示例#1
0
    def lmul(self, x):
        """
        dot(x, A)
        aka, do convolution with input image x

        """

        check_cuda(str(type(self)) + ".lmul")
        # TODO Why is it CPU??
        print "Por que?!?!", type(x)
        cpu = "Cuda" not in str(type(x))
        if cpu:
            x = gpu_from_host(x)

        assert x.ndim == 5
        x_axes = self.input_axes
        assert len(x_axes) == 5

        op_axes = ("c", 0, 1, "t", "b")
        if tuple(x_axes) != op_axes:
            print "ssssssssssssssss"
            x = x.dimshuffle(*[x_axes.index(axis) for axis in op_axes])

        _x_4d_shape = (
            self.signal_shape[0],
            self.signal_shape[1],
            self.signal_shape[2],
            self.signal_shape[3] * self.signal_shape[4],
        )

        x = x.reshape(_x_4d_shape)

        x = gpu_contiguous(x)

        rval = FilterActs(self.pad, self.partial_sum, self.kernel_stride[0])(x, self._filters)

        if cpu:
            rval = host_from_gpu(rval)

        rval = rval.reshape(
            (
                self.filter_shape[3],
                self.filter_shape[4],
                rval.shape[1],
                rval.shape[2],
                self.signal_shape[3],
                self.signal_shape[4],
            )
        )

        rval = diagonal_subtensor(rval, 4, 0).sum(axis=0)

        # Format the output based on the output space
        rval_axes = self.output_axes
        assert len(rval_axes) == 5

        if tuple(rval_axes) != op_axes:
            rval = rval.dimshuffle(*[op_axes.index(axis) for axis in rval_axes])

        return rval
    def lmul(self, x):
        """
        dot(x, A)
        aka, do convolution with input image x

        """

        check_cuda(str(type(self)) + ".lmul")
        cpu = 'Cuda' not in str(type(x))
        assert cpu
        if cpu:
            x = gpu_from_host(x)

        assert x.ndim == 5
        x_axes = self.input_axes
        assert len(x_axes) == 5

        #x = shapeprint(x)
        op_axes = ('b', 0, 1, 't', 'c')
        print x_axes, op_axes
        if tuple(x_axes) != op_axes:
            x = x.dimshuffle(*[x_axes.index(axis) for axis in op_axes])

        #x = shapeprint(x)
        #self._filters = shapeprint(self._filters)

        im = x.dimshuffle(0,3,4,1,2)
        filt = self._filters.dimshuffle(0,3,4,1,2)
       
        rval = conv3d(im, filt, None, None, (self.kernel_stride[0], self.kernel_stride[1]) )
       
        rval = rval.dimshuffle(0,3,4,1,2)
        
        return rval
    def lmul(self, x):
        """
        dot(x, A)
        aka, do convolution with input image x

        """

        check_cuda(str(type(self)) + ".lmul")
        cpu = 'Cuda' not in str(type(x))
        assert cpu
        if cpu:
            x = gpu_from_host(x)

        assert x.ndim == 5
        x_axes = self.input_axes
        assert len(x_axes) == 5

        #x = shapeprint(x)
        op_axes = ('b', 0, 1, 't', 'c')
        print x_axes, op_axes
        if tuple(x_axes) != op_axes:
            x = x.dimshuffle(*[x_axes.index(axis) for axis in op_axes])

        #x = shapeprint(x)
        #self._filters = shapeprint(self._filters)

        rval = self.conv3d_op(x, self._filters, self.b, self.kernel_stride)
        #assert len(rval_axes) == 5

        #op_axes = self.output_axes
        #if tuple(rval_axes) != op_axes:
        #    rval = rval.dimshuffle(*[op_axes.index(axis) for axis in rval_axes])
        return rval
示例#4
0
def convnet_available():
    check_cuda(check_enabled=False)

    # If already compiled, OK
    if convnet_available.compiled:
        _logger.debug('already compiled')
        return True

    # If there was an error, do not try again
    if convnet_available.compile_error:
        _logger.debug('error last time')
        return False

    # Else, we need CUDA
    if not cuda.cuda_available:
        convnet_available.compile_error = True
        _logger.debug('cuda unavailable')
        return False

    # Try to actually compile
    success = convnet_compile()
    if success:
        convnet_available.compiled = True
    else:
        convnet_available.compile_error = False
    _logger.debug('compilation success: %s', success)

    return convnet_available.compiled
示例#5
0
    def lmul_T(self, x):

        check_cuda(str(type(self)) + ".lmul_T")

        assert x.dtype == self._filters.dtype

        op_axes = ('c', 0, 1, 'b')
        axes = self.output_axes
        if tuple(axes) != op_axes:
            x = x.dimshuffle(*[axes.index(ax) for ax in op_axes])

        x = gpu_contiguous(x)

        rval = ImageActs(pad=self.pad,
                         partial_sum=self.partial_sum,
                         stride=self.kernel_stride[0])(x, self._filters)

        # Format the output based on the input space
        axes = self.input_axes
        assert len(axes) == 4

        if tuple(axes) != op_axes:
            rval = rval.dimshuffle(op_axes.index(axes[0]),
                                   op_axes.index(axes[1]),
                                   op_axes.index(axes[2]),
                                   op_axes.index(axes[3]))

        return rval
示例#6
0
    def lmul(self, x):
        """
        dot(x, A)
        aka, do convolution with input image x

        """

        check_cuda(str(type(self)) + ".lmul")
        cpu = 'Cuda' not in str(type(x))
        assert cpu
        if cpu:
            x = gpu_from_host(x)

        assert x.ndim == 5
        x_axes = self.input_axes
        assert len(x_axes) == 5

        #x = shapeprint(x)
        op_axes = ('b', 0, 1, 't', 'c')
        print x_axes, op_axes
        if tuple(x_axes) != op_axes:
            x = x.dimshuffle(*[x_axes.index(axis) for axis in op_axes])

        #x = shapeprint(x)
        #self._filters = shapeprint(self._filters)

        im = x.dimshuffle(0, 3, 4, 1, 2)
        filt = self._filters.dimshuffle(0, 3, 4, 1, 2)

        rval = conv3d(im, filt, None, None,
                      (self.kernel_stride[0], self.kernel_stride[1]))

        rval = rval.dimshuffle(0, 3, 4, 1, 2)

        return rval
示例#7
0
    def lmul_T(self, x):
        """
        .. todo::

            WRITEME
        """

        check_cuda(str(type(self)) + ".lmul_T")

        assert x.dtype == self._filters.dtype

        op_axes = ("c", 0, 1, "b")
        axes = self.output_axes
        if tuple(axes) != op_axes:
            x = x.dimshuffle(*[axes.index(ax) for ax in op_axes])

        x = gpu_contiguous(x)

        rval = ImageActs(pad=self.pad, partial_sum=self.partial_sum, stride=self.kernel_stride[0])(x, self._filters)

        # Format the output based on the input space
        axes = self.input_axes
        assert len(axes) == 4

        if tuple(axes) != op_axes:
            rval = rval.dimshuffle(
                op_axes.index(axes[0]), op_axes.index(axes[1]), op_axes.index(axes[2]), op_axes.index(axes[3])
            )

        return rval
    def lmul(self, x):
        """
        dot(x, A)
        aka, do convolution with input image x

        """

        check_cuda(str(type(self)) + ".lmul")
        cpu = 'Cuda' not in str(type(x))
        #assert cpu
        if cpu:
            x = gpu_from_host(x)

        assert x.ndim == 5
        x_axes = self.input_axes
        assert len(x_axes) == 5

        #x = shapeprint(x)
        op_axes = ('b', 'c', 0, 1, 't')
        print x_axes, op_axes
        #if tuple(x_axes) != op_axes:
        #    x = x.dimshuffle(*[x_axes.index(axis) for axis in op_axes])

        #x = shapeprint(x)
        #self._filters = shapeprint(self._filters)

        rval = cuda.blas.GpuCorr3dMM(border_mode= 'valid',
                                     subsample = tuple(self.kernel_stride),
                                     pad=tuple(self.pad))(x, self._filters)
        #rval = conv3d(im, filt, None, None, (self.kernel_stride[0], self.kernel_stride[1]) )
        #rval = rval.dimshuffle(0,4,1,2,3)
        #print "hello"
        return rval
示例#9
0
def convnet_available():
    check_cuda(check_enabled=False)

    # If already compiled, OK
    if convnet_available.compiled:
        _logger.debug('already compiled')
        return True

    # If there was an error, do not try again
    if convnet_available.compile_error:
        _logger.debug('error last time')
        return False

    # Else, we need CUDA
    if not cuda.cuda_available:
        convnet_available.compile_error = True
        _logger.debug('cuda unavailable')
        return False

    # Try to actually compile
    success = convnet_compile()
    if success:
        convnet_available.compiled = True
    else:
        convnet_available.compile_error = False
    _logger.debug('compilation success: %s', success)

    return convnet_available.compiled
示例#10
0
    def lmul(self, x):
        """
        dot(x, A)
        aka, do convolution with input image x

        """

        check_cuda(str(type(self)) + ".lmul")
        # TODO Why is it CPU??
        print 'Por que?!?!', type(x)
        cpu = 'Cuda' not in str(type(x))
        if cpu:
            x = gpu_from_host(x)

        assert x.ndim == 5
        x_axes = self.input_axes
        assert len(x_axes) == 5

        op_axes = ('c', 0, 1, 't', 'b')
        if tuple(x_axes) != op_axes:
            print 'ssssssssssssssss'
            x = x.dimshuffle(*[x_axes.index(axis) for axis in op_axes])

        _x_4d_shape = (self.signal_shape[0], self.signal_shape[1],
                       self.signal_shape[2],
                       self.signal_shape[3] * self.signal_shape[4])

        x = x.reshape(_x_4d_shape)

        x = gpu_contiguous(x)

        rval = FilterActs(self.pad, self.partial_sum,
                          self.kernel_stride[0])(x, self._filters)

        if cpu:
            rval = host_from_gpu(rval)

        rval = rval.reshape(
            (self.filter_shape[3], self.filter_shape[4], rval.shape[1],
             rval.shape[2], self.signal_shape[3], self.signal_shape[4]))

        rval = diagonal_subtensor(rval, 4, 0).sum(axis=0)

        # Format the output based on the output space
        rval_axes = self.output_axes
        assert len(rval_axes) == 5

        if tuple(rval_axes) != op_axes:
            rval = rval.dimshuffle(
                *[op_axes.index(axis) for axis in rval_axes])

        return rval
示例#11
0
    def lmul(self, x):
        """
        .. todo::

            WRITEME properly

        dot(x, A)
        aka, do convolution with input image x
        """

        check_cuda(str(type(self)) + ".lmul")

        cpu = 'Cuda' not in str(type(x))

        if cpu:
            x = gpu_from_host(x)

        # x must be formatted as channel, topo dim 0, topo dim 1, batch_index
        # for use with FilterActs
        assert x.ndim == 4
        x_axes = self.input_axes
        assert len(x_axes) == 4

        op_axes = ('c', 0, 1, 'b')

        if tuple(x_axes) != op_axes:
            x = x.dimshuffle(*[x_axes.index(axis) for axis in op_axes])

        x = gpu_contiguous(x)

        # Patch old pickle files.
        if not hasattr(self, 'kernel_stride'):
            self.kernel_stride = (1, 1)
        rval = FilterActs(self.pad, self.partial_sum, self.kernel_stride[0])(
            x,
            self._filters
        )

        # Format the output based on the output space
        rval_axes = self.output_axes
        assert len(rval_axes) == 4

        if cpu:
            rval = host_from_gpu(rval)

        if tuple(rval_axes) != op_axes:
            rval = rval.dimshuffle(*[op_axes.index(axis)
                                     for axis in rval_axes])

        return rval
示例#12
0
    def lmul(self, x):
        """
        .. todo::

            WRITEME properly

        dot(x, A)
        aka, do convolution with input image x
        """

        check_cuda(str(type(self)) + ".lmul")

        cpu = 'Cuda' not in str(type(x))

        if cpu:
            x = gpu_from_host(x)

        # x must be formatted as channel, topo dim 0, topo dim 1, batch_index
        # for use with FilterActs
        assert x.ndim == 4
        x_axes = self.input_axes
        assert len(x_axes) == 4

        op_axes = ('c', 0, 1, 'b')

        if tuple(x_axes) != op_axes:
            x = x.dimshuffle(*[x_axes.index(axis) for axis in op_axes])

        x = gpu_contiguous(x)

        # Patch old pickle files.
        if not hasattr(self, 'kernel_stride'):
            self.kernel_stride = (1, 1)
        rval = FilterActs(self.pad, self.partial_sum, self.kernel_stride[0])(
            x,
            self._filters
        )

        # Format the output based on the output space
        rval_axes = self.output_axes
        assert len(rval_axes) == 4

        if cpu:
            rval = host_from_gpu(rval)

        if tuple(rval_axes) != op_axes:
            rval = rval.dimshuffle(*[op_axes.index(axis)
                                     for axis in rval_axes])

        return rval
    def lmul(self, x, b):
        """
        dot(x, A)
        aka, do convolution with input image x

        """
        check_cuda(str(type(self)) + ".lmul")
        cpu = 'Cuda' not in str(type(x))
        assert cpu
        if cpu:
            x = gpu_from_host(x)

        assert x.ndim == 5
        x_axes = self.input_axes
        assert len(x_axes) == 5

        #op_axes = ('b', 0, 1, 't', 'c')
        #if tuple(x_axes) != op_axes:
        #    x = x.dimshuffle(*[x_axes.index(axis) for axis in op_axes])

        rval = self.conv3d_op(x, self._filters, b, (1, 1, 1))
        #rval = conv.Conv3DFFT(self.signal_shape, self.filter_shape)(x, self._filters)
        #rval = conv.conv3d_fft(x,
        #                       self._filters,
        #                       image_shape = x.shape,
        #                       filter_shape = self.filter_shape)
	
	#rval = x
        rval_axes = self.output_axes
        assert len(rval_axes) == 5


        #op_axes = ('b', 'c', 't', 0, 1)
        #if tuple(rval_axes) != op_axes:
        #    rval = rval.dimshuffle(*[op_axes.index(axis) for axis in rval_axes])

        return rval
示例#14
0
def setup_detector_layer_c01b(layer, input_space, rng):
    """
    .. todo::

        WRITEME properly

    Takes steps to set up an object for use as being some kind of convolutional
    layer. This function sets up only the detector layer.

    Does the following:

    * raises a RuntimeError if cuda is not available
    * sets layer.input_space to input_space
    * sets up addition of dummy channels for compatibility with cuda-convnet:

      - layer.dummy_channels: # of dummy channels that need to be added
        (You might want to check this and raise an Exception if it's not 0)
      - layer.dummy_space: The Conv2DSpace representing the input with dummy
        channels added

    * sets layer.detector_space to the space for the detector layer
    * sets layer.transformer to be a Conv2D instance
    * sets layer.b to the right value

    Parameters
    ----------
    layer : object
        Any python object that allows the modifications described below and
        has the following attributes:

          * pad : int describing amount of zero padding to add
          * kernel_shape : 2-element tuple or list describing spatial shape of
            kernel
          * fix_kernel_shape : bool, if true, will shrink the kernel shape to
            make it feasible, as needed (useful for hyperparameter searchers)
          * detector_channels : The number of channels in the detector layer
          * init_bias : numeric constant added to a tensor of zeros to
            initialize the bias
          * tied_b : If true, biases are shared across all spatial locations
    input_space : WRITEME
        A Conv2DSpace to be used as input to the layer
    rng : WRITEME
        A numpy RandomState or equivalent
    """

    # Use "self" to refer to layer from now on, so we can pretend we're
    # just running in the set_input_space method of the layer
    self = layer

    # Make sure cuda is available
    check_cuda(str(type(self)))

    # Validate input
    if not isinstance(input_space, Conv2DSpace):
        raise TypeError("The input to a convolutional layer should be a "
                        "Conv2DSpace, but layer " + self.layer_name + " got " +
                        str(type(self.input_space)))

    if not hasattr(self, 'detector_channels'):
        raise ValueError("layer argument must have a 'detector_channels' "
                         "attribute specifying how many channels to put in "
                         "the convolution kernel stack.")

    # Store the input space
    self.input_space = input_space

    # Make sure number of channels is supported by cuda-convnet
    # (multiple of 4 or <= 3)
    # If not supported, pad the input with dummy channels
    ch = self.input_space.num_channels
    rem = ch % 4
    if ch > 3 and rem != 0:
        self.dummy_channels = 4 - rem
    else:
        self.dummy_channels = 0
    self.dummy_space = Conv2DSpace(
        shape=input_space.shape,
        channels=input_space.num_channels + self.dummy_channels,
        axes=('c', 0, 1, 'b')
    )

    if hasattr(self, 'kernel_stride'):
        kernel_stride = self.kernel_stride
    else:
        kernel_stride = [1, 1]

    output_shape = \
        [int(np.ceil((i_sh + 2. * self.pad - k_sh) / float(k_st))) + 1
         for i_sh, k_sh, k_st in zip(self.input_space.shape,
                                     self.kernel_shape, kernel_stride)]

    def handle_kernel_shape(idx):
        if self.kernel_shape[idx] < 1:
            raise ValueError("kernel must have strictly positive size on all "
                             "axes but has shape: " + str(self.kernel_shape))
        if output_shape[idx] <= 0:
            if self.fix_kernel_shape:
                self.kernel_shape[idx] = \
                    self.input_space.shape[idx] + 2 * self.pad
                assert self.kernel_shape[idx] != 0
                output_shape[idx] = 1
                warnings.warn("Had to change the kernel shape to make "
                              "network feasible")
            else:
                raise ValueError("kernel too big for input "
                                 "(even with zero padding)")

    map(handle_kernel_shape, [0, 1])

    if self.detector_channels < 16:
        raise ValueError("Cuda-convnet requires the detector layer to have "
                         "at least 16 channels.")

    self.detector_space = Conv2DSpace(shape=output_shape,
                                      num_channels=self.detector_channels,
                                      axes=('c', 0, 1, 'b'))

    if hasattr(self, 'partial_sum'):
        partial_sum = self.partial_sum
    else:
        partial_sum = 1

    if hasattr(self, 'sparse_init') and self.sparse_init is not None:
        self.transformer = \
            checked_call(make_sparse_random_conv2D,
                         OrderedDict([('num_nonzero', self.sparse_init),
                                      ('input_space', self.input_space),
                                      ('output_space', self.detector_space),
                                      ('kernel_shape', self.kernel_shape),
                                      ('pad', self.pad),
                                      ('partial_sum', partial_sum),
                                      ('kernel_stride', kernel_stride),
                                      ('rng', rng)]))
    else:
        self.transformer = make_random_conv2D(
            irange=self.irange,
            input_axes=self.input_space.axes,
            output_axes=self.detector_space.axes,
            input_channels=self.dummy_space.num_channels,
            output_channels=self.detector_space.num_channels,
            kernel_shape=self.kernel_shape,
            pad=self.pad,
            partial_sum=partial_sum,
            kernel_stride=kernel_stride,
            rng=rng
        )

    W, = self.transformer.get_params()
    W.name = self.layer_name + '_W'

    if self.tied_b:
        self.b = sharedX(np.zeros(self.detector_space.num_channels) +
                         self.init_bias)
    else:
        self.b = sharedX(self.detector_space.get_origin() + self.init_bias)
    self.b.name = self.layer_name + '_b'

    logger.info('Input shape: {0}'.format(self.input_space.shape))
    logger.info('Detector space: {0}'.format(self.detector_space.shape))
    def __init__(self,
                 num_channels,
                 num_pieces,
                 kernel_shape,
                 pool_shape,
                 pool_stride,
                 pool_temporal_shape,
                 pool_temporal_stride,
                 layer_name,
                 irange=None,
                 init_bias=0.,
                 W_lr_scale=None,
                 b_lr_scale=None,
                 pad=0,
                 fix_pool_shape=False,
                 fix_pool_stride=False,
                 fix_kernel_shape=False,
                 partial_sum=1,
                 tied_b=False,
                 max_kernel_norm=None,
                 input_normalization=None,
                 detector_normalization=None,
                 min_zero=False,
                 output_normalization=None,
                 kernel_stride=(1, 1, 1)):
        """
            layer_name: A name for this layer that will be prepended to
                        monitoring channels related to this layer.
            num_channels: The number of output channels the layer should have.
                          Note that it must internally compute num_channels * num_pieces
                          convolution channels.
            num_pieces:   The number of linear pieces used to make each maxout unit.
            kernel_shape: The shape of the convolution kernel.
            pool_shape:   The shape of the spatial max pooling. A three-tuple of ints.
            pool_stride:  The stride of the spatial and temporal max pooling.
            irange: if specified, initializes each weight randomly in
                U(-irange, irange)
            init_bias: All biases are initialized to this number
            W_lr_scale: The learning rate on the weights for this layer is
                multiplied by this scaling factor
            b_lr_scale: The learning rate on the biases for this layer is
                multiplied by this scaling factor
            pad: The amount of zero-padding to implicitly add to the boundary of the
                image when computing the convolution. Useful for making sure pixels
                at the edge still get to influence multiple hidden units.
            fix_pool_shape: If True, will modify self.pool_shape to avoid having
                pool shape bigger than the entire detector layer.
                If you have this on, you should probably also have
                fix_pool_stride on, since the pool shape might shrink
                smaller than the stride, even if the stride was initially
                valid.
                The "fix" parameters are useful for working with a hyperparameter
                optimization package, which might often propose sets of hyperparameters
                that are not feasible, but can easily be projected back into the feasible
                set.
            fix_kernel_shape: if True, will modify self.kernel_shape to avoid
            having the kernel shape bigger than the implicitly
            zero padded input layer

            partial_sum: a parameter that controls whether to prefer runtime savings
                        or memory savings when computing the gradient with respect to
                        the kernels. See pylearn2.sandbox.cuda_convnet.weight_acts.py
                        for details. The default is to prefer high speed.
                        Note that changing this setting may change the value of computed
                        results slightly due to different rounding error.
            tied_b: If true, all biases in the same channel are constrained to be the same
                    as each other. Otherwise, each bias at each location is learned independently.
            max_kernel_norm: If specifed, each kernel is constrained to have at most this norm.
            input_normalization, detector_normalization, output_normalization:
                if specified, should be a callable object. the state of the network is optionally
                replaced with normalization(state) at each of the 3 points in processing:
                    input: the input the layer receives can be normalized right away
                    detector: the maxout units can be normalized prior to the spatial pooling
                    output: the output of the layer, after sptial pooling, can be normalized as well
            kernel_stride: vertical,  horizontal and time pixel stride between each detector.
        """
        check_cuda(str(type(self)))

        detector_channels = num_channels * num_pieces

        self.__dict__.update(locals())
        del self.self
    def fprop(self, state_below):

        check_cuda(str(type(self)))
        self.input_space.validate(state_below)
        if not hasattr(self, 'input_normalization'):
            self.input_normalization = None

        if self.input_normalization:
            state_below = self.input_normalization(state_below)

        # fft 3d covolution
        z = self.transformer.lmul(state_below)

        # bias addition
        if not hasattr(self, 'tied_b'):
            self.tied_b = False
        if self.tied_b:
            b = self.b.dimshuffle(0, 'x', 'x', 'x', 'x')
        else:
            b = self.b.dimshuffle('x', 0, 1, 2, 3)
        z = z + self.b

        if self.layer_name is not None:
            z.name = self.layer_name + '_z'
        self.detector_space.validate(z)
        #assert self.detector_space.num_channels % 16 == 0

        #ReLUs
        z = T.maximum(z, 0)
        if self.output_space.num_channels % 16 != 0:
            raise NotImplementedError(
                "num channles should always be dvisible by 16")

        # alex's max pool op only works when the number of channels
        # is divisible by 16. we can only do the cross-channel pooling
        # first if the cross-channel pooling preserves that property

        # Pooling
        # permute axes ['b', 0, 1,'t','c'] -> ['c', 0, 1, 't', 'b'] (axes required for pooling )
        z = z.dimshuffle(4, 1, 2, 3, 0)

        # spatial pooling x/y
        z_shape = z.shape
        z = z.reshape(
            (z_shape[0], z_shape[1], z_shape[2], z_shape[3] * z_shape[4]))
        p = max_pool_c01b(c01b=z,
                          pool_shape=self.pool_shape,
                          pool_stride=self.pool_stride)

        p_shape = p.shape
        p = p.reshape(
            (p_shape[0], p_shape[1], p_shape[2], z_shape[3], z_shape[4]))

        # temporal pooling with overlap (t)
        p_shape = p.shape

        #['c', 0, 1, 't', 'b'] -> ['c',0*1,'t','b'] ('c',0, 1,'b') for max_pool_c01b
        p = p.reshape(
            (p_shape[0], p_shape[1] * p_shape[2], p_shape[3], p_shape[4]))
        t = temporal_max_pool_c01b(c01b=p,
                                   pool_shape=self.pool_temporal_shape,
                                   pool_stride=self.pool_temporal_stride,
                                   image_shape=self.temp_pool_input_shape)
        t_shape = t.shape
        t = t.reshape(
            (t_shape[0], p_shape[1], p_shape[2], t_shape[2], t_shape[3]))
        # Permute back axes ['c', 0, 1, 't', 'b'] -> ['b', 0, 1, 't', 'c']
        t = t.dimshuffle(4, 1, 2, 3, 0)
        self.output_space.validate(t)

        if not hasattr(self, 'output_normalization'):
            self.output_normalization = None

        if self.output_normalization:
            t = self.output_normalization(t)

        return t
示例#17
0
    def piece_prop(self, state_below):
        """
        Note: this only reports pieces in terms of which channel wins, not
        which spatial location wins. Depending on the input size, it may report
        a piece map for either the pre-spatial pooling or the post-spatial pooling
        tensor.
        """
        check_cuda(str(type(self)))

        self.input_space.validate(state_below)

        if not hasattr(self, 'input_normalization'):
            self.input_normalization = None

        if self.input_normalization:
            state_below = self.input_normalization(state_below)

        # Alex's code requires # input channels to be <= 3 or a multiple of 4
        # so we add dummy channels if necessary
        if not hasattr(self, 'dummy_channels'):
            self.dummy_channels = 0
        if self.dummy_channels > 0:
            state_below = T.concatenate(
                (state_below,
                 T.zeros_like(state_below[0:self.dummy_channels, :, :, :])),
                axis=0)

        z = self.transformer.lmul(state_below)
        if not hasattr(self, 'tied_b'):
            self.tied_b = False
        if self.tied_b:
            b = self.b.dimshuffle(0, 'x', 'x', 'x')
        else:
            b = self.b.dimshuffle(0, 1, 2, 'x')

        z = z + b
        if self.layer_name is not None:
            z.name = self.layer_name + '_z'

        self.detector_space.validate(z)

        assert self.detector_space.num_channels % 16 == 0

        if self.output_space.num_channels % 16 == 0:
            # alex's max pool op only works when the number of channels
            # is divisible by 16. we can only do the cross-channel pooling
            # first if the cross-channel pooling preserves that property
            piece = None
            if self.num_pieces != 1:
                s = None
                for i in xrange(self.num_pieces):
                    t = z[i::self.num_pieces, :, :, :]
                    if s is None:
                        s = t
                        piece = T.zeros_like(t)
                    else:
                        s = T.maximum(s, t)
                        mask = T.eq(s, t)
                        piece = mask * i + (1 - mask) * piece
                z = s

            if self.detector_normalization:
                z = self.detector_normalization(z)

            p = max_pool_c01b(c01b=z,
                              pool_shape=self.pool_shape,
                              pool_stride=self.pool_stride,
                              image_shape=self.detector_space.shape)
        else:

            if self.detector_normalization is not None:
                raise NotImplementedError(
                    "We can't normalize the detector "
                    "layer because the detector layer never exists as a "
                    "stage of processing in this implementation.")
            z = max_pool_c01b(c01b=z,
                              pool_shape=self.pool_shape,
                              pool_stride=self.pool_stride,
                              image_shape=self.detector_space.shape)
            if self.num_pieces != 1:
                s = None
                piece = None
                for i in xrange(self.num_pieces):
                    t = z[i::self.num_pieces, :, :, :]
                    if s is None:
                        s = t
                        piece = T.zeros_like(t)
                    else:
                        s = T.maximum(s, t)
                        mask = T.eq(s, t)
                        piece = mask * i + (1 - mask) * piece
                z = s
            p = z

        self.output_space.validate(p)

        if hasattr(self, 'min_zero') and self.min_zero:
            p = p * (p > 0.)

        if not hasattr(self, 'output_normalization'):
            self.output_normalization = None

        if self.output_normalization:
            p = self.output_normalization(p)

        return p, piece
def setup_detector_layer_btc01(layer, input_space, rng, irange):
    # Use "self" to refer to layer from now on, so we can pretend we're just running
    # in the set_input_space method of the layer
    self = layer

    # Make sure cuda is available
    check_cuda(str(type(self)))
    #import pdb; pdb.set_trace()
    # Validate input
    if not isinstance(input_space, Conv3DSpace):
        raise TypeError("The input to a convolutional layer should be a Conv3DSpace, "
                " but layer " + self.layer_name + " got "+str(type(self.input_space)))

    if not hasattr(self, 'detector_channels'):
        raise ValueError('layer argument must have a "detector_channels" attribute specifying how many channels to put in the convolution kernel stack.')

    # Store the input space
    self.input_space = input_space

    #self.dummy_space = Conv3DSpace(shape=input_space.shape,
    #                               channels=input_space.num_channels + self.dummy_channels,
    #                               axes=('b', 'c', 't', 0, 1))


    output_shape = [int((i_sh + 2. * p_sh - k_sh) / float(k_st)) +1
                    for i_sh, p_sh, k_sh, k_st in zip(self.input_space.shape,
                                                self.pad,
                                                self.kernel_shape,
                                                self.kernel_stride)]

    def handle_kernel_shape(idx):
        if self.kernel_shape[idx] < 1:
            raise ValueError("kernel must have strictly positive size on all axes but has shape: "+str(self.kernel_shape))
        if output_shape[idx] <= 0:
            if self.fix_kernel_shape:
                self.kernel_shape[idx] = self.input_space.shape[idx] + 2 * self.pad
                assert self.kernel_shape[idx] != 0
                output_shape[idx] = 1
                warnings.warn("Had to change the kernel shape to make network feasible")
            else:
                raise ValueError("kernel too big for input (even with zero padding)")
    map(handle_kernel_shape, [0, 1, 2])

    # space required for 3dconv
    self.detector_space = Conv3DSpace(shape=output_shape,
                                      num_channels = self.detector_channels,
                                      axes = ('b', 'c', 0, 1,'t'))

    if hasattr(self, 'partial_sum'):
        partial_sum = self.partial_sum
    else:
        partial_sum = 1
    # filter shape required for fft3dconv ('c_detector','c','t','0','1')
    filter_shape = (self.detector_space.num_channels,
                    self.input_space.num_channels,
                    self.kernel_shape[0],
                    self.kernel_shape[1],
                    self.kernel_shape[2],
                   )

    # filter shape required for fft-3dconv ('b','c','t','0','1')
    signal_shape = (self.mlp.batch_size,
                    self.input_space.num_channels,
                    self.input_space.shape[0],
                    self.input_space.shape[1],
                    self.input_space.shape[2],
                    )

    self.transformer = make_random_conv3D(
        irange = self.irange,
        input_axes = ('b', 'c', 0, 1,'t'),
        output_axes = self.detector_space.axes,
        signal_shape = signal_shape,
        filter_shape = filter_shape,
        pad = self.pad,
        partial_sum = partial_sum,
        kernel_stride = self.kernel_stride,
        rng = rng)

    W, = self.transformer.get_params()
    W.name = 'W'

    if self.tied_b:
        self.b = sharedX(np.zeros((self.detector_space.num_channels)) + self.init_bias)
    else:
        self.b = sharedX(self.detector_space.get_origin() + self.init_bias)
    self.b.name = 'b'
    def fprop(self, state_below):

        check_cuda(str(type(self)))
        self.input_space.validate(state_below)
        if not hasattr(self, 'input_normalization'):
            self.input_normalization = None

        #state_below= Print("state_below")(state_below)

        if self.input_normalization:
            state_below = self.input_normalization(state_below)
        #import pdb; pdb.set_trace()
        # GPU 3d correlation
        z = self.transformer.lmul(state_below)

        # bias addition
        if not hasattr(self, 'tied_b'):
            self.tied_b = False
        if self.tied_b:
            b = self.b.dimshuffle('x', 0, 'x', 'x', 'x')
        else:
            b = self.b.dimshuffle('x', 0, 1, 2, 3)

        #z = Print('z')(z)
        #b = Print('b')(b)
        z = z + b

        if self.layer_name is not None:
            z.name = self.layer_name + '_z'
        self.detector_space.validate(z)
        #assert self.detector_space.num_channels % 16 == 0

        #ReLUs
        #z= Print("z")(z)
        z = T.maximum(z, 0)

        # Pooling
        if tuple(self.pool_shape) != (1, 1, 1):
            # Pooling on y, t
            z_shape = z.shape
            z = z.reshape(
                (z_shape[0], z_shape[1] * z_shape[2], z_shape[3], z_shape[4]))

            p = dnn_pool(img=z,
                         ws=tuple(self.pool_shape[1:]),
                         stride=tuple(self.pool_stride[1:]))

            p_shape = p.shape
            p = p.reshape(
                (p_shape[0], z_shape[1], z_shape[2], p_shape[2], p_shape[3]))

            #p = Print("p")(p)

            # Pooling on x
            p_shape = p.shape
            p = p.reshape(
                (p_shape[0], p_shape[1], p_shape[2], p_shape[3] * p_shape[4]))

            t = dnn_pool(img=p,
                         ws=tuple([self.pool_shape[0], 1]),
                         stride=tuple([self.pool_stride[0], 1]))
            t_shape = t.shape
            #print (t_shape[0], t_shape[1], t_shape[2], p_shape[2] , p_shape[3])
            t = t.reshape(
                (t_shape[0], t_shape[1], t_shape[2], p_shape[3], p_shape[4]))
        else:
            t = z

        self.output_space.validate(t)
        ## Gpu contiguous
        #t = gpu_contiguous(t)
        #t = Print("t")(t)

        if not hasattr(self, 'output_normalization'):
            self.output_normalization = None

        if self.output_normalization:
            t = self.output_normalization(t)

        return t
def setup_detector_layer_bct01(layer, input_space, rng, irange):
    """
    Takes steps to set up an object for use as being some kind of
    convolutional layer.
    This function sets up only the detector layer.
    Parameters
    ----------
    layer: Any python object that allows the modifications described below and has
    the following attributes:
         pad: int describing amount of zero padding to add
         kernel_shape: 2-element tuple or list describing spatial shape of kernel
         fix_kernel_shape: bool, if true, will shrink the kernel shape to make it
         feasible, as needed (useful for hyperparameter searchers)
         detector_channels: The number of channels in the detector layer
         init_bias: A numeric constant added to a tensor of zeros to initialize the
         bias
         tied_b: If true, biases are shared across all spatial locations

    input_space: A Conv3DSpace to be used as input to the layer

    rng: a numpy RandomState or equivalent

    irange: float. kernel elements are initialized randomly from U(-irange, irange)

    Does the following:
        raises a RuntimeError if cuda is not available
        sets layer.input_space to input_space
        sets up addition of dummy channels for compatibility with cuda-convnet:
            layer.dummy_channels: # of dummy channels that need to be added
                (You might want to check this and raise an Exception if it's not 0)
            layer.dummy_space: The Conv2DSpace representing the input with dummy channels
                added
        sets layer.detector_space to the space for the detector layer
        sets layer.transformer to be a Conv3DBCT01 instance
        sets layer.b to the right value
    """

    # Use "self" to refer to layer from now on, so we can pretend we're just running
    # in the set_input_space method of the layer
    self = layer

    # Make sure cuda is available
    check_cuda(str(type(self)))

    # Validate input
    if not isinstance(input_space, Conv3DSpace):
        raise TypeError("The input to a convolutional layer should be a Conv3DSpace, "
                " but layer " + self.layer_name + " got "+str(type(self.input_space)))

    if not hasattr(self, 'detector_channels'):
        raise ValueError('layer argument must have a "detector_channels" attribute specifying how many channels to put in the convolution kernel stack.')

    # Store the input space
    self.input_space = input_space

    #self.dummy_space = Conv3DSpace(shape=input_space.shape,
    #                               channels=input_space.num_channels + self.dummy_channels,
    #                               axes=('b', 'c', 't', 0, 1))


    if hasattr(self, 'kernel_stride'):
        kernel_stride = self.kernel_stride
    else:
        kernel_stride = [1, 1]
    dummy_shape = [self.input_space.shape[0] , self.input_space.shape[1] ]
    output_shape = [int(np.ceil((i_sh + 2. * self.pad - k_sh) / float(k_st))) + 1
                        for i_sh, k_sh, k_st in zip(dummy_shape,
                                                    self.kernel_shape,
                                                    kernel_stride)]
    output_sequence_length = self.input_space.shape[2] - self.kernel_sequence_length + 1
    if output_sequence_length < 0:
        raise ValueError("Input sequence length ({}) should >= output sequence_length ({})".format(self.input_space.sequence_length, self.kernel_sequence_length))

    def handle_kernel_shape(idx):
        if self.kernel_shape[idx] < 1:
            raise ValueError("kernel must have strictly positive size on all axes but has shape: "+str(self.kernel_shape))
        if output_shape[idx] <= 0:
            if self.fix_kernel_shape:
                self.kernel_shape[idx] = self.input_space.shape[idx] + 2 * self.pad
                assert self.kernel_shape[idx] != 0
                output_shape[idx] = 1
                warnings.warn("Had to change the kernel shape to make network feasible")
            else:
                raise ValueError("kernel too big for input (even with zero padding)")

    map(handle_kernel_shape, [0, 1])

    # space required for fft-3dconv
    output_shape = [output_shape[0], output_shape[1], output_sequence_length]
    self.detector_space = Conv3DSpace(shape=output_shape,
                                      num_channels = self.detector_channels,
                                      axes = ('b', 'c', 't', 0, 1))

    if hasattr(self, 'partial_sum'):
        partial_sum = self.partial_sum
    else:
        partial_sum = 1
    # filter shape required for fft-3dconv ('c_detector','c','t','0','1')
    filter_shape = (self.detector_space.num_channels,
                    self.input_space.num_channels,
                    self.kernel_sequence_length,
                    self.kernel_shape[0],
                    self.kernel_shape[1]
                   )
    # filter shape required for fft-3dconv ('b','c','t','0','1')
    signal_shape = (self.mlp.batch_size,
                    self.input_space.num_channels,
                    self.input_space.sequence_length,
                    self.input_space.shape[0],
                    self.input_space.shape[1]
                    )

    self.transformer = make_random_conv3D(
          irange = self.irange,
          input_axes = ('b', 'c', 't', 0, 1),
          output_axes = self.detector_space.axes,
          signal_shape = signal_shape,
          filter_shape = filter_shape,
          pad = self.pad,
          partial_sum = partial_sum,
          kernel_stride = kernel_stride,
          rng = rng)

    W, = self.transformer.get_params()
    W.name = 'W'

    if self.tied_b:
        self.b = sharedX(np.zeros((self.detector_space.num_channels)) + self.init_bias)
    else:
        self.b = sharedX(self.detector_space.get_origin() + self.init_bias)
    self.b.name = 'b'
    def fprop(self, state_below):

        check_cuda(str(type(self)))
        self.input_space.validate(state_below)
        if not hasattr(self, 'input_normalization'):
            self.input_normalization = None

        #state_below= Print("state_below")(state_below)

        if self.input_normalization:
            state_below = self.input_normalization(state_below)
        #import pdb; pdb.set_trace()
        # GPU 3d correlation
        z = self.transformer.lmul(state_below)

        # bias addition
        if not hasattr(self, 'tied_b'):
            self.tied_b = False
        if self.tied_b:
            b = self.b.dimshuffle('x', 0, 'x', 'x', 'x')
        else:
            b = self.b.dimshuffle('x', 0, 1, 2, 3)

        #z = Print('z')(z)
        #b = Print('b')(b)
        z = z + b



        if self.layer_name is not None:
           z.name = self.layer_name + '_z'
        self.detector_space.validate(z)
        #assert self.detector_space.num_channels % 16 == 0

        #ReLUs
        #z= Print("z")(z)
        z = T.maximum(z, 0)

        # Pooling
        if tuple(self.pool_shape) != (1, 1, 1):
            # Pooling on y, t
            z_shape = z.shape
            z = z.reshape((z_shape[0], z_shape[1] * z_shape[2],
                           z_shape[3], z_shape[4]))

            p = dnn_pool(img=z,
                         ws=tuple(self.pool_shape[1:]),
                         stride=tuple(self.pool_stride[1:]))

            p_shape = p.shape
            p = p.reshape((p_shape[0], z_shape[1],
                           z_shape[2], p_shape[2],
                           p_shape[3]))

            #p = Print("p")(p)

            # Pooling on x
            p_shape =p.shape
            p = p.reshape((p_shape[0], p_shape[1],
                           p_shape[2], p_shape[3] * p_shape[4]))

            t = dnn_pool(img=p,
                         ws=tuple([self.pool_shape[0], 1]),
                         stride=tuple([self.pool_stride[0], 1]))
            t_shape = t.shape
            #print (t_shape[0], t_shape[1], t_shape[2], p_shape[2] , p_shape[3])
            t = t.reshape((t_shape[0], t_shape[1],
                           t_shape[2], p_shape[3] , p_shape[4]))
        else:
            t = z

        self.output_space.validate(t)
        ## Gpu contiguous
        #t = gpu_contiguous(t)
        #t = Print("t")(t)

        if not hasattr(self, 'output_normalization'):
            self.output_normalization = None

        if self.output_normalization:
            t = self.output_normalization(t)

        return t
示例#22
0
    def __init__(
        self,
        num_channels,
        num_pieces,
        kernel_shape,
        pool_shape,
        pool_stride,
        layer_name,
        irange=None,
        init_bias=0.0,
        W_lr_scale=None,
        b_lr_scale=None,
        pad=0,
        fix_pool_shape=False,
        fix_pool_stride=False,
        fix_kernel_shape=False,
        partial_sum=1,
        tied_b=False,
        max_kernel_norm=None,
        input_normalization=None,
        detector_normalization=None,
        min_zero=False,
        output_normalization=None,
        kernel_stride=(1, 1),
    ):
        """
            num_channels: The number of output channels the layer should have.
                          Note that it must internally compute num_channels * num_pieces
                          convolution channels.
            num_pieces:   The number of linear pieces used to make each maxout unit.
            kernel_shape: The shape of the convolution kernel.
            pool_shape:   The shape of the spatial max pooling. A two-tuple of ints.
                          This is redundant as cuda-convnet requires the pool shape to
                          be square.
            pool_stride:  The stride of the spatial max pooling. Also must be square.
            layer_name: A name for this layer that will be prepended to
                        monitoring channels related to this layer.
            irange: if specified, initializes each weight randomly in
                U(-irange, irange)
            init_bias: All biases are initialized to this number
            W_lr_scale: The learning rate on the weights for this layer is
                multiplied by this scaling factor
            b_lr_scale: The learning rate on the biases for this layer is
                multiplied by this scaling factor
            pad: The amount of zero-padding to implicitly add to the boundary of the
                image when computing the convolution. Useful for making sure pixels
                at the edge still get to influence multiple hidden units.
            fix_pool_shape: If True, will modify self.pool_shape to avoid having
                pool shape bigger than the entire detector layer.
                If you have this on, you should probably also have
                fix_pool_stride on, since the pool shape might shrink
                smaller than the stride, even if the stride was initially
                valid.
                The "fix" parameters are useful for working with a hyperparameter
                optimization package, which might often propose sets of hyperparameters
                that are not feasible, but can easily be projected back into the feasible
                set.
            fix_kernel_shape: if True, will modify self.kernel_shape to avoid
            having the kernel shape bigger than the implicitly
            zero padded input layer

            partial_sum: a parameter that controls whether to prefer runtime savings
                        or memory savings when computing the gradient with respect to
                        the kernels. See pylearn2.sandbox.cuda_convnet.weight_acts.py
                        for details. The default is to prefer high speed.
                        Note that changing this setting may change the value of computed
                        results slightly due to different rounding error.
            tied_b: If true, all biases in the same channel are constrained to be the same
                    as each other. Otherwise, each bias at each location is learned independently.
            max_kernel_norm: If specifed, each kernel is constrained to have at most this norm.
            input_normalization, detector_normalization, output_normalization:
                if specified, should be a callable object. the state of the network is optionally
                replaced with normalization(state) at each of the 3 points in processing:
                    input: the input the layer receives can be normalized right away
                    detector: the maxout units can be normalized prior to the spatial pooling
                    output: the output of the layer, after sptial pooling, can be normalized as well
            kernel_stride: vertical and horizontal pixel stride between
                           each detector.
        """
        check_cuda(str(type(self)))

        detector_channels = num_channels * num_pieces

        self.__dict__.update(locals())
        del self.self
示例#23
0
    def fprop(self, state_below):
        check_cuda(str(type(self)))

        self.input_space.validate(state_below)

        if not hasattr(self, 'input_normalization'):
            self.input_normalization = None

        if self.input_normalization:
            state_below = self.input_normalization(state_below)

        # Alex's code requires # input channels to be <= 3 or a multiple of 4
        # so we add dummy channels if necessary
        if not hasattr(self, 'dummy_channels'):
            self.dummy_channels = 0
        if self.dummy_channels > 0:
            state_below = T.concatenate((state_below,
                T.zeros_like(state_below[0:self.dummy_channels, :, :, :, :])),
                                        axis=0)

        z = self.transformer.lmul(state_below)
        if not hasattr(self, 'tied_b'):
            self.tied_b = False
        if self.tied_b:
            b = self.b.dimshuffle(0, 'x', 'x', 'x', 'x')
        else:
            b = self.b.dimshuffle(0, 1, 2, 'x', 'x')


        z = z + b
        if self.layer_name is not None:
            z.name = self.layer_name + '_z'

        self.detector_space.validate(z)

        assert self.detector_space.num_channels % 16 == 0

        if self.output_space.num_channels % 16 == 0:
            # alex's max pool op only works when the number of channels
            # is divisible by 16. we can only do the cross-channel pooling
            # first if the cross-channel pooling preserves that property
            if self.num_pieces != 1:
                s = None
                for i in xrange(self.num_pieces):
                    t = z[i::self.num_pieces,:,:,:]
                    if s is None:
                        s = t
                    else:
                        s = T.maximum(s, t)
                z = s

            # pool across sequences
            if self.sequence_pool_shape != 1:
                s = None
                for i in xrange(self.sequence_pool_shape):
                    t = z[:,:,:,i::self.sequence_pool_shape,:]
                    if s is None:
                        s = t
                    else:
                        s = T.maximum(s, t)
                z = s

            if self.detector_normalization:
                z = self.detector_normalization(z)

            # spatial pooling
            z_shape = z.shape
            z = z.reshape((z_shape[0], z_shape[1], z_shape[2], z_shape[3] * z_shape[4]))
            p = max_pool_c01b(c01b=z, pool_shape=self.pool_shape,
                              pool_stride=self.pool_stride,
                              image_shape=self.detector_space.shape)
            p_shape = p.shape
            p = p.reshape((p_shape[0], p_shape[1], p_shape[2], z_shape[3], z_shape[4]))

        else:
            raise NotImplementedError("num channles should always be dvisible by 16")

        self.output_space.validate(p)

        if hasattr(self, 'min_zero') and self.min_zero:
            p = p * (p > 0.)

        if not hasattr(self, 'output_normalization'):
            self.output_normalization = None

        if self.output_normalization:
            p = self.output_normalization(p)

        return p
示例#24
0
def setup_detector_layer_b01tc(layer, input_space, rng, irange, stride):
    """
    Takes steps to set up an object for use as being some kind of
    convolutional layer.
    This function sets up only the detector layer.
    Parameters
    ----------
    layer: Any python object that allows the modifications described below and has
    the following attributes:
         pad: int describing amount of zero padding to add
         kernel_shape: 3-element tuple or list describing shape of kernel
         fix_kernel_shape: bool, if true, will shrink the kernel shape to make it
         feasible, as needed (useful for hyperparameter searchers)
         detector_channels: The number of channels in the detector layer
         init_bias: A numeric constant added to a tensor of zeros to initialize the
         bias
         tied_b: If true, biases are shared across all spatial locations

    input_space: A Conv3DSpace to be used as input to the layer

    rng: a numpy RandomState or equivalent

    irange: float. kernel elements are initialized randomly from U(-irange, irange)

    Does the following:
        raises a RuntimeError if cuda is not available
        sets layer.input_space to input_space
        sets up addition of dummy channels for compatibility with cuda-convnet:
            layer.dummy_channels: # of dummy channels that need to be added
                (You might want to check this and raise an Exception if it's not 0)
            layer.dummy_space: The Conv2DSpace representing the input with dummy channels
                added
        sets layer.detector_space to the space for the detector layer
        sets layer.transformer to be a Conv3DB01TC instance
        sets layer.b to the right value
    """

    # Use "self" to refer to layer from now on, so we can pretend we're just running
    # in the set_input_space method of the layer
    self = layer

    # Make sure cuda is available
    check_cuda(str(type(self)))

    # Validate input
    if not isinstance(input_space, Conv3DSpace):
        raise TypeError(
            "The input to a convolutional layer should be a Conv3DSpace, "
            " but layer " + self.layer_name + " got " +
            str(type(self.input_space)))

    if not hasattr(self, 'detector_channels'):
        raise ValueError(
            'layer argument must have a "detector_channels" attribute specifying how many channels to put in the convolution kernel stack.'
        )

    # Store the input space
    self.input_space = input_space

    #self.dummy_space = Conv3DSpace(shape=input_space.shape,
    #                               channels=input_space.num_channels + self.dummy_channels,
    #                               axes=('b', 'c', 't', 0, 1))

    if hasattr(self, 'kernel_stride'):
        kernel_stride = stride
    else:
        kernel_stride = stride

    #import pdb; pdb.set_trace()
    #dummy_shape = [self.input_space.shape[0], self.input_space.shape[1] ]
    output_shape = [
        int((i_sh + 2. * self.pad - k_sh) / float(k_st)) + 1 for i_sh, k_sh,
        k_st in zip(self.input_space.shape, self.kernel_shape, kernel_stride)
    ]

    def handle_kernel_shape(idx):
        if self.kernel_shape[idx] < 1:
            raise ValueError(
                "kernel must have strictly positive size on all axes but has shape: "
                + str(self.kernel_shape))
        if output_shape[idx] <= 0:
            if self.fix_kernel_shape:
                self.kernel_shape[
                    idx] = self.input_space.shape[idx] + 2 * self.pad
                assert self.kernel_shape[idx] != 0
                output_shape[idx] = 1
                warnings.warn(
                    "Had to change the kernel shape to make network feasible")
            else:
                raise ValueError(
                    "kernel too big for input (even with zero padding)")

    map(handle_kernel_shape, [0, 1, 2])

    # space required for 3dconv
    self.detector_space = Conv3DSpace(shape=output_shape,
                                      num_channels=self.detector_channels,
                                      axes=('b', 0, 1, 't', 'c'))

    if hasattr(self, 'partial_sum'):
        partial_sum = self.partial_sum
    else:
        partial_sum = 1
    # filter shape required for fft3dconv ('c_detector','c','t','0','1')
    filter_shape = (
        self.detector_space.num_channels,
        self.kernel_shape[0],
        self.kernel_shape[1],
        self.kernel_shape[2],
        self.input_space.num_channels,
    )

    # filter shape required for fft-3dconv ('b','c','t','0','1')
    signal_shape = (
        self.mlp.batch_size,
        self.input_space.shape[0],
        self.input_space.shape[1],
        self.input_space.shape[2],
        self.input_space.num_channels,
    )

    self.transformer = make_random_conv3D(irange=self.irange,
                                          input_axes=('b', 0, 1, 't', 'c'),
                                          output_axes=self.detector_space.axes,
                                          signal_shape=signal_shape,
                                          filter_shape=filter_shape,
                                          pad=self.pad,
                                          partial_sum=partial_sum,
                                          kernel_stride=kernel_stride,
                                          rng=rng)

    W, = self.transformer.get_params()
    W.name = 'W'

    if self.tied_b:
        self.b = sharedX(
            np.zeros((self.detector_space.num_channels)) + self.init_bias)
    else:
        self.b = sharedX(self.detector_space.get_origin() + self.init_bias)
    self.b.name = 'b'
示例#25
0
    def fprop(self, state_below):
        check_cuda(str(type(self)))

        self.input_space.validate(state_below)

        if not hasattr(self, 'input_normalization'):
            self.input_normalization = None

        if self.input_normalization:
            state_below = self.input_normalization(state_below)

        # Alex's code requires # input channels to be <= 3 or a multiple of 4
        # so we add dummy channels if necessary
        if not hasattr(self, 'dummy_channels'):
            self.dummy_channels = 0
        if self.dummy_channels > 0:
            state_below = T.concatenate(
                (state_below,
                 T.zeros_like(state_below[0:self.dummy_channels, :, :, :, :])),
                axis=0)

        z = self.transformer.lmul(state_below)
        if not hasattr(self, 'tied_b'):
            self.tied_b = False
        if self.tied_b:
            b = self.b.dimshuffle(0, 'x', 'x', 'x', 'x')
        else:
            b = self.b.dimshuffle(0, 1, 2, 'x', 'x')

        z = z + b
        if self.layer_name is not None:
            z.name = self.layer_name + '_z'

        self.detector_space.validate(z)

        assert self.detector_space.num_channels % 16 == 0

        if self.output_space.num_channels % 16 == 0:
            # alex's max pool op only works when the number of channels
            # is divisible by 16. we can only do the cross-channel pooling
            # first if the cross-channel pooling preserves that property
            if self.num_pieces != 1:
                s = None
                for i in xrange(self.num_pieces):
                    t = z[i::self.num_pieces, :, :, :]
                    if s is None:
                        s = t
                    else:
                        s = T.maximum(s, t)
                z = s

            # pool across sequences
            if self.sequence_pool_shape != 1:
                s = None
                for i in xrange(self.sequence_pool_shape):
                    t = z[:, :, :, i::self.sequence_pool_shape, :]
                    if s is None:
                        s = t
                    else:
                        s = T.maximum(s, t)
                z = s

            if self.detector_normalization:
                z = self.detector_normalization(z)

            # spatial pooling
            z_shape = z.shape
            z = z.reshape(
                (z_shape[0], z_shape[1], z_shape[2], z_shape[3] * z_shape[4]))
            p = max_pool_c01b(c01b=z,
                              pool_shape=self.pool_shape,
                              pool_stride=self.pool_stride,
                              image_shape=self.detector_space.shape)
            p_shape = p.shape
            p = p.reshape(
                (p_shape[0], p_shape[1], p_shape[2], z_shape[3], z_shape[4]))

        else:
            raise NotImplementedError(
                "num channles should always be dvisible by 16")

        self.output_space.validate(p)

        if hasattr(self, 'min_zero') and self.min_zero:
            p = p * (p > 0.)

        if not hasattr(self, 'output_normalization'):
            self.output_normalization = None

        if self.output_normalization:
            p = self.output_normalization(p)

        return p
示例#26
0
def setup_detector_layer_c01b(layer, input_space, rng, irange="not specified"):
    """
    .. todo::

        WRITEME properly

    Takes steps to set up an object for use as being some kind of convolutional
    layer. This function sets up only the detector layer.

    Does the following:

    * raises a RuntimeError if cuda is not available
    * sets layer.input_space to input_space
    * sets up addition of dummy channels for compatibility with cuda-convnet:

      - layer.dummy_channels: # of dummy channels that need to be added
        (You might want to check this and raise an Exception if it's not 0)
      - layer.dummy_space: The Conv2DSpace representing the input with dummy
        channels added

    * sets layer.detector_space to the space for the detector layer
    * sets layer.transformer to be a Conv2D instance
    * sets layer.b to the right value

    Parameters
    ----------
    layer : object
        Any python object that allows the modifications described below and
        has the following attributes:

          * pad : int describing amount of zero padding to add
          * kernel_shape : 2-element tuple or list describing spatial shape of
            kernel
          * fix_kernel_shape : bool, if true, will shrink the kernel shape to
            make it feasible, as needed (useful for hyperparameter searchers)
          * detector_channels : The number of channels in the detector layer
          * init_bias : numeric constant added to a tensor of zeros to
            initialize the bias
          * tied_b : If true, biases are shared across all spatial locations
    input_space : WRITEME
        A Conv2DSpace to be used as input to the layer
    rng : WRITEME
        A numpy RandomState or equivalent
    """

    if irange != "not specified":
        raise AssertionError(
            "There was a bug in setup_detector_layer_c01b."
            "It uses layer.irange instead of the irange parameter to the "
            "function. The irange parameter is now disabled by this "
            "AssertionError, so that this error message can alert you that "
            "the bug affected your code and explain why the interface is "
            "changing. The irange parameter to the function and this "
            "error message may be removed after April 21, 2014."
        )

    # Use "self" to refer to layer from now on, so we can pretend we're
    # just running in the set_input_space method of the layer
    self = layer

    # Make sure cuda is available
    check_cuda(str(type(self)))

    # Validate input
    if not isinstance(input_space, Conv2DSpace):
        raise TypeError(
            "The input to a convolutional layer should be a "
            "Conv2DSpace, but layer " + self.layer_name + " got " + str(type(self.input_space))
        )

    if not hasattr(self, "detector_channels"):
        raise ValueError(
            "layer argument must have a 'detector_channels' "
            "attribute specifying how many channels to put in "
            "the convolution kernel stack."
        )

    # Store the input space
    self.input_space = input_space

    # Make sure number of channels is supported by cuda-convnet
    # (multiple of 4 or <= 3)
    # If not supported, pad the input with dummy channels
    ch = self.input_space.num_channels
    rem = ch % 4
    if ch > 3 and rem != 0:
        self.dummy_channels = 4 - rem
    else:
        self.dummy_channels = 0
    self.dummy_space = Conv2DSpace(
        shape=input_space.shape, channels=input_space.num_channels + self.dummy_channels, axes=("c", 0, 1, "b")
    )

    if hasattr(self, "kernel_stride"):
        kernel_stride = self.kernel_stride
    else:
        kernel_stride = [1, 1]

    output_shape = [
        int(np.ceil((i_sh + 2.0 * self.pad - k_sh) / float(k_st))) + 1
        for i_sh, k_sh, k_st in zip(self.input_space.shape, self.kernel_shape, kernel_stride)
    ]

    def handle_kernel_shape(idx):
        if self.kernel_shape[idx] < 1:
            raise ValueError(
                "kernel must have strictly positive size on all " "axes but has shape: " + str(self.kernel_shape)
            )
        if output_shape[idx] <= 0:
            if self.fix_kernel_shape:
                self.kernel_shape[idx] = self.input_space.shape[idx] + 2 * self.pad
                assert self.kernel_shape[idx] != 0
                output_shape[idx] = 1
                warnings.warn("Had to change the kernel shape to make " "network feasible")
            else:
                raise ValueError("kernel too big for input " "(even with zero padding)")

    map(handle_kernel_shape, [0, 1])

    if self.detector_channels < 16:
        raise ValueError("Cuda-convnet requires the detector layer to have " "at least 16 channels.")

    self.detector_space = Conv2DSpace(shape=output_shape, num_channels=self.detector_channels, axes=("c", 0, 1, "b"))

    if hasattr(self, "partial_sum"):
        partial_sum = self.partial_sum
    else:
        partial_sum = 1

    if hasattr(self, "sparse_init") and self.sparse_init is not None:
        self.transformer = checked_call(
            make_sparse_random_conv2D,
            OrderedDict(
                [
                    ("num_nonzero", self.sparse_init),
                    ("input_space", self.input_space),
                    ("output_space", self.detector_space),
                    ("kernel_shape", self.kernel_shape),
                    ("pad", self.pad),
                    ("partial_sum", partial_sum),
                    ("kernel_stride", kernel_stride),
                    ("rng", rng),
                ]
            ),
        )
    else:
        self.transformer = make_random_conv2D(
            irange=self.irange,
            input_axes=self.input_space.axes,
            output_axes=self.detector_space.axes,
            input_channels=self.dummy_space.num_channels,
            output_channels=self.detector_space.num_channels,
            kernel_shape=self.kernel_shape,
            pad=self.pad,
            partial_sum=partial_sum,
            kernel_stride=kernel_stride,
            rng=rng,
        )

    W, = self.transformer.get_params()
    W.name = self.layer_name + "_W"

    if self.tied_b:
        self.b = sharedX(np.zeros(self.detector_space.num_channels) + self.init_bias)
    else:
        self.b = sharedX(self.detector_space.get_origin() + self.init_bias)
    self.b.name = self.layer_name + "_b"

    logger.info("Input shape: {0}".format(self.input_space.shape))
    logger.info("Detector space: {0}".format(self.detector_space.shape))
示例#27
0
    def piece_prop(self, state_below):
        """
        Note: this only reports pieces in terms of which channel wins, not
        which spatial location wins. Depending on the input size, it may report
        a piece map for either the pre-spatial pooling or the post-spatial pooling
        tensor.
        """
        check_cuda(str(type(self)))

        self.input_space.validate(state_below)

        if not hasattr(self, 'input_normalization'):
            self.input_normalization = None

        if self.input_normalization:
            state_below = self.input_normalization(state_below)

        # Alex's code requires # input channels to be <= 3 or a multiple of 4
        # so we add dummy channels if necessary
        if not hasattr(self, 'dummy_channels'):
            self.dummy_channels = 0
        if self.dummy_channels > 0:
            state_below = T.concatenate((state_below,
                                         T.zeros_like(state_below[0:self.dummy_channels, :, :, :])),
                                        axis=0)

        z = self.transformer.lmul(state_below)
        if not hasattr(self, 'tied_b'):
            self.tied_b = False
        if self.tied_b:
            b = self.b.dimshuffle(0, 'x', 'x', 'x')
        else:
            b = self.b.dimshuffle(0, 1, 2, 'x')


        z = z + b
        if self.layer_name is not None:
            z.name = self.layer_name + '_z'

        self.detector_space.validate(z)

        assert self.detector_space.num_channels % 16 == 0

        if self.output_space.num_channels % 16 == 0:
            # alex's max pool op only works when the number of channels
            # is divisible by 16. we can only do the cross-channel pooling
            # first if the cross-channel pooling preserves that property
            piece = None
            if self.num_pieces != 1:
                s = None
                for i in xrange(self.num_pieces):
                    t = z[i::self.num_pieces,:,:,:]
                    if s is None:
                        s = t
                        piece = T.zeros_like(t)
                    else:
                        s = T.maximum(s, t)
                        mask = T.eq(s, t)
                        piece = mask * i + (1 - mask) * piece
                z = s

            if self.detector_normalization:
                z = self.detector_normalization(z)

            p = max_pool_c01b(c01b=z, pool_shape=self.pool_shape,
                              pool_stride=self.pool_stride,
                              image_shape=self.detector_space.shape)
        else:

            if self.detector_normalization is not None:
                raise NotImplementedError("We can't normalize the detector "
                        "layer because the detector layer never exists as a "
                        "stage of processing in this implementation.")
            z = max_pool_c01b(c01b=z, pool_shape=self.pool_shape,
                              pool_stride=self.pool_stride,
                              image_shape=self.detector_space.shape)
            if self.num_pieces != 1:
                s = None
                piece = None
                for i in xrange(self.num_pieces):
                    t = z[i::self.num_pieces,:,:,:]
                    if s is None:
                        s = t
                        piece = T.zeros_like(t)
                    else:
                        s = T.maximum(s, t)
                        mask = T.eq(s, t)
                        piece = mask * i + (1- mask) * piece
                z = s
            p = z


        self.output_space.validate(p)

        if hasattr(self, 'min_zero') and self.min_zero:
            p = p * (p > 0.)

        if not hasattr(self, 'output_normalization'):
            self.output_normalization = None

        if self.output_normalization:
            p = self.output_normalization(p)

        return p, piece
示例#28
0
    def fprop(self, state_below):
        check_cuda(str(type(self)))

        self.input_space.validate(state_below)

        if not hasattr(self, "input_normalization"):
            self.input_normalization = None

        if self.input_normalization:
            state_below = self.input_normalization(state_below)

        # Alex's code requires # input channels to be <= 3 or a multiple of 4
        # so we add dummy channels if necessary
        if not hasattr(self, "dummy_channels"):
            self.dummy_channels = 0
        if self.dummy_channels > 0:
            state_below = T.concatenate(
                (state_below, T.zeros_like(state_below[0 : self.dummy_channels, :, :, :])), axis=0
            )

        z = self.transformer.lmul(state_below)
        if not hasattr(self, "tied_b"):
            self.tied_b = False
        if self.tied_b:
            b = self.b.dimshuffle(0, "x", "x", "x")
        else:
            b = self.b.dimshuffle(0, 1, 2, "x")

        z = z + b
        if self.layer_name is not None:
            z.name = self.layer_name + "_z"

        self.detector_space.validate(z)

        assert self.detector_space.num_channels % 16 == 0

        if self.output_space.num_channels % 16 == 0:
            # alex's max pool op only works when the number of channels
            # is divisible by 16. we can only do the cross-channel pooling
            # first if the cross-channel pooling preserves that property
            if self.num_pieces != 1:
                s = None
                for i in xrange(self.num_pieces):
                    t = z[i :: self.num_pieces, :, :, :]
                    if s is None:
                        s = t
                    else:
                        s = T.maximum(s, t)
                z = s

            if self.detector_normalization:
                z = self.detector_normalization(z)

            p = max_pool_c01b(
                c01b=z, pool_shape=self.pool_shape, pool_stride=self.pool_stride, image_shape=self.detector_space.shape
            )
        else:

            if self.detector_normalization is not None:
                raise NotImplementedError(
                    "We can't normalize the detector "
                    "layer because the detector layer never exists as a "
                    "stage of processing in this implementation."
                )
            z = max_pool_c01b(
                c01b=z, pool_shape=self.pool_shape, pool_stride=self.pool_stride, image_shape=self.detector_space.shape
            )
            if self.num_pieces != 1:
                s = None
                for i in xrange(self.num_pieces):
                    t = z[i :: self.num_pieces, :, :, :]
                    if s is None:
                        s = t
                    else:
                        s = T.maximum(s, t)
                z = s
            p = z

        self.output_space.validate(p)

        if hasattr(self, "min_zero") and self.min_zero:
            p = p * (p > 0.0)

        if not hasattr(self, "output_normalization"):
            self.output_normalization = None

        if self.output_normalization:
            p = self.output_normalization(p)

        return p
    def fprop(self, state_below):

        check_cuda(str(type(self)))
        self.input_space.validate(state_below)
        if not hasattr(self, 'input_normalization'):
            self.input_normalization = None

        if self.input_normalization:
            state_below = self.input_normalization(state_below)

        # fft 3d covolution
        z = self.transformer.lmul(state_below)

        # bias addition
        if not hasattr(self, 'tied_b'):
            self.tied_b = False
        if self.tied_b:
            b = self.b.dimshuffle(0, 'x', 'x', 'x', 'x')
        else:
            b = self.b.dimshuffle('x', 0, 1, 2, 3)
        z = z + self.b



        if self.layer_name is not None:
           z.name = self.layer_name + '_z'
        self.detector_space.validate(z)
        #assert self.detector_space.num_channels % 16 == 0

        #ReLUs
        z = T.maximum(z, 0)
        if self.output_space.num_channels % 16 != 0:
            raise NotImplementedError("num channles should always be dvisible by 16")

        # alex's max pool op only works when the number of channels
        # is divisible by 16. we can only do the cross-channel pooling
        # first if the cross-channel pooling preserves that property

        # Pooling
        # permute axes ['b', 0, 1,'t','c'] -> ['c', 0, 1, 't', 'b'] (axes required for pooling )
        z = z.dimshuffle(4, 1, 2, 3, 0)

        # spatial pooling x/y
        z_shape = z.shape
        z = z.reshape((z_shape[0], z_shape[1], z_shape[2], z_shape[3] * z_shape[4]))
        p = max_pool_c01b(c01b = z,
                          pool_shape = self.pool_shape[0:2],
                          pool_stride = self.pool_stride[0:2])
        p = p.reshape((p.shape[0], p.shape[1], p.shape[2], z_shape[3], z_shape[4]))


        # temporal pooling with overlap (t)
        p_shape = p.shape
        #['c', 0, 1, 't', 'b'] -> ['c',0*1,'t','b'] ('c',0, 1,'b') for max_pool_c01b
        p = p.reshape((p_shape[0], p_shape[1] * p_shape[2], p_shape[3] , p_shape[4]))
        t = temporal_max_pool_c01b(c01b = p,
                                   pool_shape = [1, self.pool_shape[2]],
                                   pool_stride = [1, self.pool_stride[2]],
                                   image_shape = self.temp_pool_input_shape)
        t_shape = t.shape
        t = t.reshape((t_shape[0], p_shape[1] , p_shape[2], t_shape[2] , t_shape[3]))
        # Permute back axes ['c', 0, 1, 't', 'b'] -> ['b', 0, 1, 't', 'c']
        t = t.dimshuffle(4, 1, 2, 3, 0)
        self.output_space.validate(t)

        if not hasattr(self, 'output_normalization'):
            self.output_normalization = None

        if self.output_normalization:
            t = self.output_normalization(t)

        return t