def get_monitoring_channels(self, V): theano_rng = RandomStreams(42) norms = theano_norms(self.weights) H = self.mean_h_given_v(V) h = H.mean(axis=0) return { 'bias_hid_min' : T.min(self.bias_hid), 'bias_hid_mean' : T.mean(self.bias_hid), 'bias_hid_max' : T.max(self.bias_hid), 'bias_vis_min' : T.min(self.bias_vis), 'bias_vis_mean' : T.mean(self.bias_vis), 'bias_vis_max': T.max(self.bias_vis), 'h_min' : T.min(h), 'h_mean': T.mean(h), 'h_max' : T.max(h), 'W_min' : T.min(self.weights), 'W_max' : T.max(self.weights), 'W_norms_min' : T.min(norms), 'W_norms_max' : T.max(norms), 'W_norms_mean' : T.mean(norms), 'reconstruction_error' : self.reconstruction_error(V, theano_rng) }
def get_monitoring_channels(self, V): theano_rng = RandomStreams(42) norms = theano_norms(self.weights) H = self.mean_h_given_v(V) h = H.mean(axis=0) return { 'bias_hid_min': T.min(self.bias_hid), 'bias_hid_mean': T.mean(self.bias_hid), 'bias_hid_max': T.max(self.bias_hid), 'bias_vis_min': T.min(self.bias_vis), 'bias_vis_mean': T.mean(self.bias_vis), 'bias_vis_max': T.max(self.bias_vis), 'h_min': T.min(h), 'h_mean': T.mean(h), 'h_max': T.max(h), 'W_min': T.min(self.weights), 'W_max': T.max(self.weights), 'W_norms_min': T.min(norms), 'W_norms_max': T.max(norms), 'W_norms_mean': T.mean(norms), 'reconstruction_error': self.reconstruction_error(V, theano_rng) }
def get_monitoring_channels(self, V): vb, hb, weights = self.get_params() norms = theano_norms(weights) return {'W_min': tensor.min(weights), 'W_max': tensor.max(weights), 'W_norm_mean': tensor.mean(norms), 'bias_hid_min' : tensor.min(hb), 'bias_hid_mean' : tensor.mean(hb), 'bias_hid_max' : tensor.max(hb), 'bias_vis_min' : tensor.min(vb), 'bias_vis_mean' : tensor.mean(vb), 'bias_vis_max': tensor.max(vb), }
def get_monitoring_channels(self, V): vb, hb, weights = self.get_params() norms = theano_norms(weights) return { 'W_min': tensor.min(weights), 'W_max': tensor.max(weights), 'W_norm_mean': tensor.mean(norms), 'bias_hid_min': tensor.min(hb), 'bias_hid_mean': tensor.mean(hb), 'bias_hid_max': tensor.max(hb), 'bias_vis_min': tensor.min(vb), 'bias_vis_mean': tensor.mean(vb), 'bias_vis_max': tensor.max(vb), }