def calc_sample_coverage(args): """Counts the total number of non-gap/ambiguous characters for each sample per contig. """ mvf = MultiVariantFile(args.mvf, 'read') data = {} # Set up sample indices sample_labels = mvf.get_sample_labels() if args.sample_indices is not None: sample_indices = [int(x) for x in args.sample_indices[0].split(",")] elif args.sample_labels is not None: sample_indices = mvf.get_sample_indices( labels=args.sample_labels[0].split(",")) else: sample_indices = mvf.get_sample_indices() # Set up contig ids if args.contig_ids is not None: contig_ids = args.contig_ids[0].split(",") elif args.contig_labels is not None: contig_ids = mvf.get_contig_ids( labels=args.contig_labels[0].split(",")) else: contig_ids = None for contig, _, allelesets in mvf.iterentries(contigs=contig_ids, subset=sample_indices, decode=True): if contig not in data: data[contig] = dict.fromkeys(sample_labels, 0) data[contig]['contig'] = contig for j, elem in enumerate(sample_indices): data[contig][sample_labels[elem]] += int( allelesets[0][j] not in 'Xx-') outfile = OutputFile(path=args.out, headers=(["contig"] + [sample_labels[x] for x in sample_indices])) for contig in data: outfile.write_entry(data[contig]) return ''
def filter_mvf(args): """Main method""" if args.more_help is True: modulehelp() sys.exit() if args.mvf is None and args.test is None: raise RuntimeError("No input file specified with --mvf") if args.out is None and args.test is None: raise RuntimeError("No output file specified with --out") # Establish Input MVF if args.test is not None: ncol = args.test_nchar or len(args.test.split()[1]) else: mvf = MultiVariantFile(args.mvf, 'read') ncol = mvf.metadata['ncol'] # Create Actionset if args.labels: labels = mvf.get_sample_labels()[:] for i in range(len(args.actions)): action = args.actions[i] arr = action.split(':') if arr[0] in ('columns', 'collapsepriority', 'collapsemerge', 'allelegroup', 'notmultigroup'): for j in range(1, len(arr)): arr[j] = ','.join( [str(labels.index(x)) for x in arr[j].split(',')]) args.actions[i] = ':'.join(arr) actionset = build_actionset(args.actions, ncol) # TESTING MODE if args.test: loc, alleles = args.test.split() linefail = False transformed = False # invar = invariant (single character) # refvar (all different than reference, two chars) # onecov (single coverage, + is second character) # onevar (one variable base, + is third character) # full = full alleles (all chars) if args.verbose: print(alleles) linetype = get_linetype(alleles) sys.stdout.write("MVF Encoding type '{}' detected\n".format(linetype)) for actionname, actiontype, actionfunc, actionarg in actionset: sys.stdout.write("Applying action {} ({}): ".format( actionname, actiontype)) if actiontype == 'filter': if not actionfunc(alleles, linetype): linefail = True sys.stdout.write("Filter Fail\n") break else: sys.stdout.write("Filter Pass\n") elif actiontype == 'transform': transformed = True alleles = actionfunc(alleles, linetype) linetype = get_linetype(alleles) if linetype == 'empty': linefail = True sys.stdout.write("Transform removed all alleles\n") break else: sys.stdout.write("Transform result {}\n".format(alleles)) elif actiontype == 'location': loc = loc.split(':') loc[1] = int(loc[1]) if actionfunc(loc) is False: linefail = True sys.stdout.write("Location Fail\n") break else: sys.stdout.write("Location Pass\n") if linefail is False: if transformed: if linetype == 'full': alleles = encode_mvfstring(alleles) if alleles: test_output = "{}\t{}\n".format(loc, alleles) sys.stdout.write("Final output = {}\n".format(test_output)) else: sys.stdout.write("Transform removed all alleles\n") else: sys.stdout.write("No changes applied\n") sys.stdout.write("Final output = {}\n".format(args.test)) sys.exit() # MAIN MODE # Set up file handler outmvf = MultiVariantFile(args.out, 'write', overwrite=args.overwrite) outmvf.metadata = deepcopy(mvf.metadata) # reprocess header if actions are used that filter columns if any(x == y[0] for x in ('columns', 'collapsepriority', 'collapsemerge') for y in actionset): if args.labels: labels = outmvf.metadata['labels'][:] else: labels = [x for x in outmvf.metadata['samples']] for actionname, actiontype, actionfunc, actionarg in actionset: if actionname == 'columns': labels = [labels[x] for x in actionarg[0]] elif actionname in ('collapsepriority', 'collapsemerge'): labels = [ labels[x] for x in range(len(labels)) if x not in actionarg[0][1:] ] if args.labels: oldindices = mvf.get_sample_indices(labels) else: oldindices = labels[:] newsamples = {} for i, _ in enumerate(labels): newsamples[i] = mvf.metadata['samples'][oldindices[i]] outmvf.metadata['samples'] = newsamples.copy() outmvf.metadata['labels'] = labels[:] outmvf.write_data(outmvf.get_header()) # End header editing linebuffer = [] nbuffer = 0 for chrom, pos, allelesets in mvf.iterentries(decode=False): linefail = False transformed = False # invar = invariant (single character) # refvar (all different than reference, two chars) # onecov (single coverage, + is second character) # onevar (one variable base, + is third character) # full = full alleles (all chars) alleles = allelesets[0] linetype = get_linetype(alleles) if linetype == 'empty': continue if args.verbose is True: sys.stdout.write(" {} {}".format(alleles, linetype)) for actionname, actiontype, actionfunc, actionargs in actionset: if actiontype == 'filter': if not actionfunc(alleles, linetype): linefail = True elif actiontype == 'transform': transformed = True alleles = actionfunc(alleles, linetype) linetype = get_linetype(alleles) if linetype == 'empty': linefail = True elif actiontype == 'location': if actionfunc([chrom, pos]) is False: linefail = True if linefail: break if linefail is False: if transformed: if linetype == 'full': alleles = mvf.encode(alleles) if not alleles: linefail = True nbuffer += 1 linebuffer.append((chrom, pos, (alleles, ))) if args.verbose: sys.stdout.write("{}\n".format(alleles)) if nbuffer == args.line_buffer: outmvf.write_entries(linebuffer) linebuffer = [] nbuffer = 0 elif args.verbose: sys.stdout.write("FAIL\n") if linebuffer: outmvf.write_entries(linebuffer) linebuffer = [] return ''
def calc_group_unique_allele_window(args): """Count the number of and relative rate of uniquely held alleles spatially along chromosomes (i.e. Lineage-specific rates)""" data = {} mvf = MultiVariantFile(args.mvf, 'read') if mvf.flavor != 'codon': raise RuntimeError( "\n=====================\nERROR: MVF is not codon flavor!") annotations = {} coordinates = {} labels = mvf.get_sample_labels()[:] ncol = len(labels) current_contig = None current_position = 0 counts = Counter() totals = Counter() args.start_contig = (args.start_contig if args.start_contig is not None else 0) args.end_contig = (args.end_contig if args.end_contig is not None else 100000000000) if args.output_align is True: outputalign = [] if args.gff is not None: annotations, coordinates = (parse_gff_analysis(args.gff)) if args.allele_groups is not None: args.allele_groups = procarg_allelegroups(args.allele_groups, mvf) if args.species_groups is None: args.species_groups = args.allele_groups else: args.species_groups = procarg_speciesgroups(args.species_groups, mvf) fieldtags = [ 'likelihood', 'bgdnds0', 'bgdnds1', 'bgdnds2a', 'bgdnds2b', 'fgdnds0', 'fgdnds1', 'fgdnds2a', 'fgdnds2b', 'dndstree', 'errorstate' ] if args.branch_lrt is not None: with open(args.branch_lrt, 'w') as branchlrt: genealign = [] branchlrt.write( "\t".join(['contig', 'ntaxa', 'alignlength', 'lrtscore'] + ["null.{}".format(x) for x in fieldtags] + ["test.{}".format(x) for x in fieldtags] + ['tree']) + "\n") groups = args.allele_groups.values() if args.species_groups is not None: speciesgroups = args.species_groups.values() allsets = set([]) for group in groups: allsets.update(group) allsets = list(sorted(allsets)) speciesnames = args.species_groups.keys() speciesrev = {} if args.species_groups is not None: for species in args.species_groups: speciesrev.update([(x, species) for x in args.species_groups[species]]) if args.mincoverage is not None: if args.mincoverage < len(groups) * 2: raise RuntimeError(""" Error: GroupUniqueAlleleWindow: --mincoverage cannot be lower than the twice the number of specified groups in --allele-groups """) genealign = [] for contig, pos, allelesets in mvf: if not current_contig: current_contig = contig[:] if contig != current_contig or (args.windowsize > 0 and pos > current_position + args.windowsize): xkey = ( current_contig, current_position, ) data[xkey] = counts.copy() data[xkey].update([ ('contig', (mvf.get_contig_labels(ids=current_contig) if args.use_labels is True else current_contig)), ('position', current_position), ('nonsynyonymous_changes', counts.get('nonsynonymous_changes', 0) or 0), ('synyonymous_changes', counts.get('synonymous_changes', 0) or 0) ]) data[xkey].update([ ('ns_ratio', (float(data[xkey].get('nonsynonymous_changes', 0)) / (data[xkey].get('synonymous_changes', 1.0)))), ('annotation', annotations.get(data[xkey]['contig'], '.')), ('coordinates', coordinates.get(data[xkey]['contig'], '.')) ]) if genealign: if (args.end_contig >= int(current_contig)) and ( args.start_contig <= int(current_contig)): (pamlnull, pamltest, tree) = paml_branchsite( genealign, labels[:], species=speciesnames, speciesrev=speciesrev, codemlpath=args.codeml_path, raxmlpath=args.raxml_path, pamltmp=args.paml_tmp, target=args.target, targetspec=args.num_target_species, allsampletrees=args.all_sample_trees, outgroup=args.outgroup) lrtscore = -1 if (pamlnull.get('likelihood', -1) != -1 and pamltest.get('likelihood', -1) != -1): lrtscore = 2 * (pamltest['likelihood'] - pamlnull['likelihood']) with open(args.branch_lrt, 'a') as branchlrt: branchlrt.write("\t".join([ str(x) for x in [ data[xkey]['contig'], len(genealign), len(genealign[0]) * 3, lrtscore ] + [pamlnull.get(y, -1) for y in fieldtags] + [pamltest.get(y, -1) for y in fieldtags] + [str(tree).rstrip()] ]) + "\n") genealign = None totals.add('genes_total') if counts.get('total_codons', 0) > 0: totals.add('genes_tested') if counts.get('total_nsyn_codons', 0) > 0: totals.add('genes_with_nsyn') if contig != current_contig: current_contig = contig[:] current_position = 0 elif args.windowsize > 0: current_position += args.windowsize counts = Counter() proteins = allelesets[0] codons = allelesets[1:4] if len(proteins) == 1 and all(len(x) == 1 for x in codons): if proteins == '*' or ''.join(codons) in MLIB.stop_codons: continue counts.add('total_codons') totals.add('total_codons') if args.output_align is True: if not outputalign: outputalign = [[''.join(codons)] for x in range(mvf.metadata['ncol'])] else: for ialign, xalign in enumerate(outputalign): xalign.append(''.join(codons)) if args.branch_lrt is not None: if not genealign: genealign = [[''.join(codons)] for x in range(ncol)] else: for ialign in range(len(genealign)): genealign[ialign].append(''.join(codons)) continue if len(proteins) > 1: if allelesets[0][1] == '+': continue proteins = mvf.decode(proteins) if args.mincoverage is not None: if sum([int(x not in 'X-') for x in proteins]) < (args.mincoverage): continue species_groups = [[proteins[i] for i in x if proteins[i] not in '-X'] for x in speciesgroups] if any(len(x) == 0 for x in species_groups): continue xcodons = [mvf.decode(x) for x in codons] codons = [''.join(x) for x in zip(*xcodons)] if any(codons[x] in MLIB.stop_codons for x in allsets): continue if any( any(x != species_groups[0][0] for x in y) for y in species_groups): totals.add('total_nsyn_codons') counts.add('total_nsyn_codons') totals.add('total_codons') totals.add('tested_codons') counts.add('total_codons') totals.add('variable_codons', val=int( sum([int(len(set(x) - set('X-')) > 1) for x in xcodons]) > 0)) if args.output_align is not None: if not outputalign: outputalign = [[x] for x in codons] else: for ialign in range(len(outputalign)): outputalign[ialign].append(codons[ialign]) if args.branch_lrt is not None: if not genealign: genealign = [[x] for x in codons] else: for ialign in range(len(codons)): genealign[ialign].append(codons[ialign]) nonsyn_change = False synon_change = False codon_groups = [ set([ codons[i] for i in x if '-' not in codons[i] and 'X' not in codons[i] ]) for x in groups ] protein_groups = None for i in range(len(codon_groups)): if any(base in codon for base in 'RYWKMS' for codon in codon_groups[i]): codon_groups[i] = hapgroup(codon_groups[i]) if all( grp1.isdisjoint(grp0) for grp0, grp1 in combinations(codon_groups, 2)): protein_groups = [ set([ MLIB.codon_tables['full'][''.join(x)] for x in codon_groups[i] ]) for i in range(len(codon_groups)) ] if all( grp1.isdisjoint(grp0) for grp0, grp1 in combinations(protein_groups, 2)): nonsyn_change = True elif all(grp1 == grp0 for grp0, grp1 in combinations(protein_groups, 2)): synon_change = True if nonsyn_change: if args.verbose is True: print('NON', contig, pos, allelesets, codon_groups, protein_groups, groups, mvf.get_contig_labels(ids=contig)) counts.add('nonsynonymous_changes') totals.add('nonsynonymous_changes') elif synon_change: if args.verbose is True: print('SYN', contig, pos, allelesets, codon_groups, protein_groups, groups, mvf.get_contig_labels(ids=contig)) counts.add('synonymous_changes') totals.add('synonymous_changes') args.totals = totals # WRITE OUTPUT headers = [ "contig", "position", "nonsynonymous_changes", "synonymous_changes", "ns_ratio", "nonsynonymous_total", "synonymous_total", "pvalue", "total_codons", "annotation", "coordinates" ] if args.windowsize == -1: headers.remove('position') if args.chi_test is None: headers.remove('pvalue') outfile = OutputFile(path=args.out, headers=headers) sorted_entries = sorted( [(data[k]['ns_ratio'], k) for k in data if data[k].get('nonsynonymous_changes', 0) > 0], reverse=True) for _, k in sorted_entries: outfile.write_entry(data[k]) with open(args.out + '.total', 'w') as totalfile: for entry in args.totals.iter_sorted(): totalfile.write(entry) if args.output_align is not None: with open(args.output_align, 'w') as alignfile: alignfile.write("\n".join([ ">{}\n{}".format(mvf.metadata['labels'][i], ''.join(outputalign[i])) for i in range(len(outputalign)) ])) return ''
def plot_chromoplot(args): """Main method""" pallette = Pallette() if args.colors is not None: pallette.basecolors = args.colors # Establish MVF and parse chromosome information if args.quiet is False: print("Reading MVF...") mvf = MultiVariantFile(args.mvf, 'read') if args.quiet is False: print("Parsing headers...") if args.contig_ids is not None: contigids = args.contig_ids[0].split(",") elif args.contig_labels is not None: contigids = mvf.get_contig_ids(labels=args.contig_labels[0].split(",")) else: contigids = mvf.get_contig_ids() if args.quiet is False: print("Plotting chromoplot for contigs: {}".format( ",".join(contigids))) sample_labels = mvf.get_sample_labels() if args.sample_indices is not None: sample_indices = [int(x) for x in args.sample_indices[0].split(",")] elif args.sample_labels is not None: sample_indices = mvf.get_sample_indices( labels=args.sample_labels[0].split(",")) else: sample_indices = mvf.get_sample_indices() assert len(sample_indices) >= 3 if args.outgroup_indices is not None: outgroup_indices = [ int(x) for x in args.outgroup_indices[0].split(",") ] elif args.outgroup_labels is not None: outgroup_indices = mvf.get_sample_indices( labels=args.outgroup_labels[0].split(",")) assert len(outgroup_indices) >= 1 quartets = [(x, y, z, outgroup) for x, y, z in combinations(sample_indices, 3) for outgroup in outgroup_indices] # Begin iterations for quartet_indices in quartets: quartet_labels = [sample_labels[x] for x in quartet_indices] if args.quiet is False: print("Beginning quartet {}".format(",".join(quartet_labels))) params = { 'contigs': [[ contigid, mvf.metadata['contigs'][contigid]['label'], mvf.metadata['contigs'][contigid]['length'] ] for contigid in contigids], 'outpath': ((args.out_prefix if args.out_prefix is not None else '') or '_'.join(quartet_labels)) + ".png", 'labels': quartet_labels, 'indices': quartet_indices, 'windowsize': args.windowsize, 'majority': args.majority, 'infotrack': args.info_track, 'yscale': args.yscale, 'xscale': args.xscale, 'quiet': args.quiet, 'plottype': args.plot_type } chromoplot = Chromoplot(params=params, pallette=pallette) current_contig = '' for contig, pos, allelesets in mvf.iterentries(subset=quartet_indices, decode=True, contigs=contigids): if contig != current_contig: if args.quiet is False: print("Starting contig {}".format(contig)) current_contig = contig[:] alleles = allelesets[0] if '-' in alleles: site_code = 'gap' elif any(x not in 'ATGCatgc' for x in alleles): site_code = 'ambiguous' elif alleles[3] not in alleles[:3]: site_code = 'nonpolar' elif len(set(alleles)) > 2: site_code = 'triallelic' else: site_code = sum([ 2**(3 - j) * (alleles[j] != alleles[3]) for j in range(3) ]) chromoplot.add_data(str(contig), int(pos // args.windowsize), site_code) contig = '' current_contig = '' if not args.quiet: print("Writing image...") chromoplot.plot_chromoplot() if not args.quiet: print("Writing log...") chromoplot.write_total_log() return ''
def mvf_join(args): """Main method""" concatmvf = MultiVariantFile(args.out, 'write', overwrite=args.overwrite) # Copy the first file's metadata if args.main_header_file: if args.main_header_file not in args.mvf: raise RuntimeError("{} not found in files".format( args.main_header_file)) else: args.main_header_file = args.mvf.index(args.main_header_file) else: args.main_header_file = 0 first_mvf = MultiVariantFile(args.mvf[args.main_header_file], 'read') concatmvf.metadata = first_mvf.metadata.copy() # Open each MVF file, read headers to make unified header transformers = [] for mvfname in args.mvf: # This will create a dictionary of samples{old:new}, contigs{old:new} transformer = MvfTransformer() mvf = MultiVariantFile(mvfname, 'read') for i, label in enumerate(mvf.get_sample_labels()): if label not in concatmvf.get_sample_labels(): concatmvf.metadata['labels'].append(label) concatmvf.metadata['samples'][ concatmvf.metadata['labels'].index(label)] = { 'label': label } if concatmvf.metadata['labels'].index(label) != i: transformer.set_label( i, concatmvf.metadata['labels'].index(label)) for contigid, contigdata in iter(mvf.metadata['contigs'].items()): if contigdata['label'] not in [ concatmvf.metadata['contigs'][x]['label'] for x in concatmvf.metadata['contigs'] ]: newid = (contigid not in concatmvf.metadata['contigs'] and contigid or concatmvf.get_next_contig_id()) concatmvf.metadata['contigs'][newid] = contigdata else: for concatid, concatdata in ( concatmvf.metadata['contigs'].items()): if contigdata['label'] == concatdata['label']: newid = concatid break if newid != contigid: transformer.set_contig(contigid, newid) transformers.append(transformer) # Write output header concatmvf.write_data(concatmvf.get_header()) # Now loop through each file entries = [] nentries = 0 for ifile, mvfname in enumerate(args.mvf): if not args.quiet: sys.stderr.write("Processing {} ...\n".format(mvfname)) transformer = transformers[ifile] mvf = MultiVariantFile(mvfname, 'read') for contigid, pos, allelesets in mvf.iterentries(decode=False, quiet=args.quiet): if transformer.labels: allelesets = [mvf.decode(x) for x in allelesets] for j, alleles in enumerate(allelesets): allelesets[j] = concatmvf.encode(''.join([ x in transformer.labels and alleles[transformer.labels[x]] or alleles[x] for x in range(len(alleles)) ])) if transformer.contigs: contigid = (contigid in transformer['contigs'] and transformer['contigs'][contigid] or contigid) entries.append((contigid, pos, allelesets)) nentries += 1 if nentries == args.line_buffer: concatmvf.write_entries(entries) entries = [] nentries = 0 if entries: concatmvf.write_entries(entries) entries = [] nentries = 0 if not args.quiet: sys.stderr.write("done\n") return ''
def calc_pairwise_distances(args): """Count the pairwise nucleotide distance between combinations of samples in a window """ args.qprint("Running CalcPairwiseDistances") mvf = MultiVariantFile(args.mvf, 'read') args.qprint("Input MVF: Read") data = {} sample_labels = mvf.get_sample_labels() if args.sample_indices is not None: sample_indices = [int(x) for x in args.sample_indices[0].split(",")] elif args.sample_labels is not None: sample_indices = mvf.get_sample_indices( labels=args.sample_labels[0].split(",")) else: sample_indices = mvf.get_sample_indices() args.qprint("Calculating for samples: {}".format(list(sample_indices))) current_contig = None current_position = 0 data_in_buffer = False sample_pairs = [tuple(x) for x in combinations(sample_indices, 2)] base_matches = dict((x, {}) for x in sample_pairs) all_match = {} if mvf.flavor == 'dna': allele_frames = (0, ) args.data_type = 'dna' elif mvf.flavor == 'prot': allele_frames = (0, ) args.data_type = 'dna' elif mvf.flavor == 'codon': if args.data_type == 'prot': allele_frames = (0, ) else: allele_frames = (1, 2, 3) args.data_type = 'dna' args.qprint("MVF flavor is: {}".format(mvf.flavor)) args.qprint("Data type is: {}".format(args.data_type)) args.qprint("Ambiguous mode: {}".format(args.ambig)) args.qprint("Processing MVF Records") pwdistance_function = get_pairwise_function(args.data_type, args.ambig) if args.emit_counts: outfile_emitcounts = open(args.out + ".pairwisecounts", 'w') for contig, pos, allelesets in mvf.iterentries(decode=None): # Check Minimum Site Coverage if check_mincoverage(args.mincoverage, allelesets[0]) is False: continue # Establish first contig if current_contig is None: current_contig = contig[:] if args.windowsize > 0: while pos > current_position + args.windowsize - 1: current_position += args.windowsize # Check if windows are specified. if not same_window((current_contig, current_position), (contig, pos), args.windowsize): data[(current_contig, current_position)] = { 'contig': current_contig, 'position': current_position } all_diff, all_total = pwdistance_function(all_match) for samplepair in base_matches: ndiff, ntotal = pwdistance_function(base_matches[samplepair]) taxa = "{};{}".format(sample_labels[samplepair[0]], sample_labels[samplepair[1]]) data[(current_contig, current_position)].update({ '{};ndiff'.format(taxa): ndiff + all_diff, '{};ntotal'.format(taxa): ntotal + all_total, '{};dist'.format(taxa): zerodiv(ndiff + all_diff, ntotal + all_total) }) if contig != current_contig: current_contig = contig[:] current_position = 0 if args.windowsize > 0: while pos > current_position + args.windowsize - 1: current_position += args.windowsize else: current_position += args.windowsize if args.emit_counts: args.qprint("Writing Full Count Table") for p0, p1 in base_matches: outfile_emitcounts.write("#{}\t{}\t{}\t{}\n{}\n".format( p0, p1, current_position, current_contig, "\n".join([ "{} {}".format(x, (base_matches[(p0, p1)].get(x, 0) + all_match.get(x, 0))) for x in set(base_matches[(p0, p1)]).union(all_match) ]))) base_matches = dict((x, {}) for x in sample_pairs) all_match = {} data_in_buffer = False for iframe in allele_frames: alleles = allelesets[iframe] if len(alleles) == 1: all_match["{0}{0}".format(alleles)] = ( all_match.get("{0}{0}".format(alleles), 0) + 1) data_in_buffer = True continue if alleles[1] == '+': if 'X' in alleles or '-' in alleles: continue samplepair = (0, int(alleles[3:])) if any(x not in sample_indices for x in samplepair): continue basepair = "{}{}".format(alleles[0], alleles[2]) base_matches[samplepair][basepair] = ( base_matches[samplepair].get(basepair, 0) + 1) data_in_buffer = True continue alleles = mvf.decode(alleles) valid_positions = [ i for i, x in enumerate(alleles) if x not in 'X-' and i in sample_indices ] for i, j in combinations(valid_positions, 2): samplepair = (i, j) basepair = "{}{}".format(alleles[i], alleles[j]) base_matches[samplepair][basepair] = ( base_matches[samplepair].get(basepair, 0) + 1) data_in_buffer = True #print(base_matches) if data_in_buffer is True: # Check whether, windows, contigs, or total if args.windowsize == 0: current_contig = 'TOTAL' current_position = 0 elif args.windowsize == -1: current_position = 0 data[(current_contig, current_position)] = { 'contig': current_contig, 'position': current_position } # print("All match") all_diff, all_total = pwdistance_function(all_match) for samplepair in base_matches: # print(samplepair) ndiff, ntotal = pwdistance_function(base_matches[samplepair]) taxa = "{};{}".format(sample_labels[samplepair[0]], sample_labels[samplepair[1]]) data[(current_contig, current_position)].update({ '{};ndiff'.format(taxa): ndiff + all_diff, '{};ntotal'.format(taxa): ntotal + all_total, '{};dist'.format(taxa): zerodiv(ndiff + all_diff, ntotal + all_total) }) if args.emit_counts: args.qprint("Writing Full Count Table") for p0, p1 in base_matches: outfile_emitcounts.write("#{}\t{}\t{}\t{}\n{}\n".format( p0, p1, current_position, current_contig, "\n".join([ "{} {}".format(x, (base_matches[(p0, p1)].get(x, 0) + all_match.get(x, 0))) for x in set(base_matches[(p0, p1)]).union(all_match) ]))) args.qprint("Writing Output") headers = ['contig', 'position'] for samplepair in sample_pairs: headers.extend([ '{};{};{}'.format(sample_labels[samplepair[0]], sample_labels[samplepair[1]], x) for x in ('ndiff', 'ntotal', 'dist') ]) outfile = OutputFile(path=args.out, headers=headers) sorted_entries = sorted([(data[k]['contig'], data[k]['position'], k) for k in data]) for _, _, k in sorted_entries: outfile.write_entry(data[k]) if args.emit_counts: outfile_emitcounts.close() return ''
def calc_character_count(args): """Count the number of and relative rate of certain bases spatially along chromosomes """ mvf = MultiVariantFile(args.mvf, 'read') data = {} current_contig = None current_position = 0 all_match = 0 all_total = 0 data_in_buffer = False # Set up base matching from special words def proc_special_word(argx): if argx == 'dna': argx = MLIB.validchars['dna'] elif argx == 'dnaambig2': argx = MLIB.validchars['dna+ambig2'] elif argx == 'dnaambig3': argx = MLIB.validchars['dna+ambig3'] elif argx == 'dnaambigall': argx = MLIB.validchars['dna+ambigall'] elif argx == 'prot': argx = MLIB.validchars['amino'] return argx args.base_match = proc_special_word(args.base_match) args.base_total = proc_special_word(args.base_total) # Set up sample indices sample_labels = mvf.get_sample_labels() if args.sample_indices is not None: sample_indices = [int(x) for x in args.sample_indices[0].split(",")] elif args.sample_labels is not None: sample_indices = mvf.get_sample_indices( labels=args.sample_labels[0].split(",")) else: sample_indices = mvf.get_sample_indices() # Set up contig ids if args.contig_ids is not None: contig_ids = args.contig_ids[0].split(",") elif args.contig_labels is not None: contig_ids = mvf.get_contig_ids( labels=args.contig_labels[0].split(",")) else: contig_ids = None match_counts = dict().fromkeys([sample_labels[i] for i in sample_indices], 0) total_counts = dict().fromkeys([sample_labels[i] for i in sample_indices], 0) for contig, pos, allelesets in mvf.iterentries(decode=False, contigs=contig_ids): # Check Minimum Site Coverage if check_mincoverage(args.mincoverage, allelesets[0]) is False: continue #if contig not in contig_ids: # continue # Establish first contig if current_contig is None: current_contig = contig[:] if args.windowsize > 0: while pos > current_position + args.windowsize - 1: current_position += args.windowsize # Check if windows are specified. if not same_window((current_contig, current_position), (contig, pos), args.windowsize): data[(current_contig, current_position)] = { 'contig': current_contig, 'position': current_position } for k in match_counts: data[(current_contig, current_position)].update([ (k + '.match', match_counts[k] + all_match), (k + '.total', total_counts[k] + all_total), (k + '.prop', ((float(match_counts[k] + all_match) / float(total_counts[k] + all_total)) if total_counts[k] + all_total > 0 else 0)) ]) if contig != current_contig: current_contig = contig[:] current_position = 0 else: current_position += (0 if args.windowsize == -1 else args.windowsize) match_counts = dict().fromkeys( [sample_labels[i] for i in sample_indices], 0) total_counts = dict().fromkeys( [sample_labels[i] for i in sample_indices], 0) all_total = 0 all_match = 0 data_in_buffer = False else: alleles = allelesets[0] if len(alleles) == 1: if args.base_match is None: all_match += 1 elif alleles in args.base_match: all_match += 1 if args.base_total is None: all_total += 1 elif alleles in args.base_total: all_total += 1 else: alleles = mvf.decode(alleles) for i in sample_indices: if args.base_match is None: match_counts[sample_labels[i]] += 1 elif alleles[i] in args.base_match: match_counts[sample_labels[i]] += 1 if args.base_total is None: total_counts[sample_labels[i]] += 1 elif alleles[i] in args.base_total: total_counts[sample_labels[i]] += 1 data_in_buffer = True if data_in_buffer: data[(current_contig, current_position)] = { 'contig': current_contig, 'position': current_position } for k in match_counts: data[(current_contig, current_position)].update([ (k + '.match', match_counts[k] + all_match), (k + '.total', total_counts[k] + all_total), (k + '.prop', ((float(match_counts[k] + all_match) / float(total_counts[k] + all_total)) if total_counts[k] + all_total > 0 else 0)) ]) # WRITE OUTPUT headers = ['contig', 'position'] for label in sample_labels: headers.extend([label + x for x in ('.match', '.total', '.prop')]) outfile = OutputFile(path=args.out, headers=headers) sorted_entries = sorted([(data[k]['contig'], data[k]['position'], k) for k in data]) for _, _, k in sorted_entries: outfile.write_entry(data[k]) return ''
def calc_all_character_count_per_sample(args): """Count the number of and relative rate of certain bases spatially along chromosomes """ args.qprint("Running CalcAllCharacterCountPerSample") mvf = MultiVariantFile(args.mvf, 'read') current_contig = None current_position = 0 data_in_buffer = False # Set up sample indices sample_labels = mvf.get_sample_labels() if args.sample_indices is not None: sample_indices = [int(x) for x in args.sample_indices[0].split(",")] elif args.sample_labels is not None: sample_indices = mvf.get_sample_indices( labels=args.sample_labels[0].split(",")) else: sample_indices = mvf.get_sample_indices() # Set up contig ids if args.contig_ids is not None: contig_ids = args.contig_ids[0].split(",") elif args.contig_labels is not None: contig_ids = mvf.get_contig_ids( labels=args.contig_labels[0].split(",")) else: contig_ids = None data = dict((i, {}) for i in sample_indices) data_characters = [{} for i in sample_indices] for contig, pos, allelesets in mvf.iterentries(decode=False, contigs=contig_ids): # Check Minimum Site Coverage if check_mincoverage(args.mincoverage, allelesets[0]) is False: continue if current_contig is None: current_contig = contig[:] if args.windowsize > 0: while pos > current_position + args.windowsize - 1: current_position += args.windowsize # Check if windows are specified. if not same_window((current_contig, current_position), (contig, pos), args.windowsize): args.qprint("Processing contig {}".format(current_contig)) for i in sample_indices: data[i][(current_contig, current_position)] = { 'contig': current_contig, 'position': current_position } data[i][(current_contig, current_position)].update(data_characters[i]) if contig != current_contig: current_contig = contig[:] current_position = 0 else: current_position += (0 if args.windowsize == -1 else args.windowsize) data_characters = [{} for i in sample_indices] data_in_buffer = False alleles = allelesets[0] if len(alleles) == 1: for i in sample_indices: data_characters[i][alleles[0]] = ( data_characters[i].get(alleles[0], 0) + 1) else: alleles = mvf.decode(alleles) for i in sample_indices: data_characters[i][alleles[i]] = ( data_characters[i].get(alleles[i], 0) + 1) data_in_buffer = True if data_in_buffer: for i in sample_indices: data[i][(current_contig, current_position)] = { 'contig': current_contig, 'position': current_position } data[i][(current_contig, current_position)].update(data_characters[i]) # WRITE OUTPUT all_chars = set([]) for sampleid in data: for window in data[sampleid]: all_chars.update([ x for x in data[sampleid][window] if x not in ('contig', 'position') ]) headers = ['contig', 'position'] headers.extend(list(sorted(all_chars))) outfile = OutputFile(path=args.out, headers=headers) for sampleid in sorted(data): outfile.write("#{}\n".format(sample_labels[sampleid])) sorted_entries = sorted([(data[sampleid][k]['contig'], data[sampleid][k]['position'], k) for k in data[sampleid]]) for _, _, k in sorted_entries: outfile.write_entry(data[sampleid][k], defaultvalue='0') return ''
def calc_dstat_combinations(args): """Calculate genome-wide D-statstics for all possible trio combinations of samples and outgroups specified. """ mvf = MultiVariantFile(args.mvf, 'read') data = {} sample_labels = mvf.get_sample_labels() if args.outgroup_indices is not None: outgroup_indices = [ int(x) for x in args.outgroup_indices[0].split(",") ] elif args.outgroup_labels is not None: outgroup_indices = mvf.get_sample_indices( labels=args.outgroup_labels[0].split(",")) if args.sample_indices is not None: sample_indices = [int(x) for x in args.sample_indices[0].split(",")] elif args.sample_labels is not None: sample_indices = mvf.get_sample_indices( labels=args.sample_labels[0].split(",")) else: sample_indices = mvf.get_sample_indices() if args.contig_ids is not None: contig_ids = args.contig_ids[0].split(",") elif args.contig_labels is not None: contig_ids = mvf.get_contig_ids( labels=args.contig_labels[0].split(",")) else: contig_ids = None if any(x in outgroup_indices for x in sample_indices): raise RuntimeError("Sample and Outgroup column lists cannot overlap.") for contig, _, allelesets in mvf: if contig not in contig_ids: continue alleles = mvf.decode(allelesets[0]) for i, j, k in combinations(sample_indices, 3): for outgroup in outgroup_indices: subset = [alleles[x] for x in [i, j, k, outgroup]] if any(x not in 'ATGC' for x in subset): continue if subset[-1] not in subset[:3]: continue if len(set(subset)) != 2: continue # [ABBA, BABA, BBAA] val = (0 + 1 * (subset[0] == subset[3]) + 2 * (subset[1] == subset[3]) + 4 * (subset[2] == subset[3])) if val in (1, 2): val -= 1 elif val == 4: val = 2 else: continue tetrad = (i, j, k, outgroup) if tetrad not in data: data[tetrad] = {} if contig not in data[tetrad]: data[tetrad][contig] = [0, 0, 0] data[tetrad][contig][val] += 1 # WRITE OUTPUT headers = ['sample0', 'sample1', 'sample2', "outgroup"] for xcontig in contig_ids: headers.extend([ '{}:abba'.format(xcontig), '{}:baba'.format(xcontig), '{}:bbaa'.format(xcontig), '{}:D'.format(xcontig) ]) outfile = OutputFile(path=args.out, headers=headers) for i, j, k in combinations(sample_indices, 3): for outgroup in outgroup_indices: tetrad = tuple([i, j, k, outgroup]) if tetrad not in data: continue entry = dict(('sample{}'.format(i), sample_labels[x]) for i, x in enumerate(tetrad[:3])) entry['outgroup'] = sample_labels[outgroup] for contig in contig_ids: if contig not in data[tetrad]: entry.update(dict().fromkeys([ '{}:abba'.format(contig), '{}:baba'.format(contig), '{}:bbaa'.format(contig), '{}:D'.format(contig) ], '0')) else: [abba, baba, bbaa] = data[tetrad][contig] if abba > baba and abba > bbaa: dstat = zerodiv(baba - bbaa, baba + bbaa) elif baba > bbaa and baba > abba: dstat = zerodiv(abba - bbaa, abba + bbaa) else: dstat = zerodiv(abba - baba, abba + baba) entry.update([('{}:abba'.format(contig), abba), ('{}:baba'.format(contig), baba), ('{}:bbaa'.format(contig), bbaa), ('{}:D'.format(contig), dstat)]) outfile.write_entry(entry) return ''
def calc_pattern_count(args): """Count biallelic patterns spatially along chromosomes (e.g,, for use in DFOIL or Dstats http://www.github.com/jbpease/dfoil). The last sample specified will determine the 'A' versus 'B' allele. """ mvf = MultiVariantFile(args.mvf, 'read') data = {} current_contig = None current_position = 0 sitepatterns = {} # sample_labels = mvf.get_sample_labels() if args.sample_indices is not None: sample_indices = [int(x) for x in args.sample_indices[0].split(",")] elif args.sample_labels is not None: sample_indices = mvf.get_sample_indices( labels=args.sample_labels[0].split(",")) else: sample_indices = mvf.get_sample_indices() nsamples = len(sample_indices) for contig, pos, allelesets in mvf: # Check Minimum Site Coverage if check_mincoverage(args.mincoverage, allelesets[0]) is False: continue # Establish first contig if current_contig is None: current_contig = contig[:] if args.windowsize > 0: while pos > current_position + args.windowsize - 1: current_position += args.windowsize # Check if windows are specified. if not same_window((current_contig, current_position), (contig, pos), args.windowsize): data[(current_contig, current_position)] = dict([('contig', current_contig), ('position', current_position)]) data[(current_contig, current_position)].update(sitepatterns) sitepatterns = {} if contig != current_contig: current_position = 0 current_contig = contig[:] else: current_position += (0 if args.windowsize == -1 else args.windowsize) if len(allelesets[0]) == 1: if allelesets[0] in 'ATGC': pattern = 'A' * nsamples else: continue elif allelesets[0][1] == '+': continue else: alleles = mvf.decode(allelesets[0]) alleles = [alleles[x] for x in sample_indices] if any(x in alleles for x in 'X-RYKMWS'): continue if len(set(alleles)) > 2: continue pattern = ''.join( ['A' if x == alleles[-1] else 'B' for x in alleles[:-1]]) + 'A' sitepatterns[pattern] = sitepatterns.get(pattern, 0) + 1 if sitepatterns: data[(current_contig, current_position)] = dict([('contig', current_contig), ('position', current_position)]) data[(current_contig, current_position)].update(sitepatterns) # WRITE OUTPUT headers = ['contig', 'position'] headers.extend( [MLIB.abpattern(x, nsamples) for x in range(0, 2**nsamples, 2)]) outfile = OutputFile(path=args.out, headers=headers) outfile.write("#{}\n".format(",".join( mvf.get_sample_labels(sample_indices)))) sorted_entries = sorted([(data[k]['contig'], data[k]['position'], k) for k in data]) for _, _, k in sorted_entries: outfile.write_entry(data[k]) # WRITE LIST OUTPUT if args.output_lists is True: sorted_entries = sorted([(data[k]['contig'], data[k]['position'], k) for k in data]) total_counts = {} for contig, pos, k in sorted_entries: outfilepath = "{}-{}-{}.counts.list".format(args.out, contig, pos) with open(outfilepath, 'w') as outfile: outfile.write("pattern,count\n") for pattern, pcount in sorted(data[k].items()): if pattern in ['contig', 'position']: continue outfile.write("{},{}\n".format(pattern, pcount)) total_counts[pattern] = (total_counts.get(pattern, 0) + pcount) outfilepath = "{}-TOTAL.counts.list".format(args.out) with open(outfilepath, 'w') as outfile: outfile.write("pattern,count\n") for pattern, pcount in sorted(total_counts.items()): if pattern in ['contig', 'position']: continue outfile.write("{},{}\n".format(pattern, pcount)) return ''
def merge_mvf(args): """Main method""" args.qprint("Running MergeMVF") if any(fpath.endswith('.gz') for fpath in args.mvf): print("WARNING! Running MergeMVF with gzipped input files is " "extremely slow and strongly discouraged.") concatmvf = MultiVariantFile(args.out, 'write', overwrite=args.overwrite) # Copy the first file's metadata args.qprint("Reading First File and Establishing Output") if args.main_header_file: if args.main_header_file not in args.mvf: raise RuntimeError("{} not found in files".format( args.main_header_file)) else: args.main_header_file = args.mvf.index(args.main_header_file) else: args.main_header_file = 0 first_mvf = MultiVariantFile(args.mvf[args.main_header_file], 'read') concatmvf.metadata = first_mvf.metadata.copy() # Open each MVF file, read headers to make unified header transformers = [] mvfmetadata = [] concatmvf_reverse_contig = dict( (x['label'], k) for (k, x) in concatmvf.metadata['contigs'].items()) inputfiles = [] for mvfname in args.mvf: args.qprint("Reading headers from {}".format(mvfname)) # This will create a dictionary of samples{old:new}, contigs{old:new} args.qprint("Processing Headers and Indexing: {}".format(mvfname)) transformer = MvfTransformer() mvf = MultiVariantFile(mvfname, 'read', contigindex=(not args.skip_index)) if args.skip_index: mvf.read_index_file() mvf.reset_max_contig_id() mvfmetadata.append(mvf.metadata) for i, label in enumerate(mvf.get_sample_labels()): if label not in concatmvf.get_sample_labels(): concatmvf.metadata['labels'].append(label) concatmvf.metadata['samples'][ concatmvf.metadata['labels'].index(label)] = { 'label': label } # if concatmvf.metadata['labels'].index(label) != i: transformer.set_label(i, concatmvf.metadata['labels'].index(label)) for contigid, contigdata in iter(mvf.metadata['contigs'].items()): if contigdata['label'] not in concatmvf_reverse_contig: newid = (contigid if contigid not in concatmvf.metadata['contigs'] else concatmvf.get_next_contig_id()) concatmvf.metadata['contigs'][newid] = contigdata concatmvf_reverse_contig[contigdata['label']] = newid else: newid = concatmvf_reverse_contig[contigdata['label']] transformer.set_contig(contigid, newid) transformers.append(transformer) inputfiles.append(mvf) # Write output header args.qprint("Writing headers to merge output") concatmvf.reset_ncol() concatmvf.write_data(concatmvf.get_header()) contigs = concatmvf.metadata['contigs'] # Now loop through each file blank_entry = '-' * len(concatmvf.metadata['samples']) for current_contig in contigs: contig_merged_entries = {} args.qprint("Merging Contig: {}".format(current_contig)) for ifile, mvffile in enumerate(inputfiles): if current_contig not in transformers[ifile].contigs: continue localcontig = transformers[ifile].contigs[current_contig] for chrom, pos, allelesets in mvffile.itercontigentries( localcontig, decode=True): if pos not in contig_merged_entries: contig_merged_entries[pos] = blank_entry[:] for j, base in enumerate(allelesets[0]): xcoord = transformers[ifile].labels_rev[j] if contig_merged_entries[pos][xcoord] != '-': if contig_merged_entries[pos][xcoord] == base: continue if base == '-' or base == 'X': continue raise RuntimeError( "Merging columns have two different bases: {} {} {}" .format(pos, contig_merged_entries[pos][xcoord], base)) contig_merged_entries[pos] = ( contig_merged_entries[pos][:xcoord] + base + contig_merged_entries[pos][xcoord + 1:]) concatmvf.write_entries( ((current_contig, coord, (entry, )) for coord, entry in sorted(contig_merged_entries.items())), encoded=False) args.qprint("Entries written for contig {}: {}".format( current_contig, len(contig_merged_entries))) return ''
def infer_window_tree(args): """Main method""" # ESTABLISH FILE OBJECTS mvf = MultiVariantFile(args.mvf, 'read') # Set up contig ids if args.contig_ids is not None: contig_ids = args.contig_ids[0].split(",") elif args.contig_labels is not None: contig_ids = mvf.get_contig_ids( labels=args.contig_labels[0].split(",")) else: contig_ids = mvf.get_contig_ids() treefile = OutputFile( args.out, headers=[ 'contig', 'windowstart', 'windowsize', 'tree', 'topology', 'topoid', # 'templabels', ### USED FOR DEBUGGING ### 'alignlength', 'aligndepth', 'status' ]) topofile = OutputFile(args.out + '.counts', headers=['rank', 'topology', 'count']) if args.sample_indices is not None: sample_indices = [int(x) for x in args.sample_indices[0].split(",")] elif args.sample_labels is not None: sample_indices = mvf.get_sample_indices( labels=args.sample_labels[0].split(",")) else: sample_indices = mvf.get_sample_indices() if not os.path.exists(args.temp_dir): os.mkdir(args.temp_dir) os.chdir(args.temp_dir) # SETUP PARAMS main_labels = mvf.get_sample_labels(sample_indices) if args.choose_allele in ['randomboth', 'majorminor']: main_labels = [label + x for x in ['a', 'b'] for label in main_labels] params = { 'outgroups': args.raxml_outgroups or [], 'rootwith': (args.root_with.split(',') if args.root_with is not None else None), 'minsites': args.min_sites, 'minseqcoverage': args.min_seq_coverage, 'mindepth': args.min_depth, 'raxmlpath': args.raxml_path, 'raxmlopts': args.raxml_opts, 'duplicateseq': args.duplicate_seq, 'model': args.raxml_model, 'bootstrap': args.bootstrap, 'windowsize': args.windowsize, 'chooseallele': args.choose_allele, 'tempdir': args.temp_dir, 'tempprefix': args.temp_prefix } # WINDOW START INTERATION verify_raxml(params) current_contig = '' current_position = 0 window_data = None skip_contig = False topo_ids = {} topo_counts = {} for contig, pos, allelesets in mvf.iterentries(contigs=contig_ids, subset=sample_indices, quiet=args.quiet, no_invariant=False, no_ambig=False, no_gap=False, decode=True): if current_contig == contig: if skip_contig is True: continue if not same_window((current_contig, current_position), (contig, pos), args.windowsize): skip_contig = False if window_data is not None: entry = window_data.maketree_raxml(params) if entry['status'] != 'ok': if args.output_empty: treefile.write_entry(entry) if args.windowsize != -1: skip_contig = True else: topo = entry["topology"] topo_counts[topo] = topo_counts.get(topo, 0) + 1 if topo not in topo_ids: topo_ids[topo] = (topo_ids and max(topo_ids.values()) + 1 or 0) entry["topoid"] = topo_ids[topo] treefile.write_entry(entry) current_position = (current_position + args.windowsize if (contig == current_contig and args.windowsize > 0) else 0) current_contig = contig[:] window_data = None window_data = WindowData( window_params={ 'contigname': (mvf.get_contig_labels( ids=current_contig) if args.output_contig_labels is not None else current_contig[:]), "windowstart": ( '-1' if args.windowsize == -1 else current_position + 0), "windowsize": args.windowsize, "labels": main_labels[:] }) # ADD ALLELES if mvf.flavor == 'dna': if args.choose_allele != 'none': allelesets[0] = hapsplit(allelesets[0], args.choose_allele) window_data.append_alleles(allelesets[0], mindepth=args.min_depth) # LAST LOOP if window_data: entry = window_data.maketree_raxml(params) if entry['status'] != 'ok': if args.output_empty: treefile.write_entry(entry) else: topo = entry["topology"] topo_counts[topo] = topo_counts.get(topo, 0) + 1 if topo not in topo_ids: topo_ids[topo] = (max(topo_ids.values()) + 1 if topo_ids else 0) entry["topoid"] = topo_ids[topo] treefile.write_entry(entry) window_data = None # END WINDOW ITERATION topo_list = sorted([(v, k) for k, v in topo_counts.items()], reverse=True) for rank, [value, topo] in enumerate(topo_list): topofile.write_entry({'rank': rank, 'count': value, 'topology': topo}) return ''
def mvf2fasta(args): """Main method""" mvf = MultiVariantFile(args.mvf, 'read') if (mvf.flavor in ("dna", "rna") and args.output_data == "prot") or ( mvf.flavor == "prot" and args.output_data in ("dna", "rna")): raise RuntimeError( "--output-data {} incompatiable with '{}' flavor mvf".format( args.output_data, mvf.flavor)) regions, max_region_coord, regionlabel = parse_regions_arg( args.regions, mvf.metadata['contigs']) sample_labels = mvf.get_sample_labels() if args.sample_indices is not None: sample_indices = [int(x) for x in args.sample_indices[0].split(",")] elif args.sample_labels is not None: sample_indices = mvf.get_sample_indices( labels=args.sample_labels[0].split(",")) else: sample_indices = mvf.get_sample_indices() skipcontig = '' tmp_files = dict((fn, open("{}-{}.tmp".format( fn, randint(1000000, 9999999)), 'w+', args.buffer)) for fn in sample_labels) labelwritten = dict.fromkeys(sample_labels, False) write_buffer = {} current_contig = None for contig, pos, allelesets in mvf.iterentries( contigs=[x for x in max_region_coord], decode=True): if current_contig is None: current_contig = contig[:] if contig == skipcontig: continue if (contig not in max_region_coord) or ( max_region_coord[contig] is not None and pos > max_region_coord[contig]): skipcontig = contig[:] continue inregion = False for rcontig, rstart, rstop, _ in regions: if contig == rcontig: if rstart is None or pos >= rstart: if rstop is None or pos <= rstop: inregion = True break if inregion is False: continue for col, label in zip(sample_indices, sample_labels): if not labelwritten[label]: if args.label_type == 'long': xlabel = "{} region={}".format(label, regionlabel) elif args.label_type == 'short': xlabel = "{}".format(label) tmp_files[label].write(">{}\n".format(xlabel)) labelwritten[label] = True if mvf.flavor == 'dna': tmp_files[label].write( "N" if allelesets[0][col] == 'X' else allelesets[0][col]) elif mvf.flavor in ('codon', 'prot') and ( args.output_data == 'prot'): tmp_files[label].write(allelesets[0][col]) elif mvf.flavor == 'codon' and args.output_data == 'dna': codon = ["N" if allelesets[x][col] == 'X' else allelesets[x][col] for x in (1, 2, 3)] if not args.gene_mode: tmp_files[label].write(''.join(codon)) else: if contig != current_contig: if mvf.metadata['contigs'][current_contig].get( 'strand', "+") == '-': write_buffer[label] = write_buffer[label][::-1] tmp_files[label].write(''.join(write_buffer[label])) if label not in write_buffer: write_buffer[label] = [] write_buffer[label].append(''.join(codon)) if args.gene_mode and current_contig != contig: write_buffer = {} current_contig = contig[:] if write_buffer: for label in write_buffer: if mvf.metadata['contigs'][current_contig].get( 'strand', "+") == '-': write_buffer[label] = write_buffer[label][::-1] tmp_files[label].write(''.join(write_buffer[label])) write_buffer = {} with open(args.out, 'w') as outfile: for filehandler in tmp_files.values(): filehandler.seek(0, 0) buff = filehandler.read(args.buffer) while len(buff): outfile.write(buff) buff = filehandler.read(args.buffer) outfile.write("\n") filehandler.close() os.remove(os.path.join(args.temp_dir, filehandler.name)) return ''
def mvf2phy(args): """Main method""" mvf = MultiVariantFile(args.mvf, 'read') if (mvf.flavor in ("dna", "rna") and args.output_data == "prot") or ( mvf.flavor == "prot" and args.output_data in ("dna", "rna")): raise RuntimeError( "--outdput-data {} incompatiable with '{}' flavor mvf".format( args.output_data, mvf.flavor)) max_region_coord = dict.fromkeys(mvf.metadata['contigs'], None) if args.regions is not None: _, max_region_coord, _ = parse_regions_arg( args.regions, mvf.metadata['contigs']) sample_labels = mvf.get_sample_labels() if args.sample_indices is not None: sample_indices = [int(x) for x in args.sample_indices[0].split(",")] elif args.sample_labels is not None: sample_indices = mvf.get_sample_indices( labels=args.sample_labels[0].split(",")) else: sample_indices = mvf.get_sample_indices() skipcontig = '' tmp_files = dict((fn, open("{}-{}.tmp".format( fn, randint(1000000, 9999999)), 'w+', args.buffer)) for fn in sample_labels) labelwritten = dict.fromkeys(sample_labels, False) curcontigname = None curcontigstart = 1 curcontigend = 1 if args.partition is True: partprefix = "PROT" if args.output_data == "prot" else "DNA" partitionfile = open("{}.part".format(args.out), 'w') for contig, _, allelesets in mvf.iterentries( contigs=(mvf.metadata['contigs'] if args.regions is None else [x for x in max_region_coord]), decode=True): if contig == skipcontig: continue if contig not in max_region_coord: skipcontig = contig[:] continue if curcontigname is None: curcontigname = contig[:] elif contig != curcontigname: if args.partition is True: if curcontigend > curcontigstart: partitionfile.write("{}, {} = {}-{}\n".format( partprefix, mvf.get_contig_labels( ids=curcontigname), curcontigstart, curcontigend - 1)) curcontigname = contig[:] # reset start as one position after end of last curcontigstart = curcontigend curcontigend = curcontigend + 1 for col, label in zip(sample_indices, sample_labels): if not labelwritten[label]: if args.label_type == 'long': tmp_files[label].write("{}{}".format( label[:100], " "*(100 - len(label[:100])))) elif args.label_type == 'short': tmp_files[label].write("{}{}".format( label[:20], " "*(20 - len(label[:20])))) labelwritten[label] = True if mvf.flavor == 'dna': tmp_files[label].write( allelesets[0][col] == 'X' and 'N' or allelesets[0][col]) if label == sample_labels[0]: curcontigend += 1 elif ((mvf.flavor == 'codon' and args.output_data == 'prot') or ( mvf.flavor == 'prot')): tmp_files[label].write(allelesets[0][col]) if label == sample_labels[0]: curcontigend += 1 elif mvf.flavor == 'codon': codon = ["N" if allelesets[x][col] == 'X' else allelesets[x][col] for x in (1, 2, 3)] tmp_files[label].write(''.join(codon)) if label == sample_labels[0]: curcontigend += 3 first_file = True totalseqlen = 0 with open(args.out, 'w') as outfile: for filehandler in tmp_files.values(): # read first file to establish sequence length for phylip header if first_file is True: filehandler.seek(0, 0) buff = filehandler.read(args.buffer) while buff != '': if " " in buff: totalseqlen += len(buff.strip().split(" ")[-1]) else: totalseqlen += len(buff.strip()) buff = filehandler.read(args.buffer) outfile.write("{} {}\n".format( len(sample_labels), totalseqlen)) first_file = False filehandler.seek(0, 0) buff = filehandler.read(args.buffer) while buff != '': if first_file is True: outfile.write("{} {}\n".format( len(sample_labels), len(buff.split()[1]))) first_file = False outfile.write(buff) buff = filehandler.read(args.buffer) outfile.write("\n") filehandler.close() os.remove(os.path.join(args.temp_dir, filehandler.name)) if args.partition is True: if curcontigend > curcontigstart: partitionfile.write("{}, {} = {}-{}\n".format( partprefix, mvf.get_contig_labels(ids=curcontigname), curcontigstart, curcontigend - 1)) partitionfile.close() return ''
def calc_pairwise_distances(args): """Count the pairwise nucleotide distance between combinations of samples in a window """ mvf = MultiVariantFile(args.mvf, 'read') data = {} sample_labels = mvf.get_sample_labels() if args.sample_indices is not None: sample_indices = [int(x) for x in args.sample_indices[0].split(",")] elif args.sample_labels is not None: sample_indices = mvf.get_sample_indices( labels=args.sample_labels[0].split(",")) else: sample_indices = mvf.get_sample_indices() current_contig = None current_position = 0 data_in_buffer = False sample_pairs = [tuple(x) for x in combinations(sample_indices, 2)] base_matches = dict([(x, {}) for x in sample_pairs]) all_match = {} for contig, pos, allelesets in mvf: # Check Minimum Site Coverage if check_mincoverage(args.mincoverage, allelesets[0]) is False: continue # Establish first contig if current_contig is None: current_contig = contig[:] while pos > current_position + args.windowsize - 1: current_position += args.windowsize # Check if windows are specified. if not same_window((current_contig, current_position), (contig, pos), args.windowsize): data[(current_contig, current_position)] = { 'contig': current_contig, 'position': current_position} if mvf.flavor == 'dna': all_diff, all_total = pairwise_distance_nuc(all_match) elif mvf.flavor == 'prot': all_diff, all_total = pairwise_distance_prot(all_match) for samplepair in base_matches: if mvf.flavor == 'dna': ndiff, ntotal = pairwise_distance_nuc( base_matches[samplepair]) elif mvf.flavor == 'prot': ndiff, ntotal = pairwise_distance_prot( base_matches[samplepair]) taxa = "{};{}".format(sample_labels[samplepair[0]], sample_labels[samplepair[1]]) data[(current_contig, current_position)].update({ '{};ndiff'.format(taxa): ndiff + all_diff, '{};ntotal'.format(taxa): ntotal + all_total, '{};dist'.format(taxa): zerodiv(ndiff + all_diff, ntotal + all_total)}) if contig != current_contig: current_contig = contig[:] current_position = 0 while pos > current_position + args.windowsize - 1: current_position += args.windowsize else: current_position += args.windowsize base_matches = dict([(x, {}) for x in sample_pairs]) all_match = {} data_in_buffer = False alleles = allelesets[0] if len(alleles) == 1: all_match["{}{}".format(alleles, alleles)] = ( all_match.get("{}{}".format(alleles, alleles), 0) + 1) data_in_buffer = True continue if alleles[1] == '+': if 'X' in alleles or '-' in alleles: continue samplepair = (0, int(alleles[3:])) if any(x not in sample_indices for x in samplepair): continue basepair = "{}{}".format(alleles[0], alleles[2]) base_matches[samplepair][basepair] = ( base_matches[samplepair].get(basepair, 0) + 1) data_in_buffer = True continue alleles = mvf.decode(alleles) valid_positions = [i for i, x in enumerate(alleles) if x not in 'X-'] for i, j in combinations(valid_positions, 2): samplepair = (i, j) if any(x not in sample_indices for x in samplepair): continue basepair = "{}{}".format(alleles[i], alleles[j]) base_matches[samplepair][basepair] = ( base_matches[samplepair].get(basepair, 0) + 1) data_in_buffer = True if data_in_buffer is True: # Check whether, windows, contigs, or total if args.windowsize == 0: current_contig = 'TOTAL' current_position = 0 elif args.windowsize == -1: current_position = 0 data[(current_contig, current_position)] = { 'contig': current_contig, 'position': current_position} if mvf.flavor == 'dna': all_diff, all_total = pairwise_distance_nuc(all_match) elif mvf.flavor == 'prot': all_diff, all_total = pairwise_distance_prot(all_match) for samplepair in base_matches: if mvf.flavor == 'dna': ndiff, ntotal = pairwise_distance_nuc(base_matches[samplepair]) elif mvf.flavor == 'prot': ndiff, ntotal = pairwise_distance_prot( base_matches[samplepair]) taxa = "{};{}".format(sample_labels[samplepair[0]], sample_labels[samplepair[1]]) data[(current_contig, current_position)].update({ '{};ndiff'.format(taxa): ndiff + all_diff, '{};ntotal'.format(taxa): ntotal + all_total, '{};dist'.format(taxa): zerodiv(ndiff + all_diff, ntotal + all_total)}) headers = ['contig', 'position'] for samplepair in sample_pairs: headers.extend(['{};{};{}'.format( sample_labels[samplepair[0]], sample_labels[samplepair[1]], x) for x in ('ndiff', 'ntotal', 'dist')]) outfile = OutputFile(path=args.out, headers=headers) sorted_entries = sorted([( data[k]['contig'], data[k]['position'], k) for k in data]) for _, _, k in sorted_entries: outfile.write_entry(data[k]) return ''