mean = zca_dataset.X.mean(axis=0) var = zca_dataset.X.std(axis=0) assert_allclose(mean, np.zeros(num_feat), atol=1e-2) assert_allclose(var, np.ones(num_feat), atol=1e-2) # Testing mapback() y = zca_dataset.mapback(zca_dataset.X) assert_allclose(x[start:stop], y) # Testing mapback_for_viewer() y = zca_dataset.mapback_for_viewer(zca_dataset.X) z = x/np.abs(x).max(axis=0) assert_allclose(z[start:stop], y, rtol=1e-2) # Testing adjust_for_viewer() y = zca_dataset.adjust_for_viewer(x.T).T z = x/np.abs(x).max(axis=0) assert_allclose(z, y) # Testing adjust_to_be_viewed_with() y = zca_dataset.adjust_to_be_viewed_with(x, 2*x, True) z = zca_dataset.adjust_for_viewer(x) assert_allclose(z/2, y) y = zca_dataset.adjust_to_be_viewed_with(x, 2*x, False) z = x/np.abs(x).max() assert_allclose(z/2, y) # Testing has_targets() assert zca_dataset.has_targets()
def test_zca_dataset(): """ Test that a ZCA dataset can be constructed without crashing. No attempt to verify correctness of behavior. """ rng = np.random.RandomState([2014, 11, 4]) num_examples = 5 dim = 3 num_classes = 2 raw = random_dense_design_matrix(rng, num_examples, dim, num_classes) zca = ZCA() zca.apply(raw, can_fit=True) zca_dataset = ZCA_Dataset(raw, zca, start=1, stop=4)
parser.add_argument('-o') args = parser.parse_args() model_path = '/data/lisa/exp/wuzhen/conv2d/' + args.folder + '/convolutional_network_best.pkl' import os #X = np.load(os.environ['PYLEARN2_DATA_PATH'] + '/faceEmo/test_X.npy') #y = np.load(os.environ['PYLEARN2_DATA_PATH'] + '/faceEmo/test_y.npy') #print 'X.shape before', X.shape X = np.load('test_input.npy') X = X.astype('float32') test_set = DenseDesignMatrix(X) preproc = ZCA() preproc.fit(test_set.X) preproc.apply(test_set) X = test_set.X X = X.reshape(X.shape[0], 48, 48, 1).astype('float32') f = open(model_path, 'rb') mlp = cPickle.load(f) X_theano = mlp.get_input_space().make_batch_theano() #X_theano = T.tensor4() y_theano = mlp.fprop(X_theano) func = function(inputs=[X_theano], outputs=y_theano) batch_size = mlp.batch_size
from pylearn2.datasets.mnist import MNIST train = MNIST(which_set = 'train') from pylearn2.datasets.preprocessing import ZCA zca = ZCA() zca.apply(train, can_fit=True) from pylearn2.utils import serial serial.save('mnist_zca.pkl', zca)
from pylearn2.datasets.mnist import MNIST train = MNIST(which_set='train') from pylearn2.datasets.preprocessing import ZCA zca = ZCA() zca.apply(train, can_fit=True) from pylearn2.utils import serial serial.save('mnist_zca.pkl', zca)