示例#1
0
def train_model():
    global ninput, noutput
    simdata = SimulationData(
        sim_path="../../javaDataCenter/generarDadesV1/CA_SDN_topo1/")
    simdata.load_data()
    simdata.preprocessor()
    dataset = simdata.get_matrix()

    structure = get_structure()
    layers = []
    for pair in structure:
        layers.append(get_autoencoder(pair))

    model = DeepComposedAutoencoder(layers)
    training_alg = SGD(learning_rate=1e-3,
                       cost=MeanSquaredReconstructionError(),
                       batch_size=1296,
                       monitoring_dataset=dataset,
                       termination_criterion=EpochCounter(max_epochs=50))
    extensions = [MonitorBasedLRAdjuster()]
    experiment = Train(dataset=dataset,
                       model=model,
                       algorithm=training_alg,
                       save_path='training2.pkl',
                       save_freq=10,
                       allow_overwrite=True,
                       extensions=extensions)
    experiment.main_loop()
示例#2
0
def testing_multiple_datasets_with_specified_dataset_in_monitor_based_lr():
    # tests that the class MonitorBasedLRAdjuster in sgd.py can properly use
    # the spcified dataset_name in the constructor when multiple datasets
    # exist.

    dim = 3
    m = 10

    rng = np.random.RandomState([06, 02, 2014])

    X = rng.randn(m, dim)
    Y = rng.randn(m, dim)

    learning_rate = 1e-2
    batch_size = 5

    # We need to include this so the test actually stops running at some point
    epoch_num = 1

    # including a monitoring datasets lets us test that
    # the monitor works with supervised data
    monitoring_train = DenseDesignMatrix(X=X)
    monitoring_test = DenseDesignMatrix(X=Y)

    cost = DummyCost()

    model = SoftmaxModel(dim)

    dataset = DenseDesignMatrix(X=X)

    termination_criterion = EpochCounter(epoch_num)

    monitoring_dataset = {'train': monitoring_train, 'test': monitoring_test}

    algorithm = SGD(learning_rate,
                    cost,
                    batch_size=batch_size,
                    monitoring_batches=2,
                    monitoring_dataset=monitoring_dataset,
                    termination_criterion=termination_criterion,
                    update_callbacks=None,
                    init_momentum=None,
                    set_batch_size=False)

    dataset_name = monitoring_dataset.keys()[0]
    monitor_lr = MonitorBasedLRAdjuster(dataset_name=dataset_name)

    train = Train(dataset,
                  model,
                  algorithm,
                  save_path=None,
                  save_freq=0,
                  extensions=[monitor_lr])

    train.main_loop()
示例#3
0
def test_train_supervised():
    """
    Train a supervised GSN.
    """
    # initialize the GSN
    gsn = GSN.new(
        layer_sizes=[ds.X.shape[1], 1000, ds.y.shape[1]],
        activation_funcs=["sigmoid", "tanh", rescaled_softmax],
        pre_corruptors=[GaussianCorruptor(0.5)] * 3,
        post_corruptors=[
            SaltPepperCorruptor(.3), None,
            SmoothOneHotCorruptor(.5)
        ],
        layer_samplers=[BinomialSampler(), None,
                        MultinomialSampler()],
        tied=False)

    # average over costs rather than summing
    _rcost = MeanBinaryCrossEntropy()
    reconstruction_cost = lambda a, b: _rcost.cost(a, b) / ds.X.shape[1]

    _ccost = MeanBinaryCrossEntropy()
    classification_cost = lambda a, b: _ccost.cost(a, b) / ds.y.shape[1]

    # combine costs into GSNCost object
    c = GSNCost(
        [
            # reconstruction on layer 0 with weight 1.0
            (0, 1.0, reconstruction_cost),

            # classification on layer 2 with weight 2.0
            (2, 2.0, classification_cost)
        ],
        walkback=WALKBACK,
        mode="supervised")

    alg = SGD(
        LEARNING_RATE,
        init_momentum=MOMENTUM,
        cost=c,
        termination_criterion=EpochCounter(MAX_EPOCHS),
        batches_per_iter=BATCHES_PER_EPOCH,
        batch_size=BATCH_SIZE,
        monitoring_dataset=ds,
        monitoring_batches=10,
    )

    trainer = Train(ds,
                    gsn,
                    algorithm=alg,
                    save_path="gsn_sup_example.pkl",
                    save_freq=10,
                    extensions=[MonitorBasedLRAdjuster()])
    trainer.main_loop()
    print("done training")
示例#4
0
def get_layer_trainer_sgd_rbm(layer, trainset):
    train_algo = SGD(
        learning_rate = 1e-1,
        batch_size =  5,
        #"batches_per_iter" : 2000,
        monitoring_batches =  20,
        monitoring_dataset =  trainset,
        cost = SMD(corruptor=GaussianCorruptor(stdev=0.4)),
        termination_criterion =  EpochCounter(max_epochs=MAX_EPOCHS_UNSUPERVISED),
        )
    model = layer
    extensions = [MonitorBasedLRAdjuster()]
    return Train(model = model, algorithm = train_algo,
                 save_path='grbm.pkl',save_freq=1,
                 extensions = extensions, dataset = trainset)
示例#5
0
def testing_multiple_datasets_in_monitor_based_lr():
    # tests that the class MonitorBasedLRAdjuster in sgd.py does not take multiple datasets in which multiple channels ending in '_objectives' exist. 
    # This case happens when the user has not specified either channel_name or dataset_name in the constructor

    dim = 3
    m = 10

    rng = np.random.RandomState([06,02,2014])

    X = rng.randn(m, dim)
    Y = rng.randn(m, dim)

    learning_rate = 1e-2
    batch_size = 5

    # We need to include this so the test actually stops running at some point
    epoch_num = 1

    # including a monitoring datasets lets us test that
    # the monitor works with supervised data
    monitoring_train = DenseDesignMatrix(X=X)
    monitoring_test = DenseDesignMatrix(X=Y)

    cost = DummyCost()

    model = SoftmaxModel(dim)

    dataset = DenseDesignMatrix(X=X)

    termination_criterion = EpochCounter(epoch_num)

    algorithm = SGD(learning_rate, cost, batch_size=5,
             monitoring_batches=2, monitoring_dataset= {'train': monitoring_train, 'test' : monitoring_test},
             termination_criterion=termination_criterion, update_callbacks=None,
             init_momentum = None, set_batch_size = False)

    monitor_lr = MonitorBasedLRAdjuster()

    train = Train(dataset, model, algorithm, save_path=None,
             save_freq=0, extensions=[monitor_lr])

    try:
        train.main_loop()
    except ValueError:
        return
        
    raise AssertionError("MonitorBasedLRAdjuster takes multiple dataset names in which more than one \"objective\" channel exist and the user has not specified " + 
        "either channel_name or database_name in the constructor to disambiguate.")
def get_layer_trainer_sgd_rbm(layer, trainset):
    train_algo = SGD(
        learning_rate = 1e-1,
        batch_size =  5,
        #"batches_per_iter" : 2000,
        monitoring_batches =  20,
        monitoring_dataset =  trainset,
        cost = SMD(corruptor=GaussianCorruptor(stdev=0.4)),
        termination_criterion =  EpochCounter(max_epochs=MAX_EPOCHS),
        # another option:
        # MonitorBasedTermCrit(prop_decrease=0.01, N=10),
        )
    model = layer
    callbacks = [MonitorBasedLRAdjuster(), ModelSaver()]
    return Train(model = model, algorithm = train_algo,
            callbacks = callbacks, dataset = trainset)
示例#7
0
    def create_adjustors(self):
        initial_momentum = .5
        final_momentum = .99
        start = 1
        saturate = self.max_epochs
        self.momentum_adjustor = learning_rule.MomentumAdjustor(
            final_momentum, start, saturate)
        self.momentum_rule = learning_rule.Momentum(initial_momentum,
                                                    nesterov_momentum=True)

        if self.lr_monitor_decay:
            self.learning_rate_adjustor = MonitorBasedLRAdjuster(
                high_trigger=1.,
                shrink_amt=0.9,
                low_trigger=.95,
                grow_amt=1.1,
                channel_name='train_objective')
        elif self.lr_lin_decay:
            self.learning_rate_adjustor = LinearDecayOverEpoch(
                start, saturate, self.lr_lin_decay)
示例#8
0
def test_monitor_based_lr():
    # tests that the class MonitorBasedLRAdjuster in sgd.py
    # gets the learning rate properly over the training epochs
    # it runs a small softmax and at the end checks the learning values. It runs 2 loops. Each loop evaluates one of the if clauses when checking
    # the observation channels. Otherwise, longer training epochs are needed to observe both if and elif cases.

    high_trigger = 1.0
    shrink_amt = 0.99
    low_trigger = 0.99
    grow_amt = 1.01
    min_lr = 1e-7
    max_lr = 1.

    dim = 3
    m = 10

    rng = np.random.RandomState([25, 9, 2012])

    X = rng.randn(m, dim)

    dataset = DenseDesignMatrix(X=X)

    m = 15
    X = rng.randn(m, dim)
    learning_rate = 1e-2
    batch_size = 5

    # We need to include this so the test actually stops running at some point
    epoch_num = 5

    # including a monitoring datasets lets us test that
    # the monitor works with supervised data
    monitoring_dataset = DenseDesignMatrix(X=X)

    cost = DummyCost()

    for i in xrange(2):

        if i == 1:
            high_trigger = 0.99

        model = SoftmaxModel(dim)

        termination_criterion = EpochCounter(epoch_num)

        algorithm = SGD(learning_rate,
                        cost,
                        batch_size=5,
                        monitoring_batches=3,
                        monitoring_dataset=monitoring_dataset,
                        termination_criterion=termination_criterion,
                        update_callbacks=None,
                        init_momentum=None,
                        set_batch_size=False)

        monitor_lr = MonitorBasedLRAdjuster(high_trigger=high_trigger,
                                            shrink_amt=shrink_amt,
                                            low_trigger=low_trigger,
                                            grow_amt=grow_amt,
                                            min_lr=min_lr,
                                            max_lr=max_lr)

        train = Train(dataset,
                      model,
                      algorithm,
                      save_path=None,
                      save_freq=0,
                      extensions=[monitor_lr])

        train.main_loop()

        v = model.monitor.channels['objective'].val_record
        lr = model.monitor.channels['learning_rate'].val_record
        lr_monitor = learning_rate

        for i in xrange(2, epoch_num + 1):
            if v[i - 1] > high_trigger * v[i - 2]:
                lr_monitor *= shrink_amt
            elif v[i - 1] > low_trigger * v[i - 2]:
                lr_monitor *= grow_amt
            lr_monitor = max(min_lr, lr_monitor)
            lr_monitor = min(max_lr, lr_monitor)
            assert np.allclose(lr_monitor, lr[i])
示例#9
0
def test_bad_monitoring_input_in_monitor_based_lr():
    # tests that the class MonitorBasedLRAdjuster in sgd.py avoids wrong
    # settings of channel_name or dataset_name in the constructor.

    dim = 3
    m = 10

    rng = np.random.RandomState([06, 02, 2014])

    X = rng.randn(m, dim)

    learning_rate = 1e-2
    batch_size = 5

    # We need to include this so the test actually stops running at some point
    epoch_num = 2

    dataset = DenseDesignMatrix(X=X)

    # including a monitoring datasets lets us test that
    # the monitor works with supervised data
    monitoring_dataset = DenseDesignMatrix(X=X)

    cost = DummyCost()

    model = SoftmaxModel(dim)

    termination_criterion = EpochCounter(epoch_num)

    algorithm = SGD(learning_rate,
                    cost,
                    batch_size=batch_size,
                    monitoring_batches=2,
                    monitoring_dataset=monitoring_dataset,
                    termination_criterion=termination_criterion,
                    update_callbacks=None,
                    init_momentum=None,
                    set_batch_size=False)

    # testing for bad dataset_name input
    dummy = 'void'

    monitor_lr = MonitorBasedLRAdjuster(dataset_name=dummy)

    train = Train(dataset,
                  model,
                  algorithm,
                  save_path=None,
                  save_freq=0,
                  extensions=[monitor_lr])
    try:
        train.main_loop()
    except ValueError as e:
        pass
    except Exception:
        reraise_as(AssertionError("MonitorBasedLRAdjuster takes dataset_name "
                                  "that is invalid "))

    # testing for bad channel_name input
    monitor_lr2 = MonitorBasedLRAdjuster(channel_name=dummy)

    model2 = SoftmaxModel(dim)
    train2 = Train(dataset,
                   model2,
                   algorithm,
                   save_path=None,
                   save_freq=0,
                   extensions=[monitor_lr2])

    try:
        train2.main_loop()
    except ValueError as e:
        pass
    except Exception:
        reraise_as(AssertionError("MonitorBasedLRAdjuster takes channel_name "
                                  "that is invalid "))

    return
示例#10
0
def test_bad_monitoring_input_in_monitor_based_lr():
    # tests that the class MonitorBasedLRAdjuster in sgd.py avoids wrong
    # settings of channel_name or dataset_name in the constructor.

    dim = 3
    m = 10

    rng = np.random.RandomState([06, 02, 2014])

    X = rng.randn(m, dim)

    learning_rate = 1e-2
    batch_size = 5

    # We need to include this so the test actually stops running at some point
    epoch_num = 2

    dataset = DenseDesignMatrix(X=X)

    # including a monitoring datasets lets us test that
    # the monitor works with supervised data
    monitoring_dataset = DenseDesignMatrix(X=X)

    cost = DummyCost()

    model = SoftmaxModel(dim)

    termination_criterion = EpochCounter(epoch_num)

    algorithm = SGD(learning_rate,
                    cost,
                    batch_size=batch_size,
                    monitoring_batches=2,
                    monitoring_dataset=monitoring_dataset,
                    termination_criterion=termination_criterion,
                    update_callbacks=None,
                    init_momentum=None,
                    set_batch_size=False)

    #testing for bad dataset_name input
    dummy = 'void'

    monitor_lr = MonitorBasedLRAdjuster(dataset_name=dummy)

    train = Train(dataset,
                  model,
                  algorithm,
                  save_path=None,
                  save_freq=0,
                  extensions=[monitor_lr])
    try:
        train.main_loop()
    except ValueError as e:
        err_input = 'The dataset_name \'' + dummy + '\' is not valid.'
        channel_name = dummy + '_objective'
        err_message = ('There is no monitoring channel named \'' +
                       channel_name +
                       '\'. You probably need to specify a valid monitoring '
                       'channel by using either dataset_name or channel_name '
                       'in the MonitorBasedLRAdjuster constructor. ' +
                       err_input)
        assert err_message == str(e)
    except:
        raise AssertionError("MonitorBasedLRAdjuster takes dataset_name that "
                             "is invalid ")

    #testing for bad channel_name input
    monitor_lr2 = MonitorBasedLRAdjuster(channel_name=dummy)

    model2 = SoftmaxModel(dim)
    train2 = Train(dataset,
                   model2,
                   algorithm,
                   save_path=None,
                   save_freq=0,
                   extensions=[monitor_lr2])

    try:
        train2.main_loop()
    except ValueError as e:
        err_input = 'The channel_name \'' + dummy + '\' is not valid.'
        err_message = ('There is no monitoring channel named \'' + dummy +
                       '\'. You probably need to specify a valid monitoring '
                       'channel by using either dataset_name or channel_name '
                       'in the MonitorBasedLRAdjuster constructor. ' +
                       err_input)
        assert err_message == str(e)
    except:
        raise AssertionError("MonitorBasedLRAdjuster takes channel_name that "
                             "is invalid ")

    return