示例#1
0
def calc_sample_coverage(args):
    """Counts the total number of non-gap/ambiguous characters for
      each sample per contig.
      """
    mvf = MultiVariantFile(args.mvf, 'read')
    data = {}
    # Set up sample indices

    sample_labels = mvf.get_sample_labels()
    if args.sample_indices is not None:
        sample_indices = [int(x) for x in args.sample_indices[0].split(",")]
    elif args.sample_labels is not None:
        sample_indices = mvf.get_sample_indices(
            labels=args.sample_labels[0].split(","))
    else:
        sample_indices = mvf.get_sample_indices()
    # Set up contig ids
    if args.contig_ids is not None:
        contig_ids = args.contig_ids[0].split(",")
    elif args.contig_labels is not None:
        contig_ids = mvf.get_contig_ids(
            labels=args.contig_labels[0].split(","))
    else:
        contig_ids = None
    for contig, _, allelesets in mvf.iterentries(contigs=contig_ids,
                                                 subset=sample_indices,
                                                 decode=True):
        if contig not in data:
            data[contig] = dict.fromkeys(sample_labels, 0)
            data[contig]['contig'] = contig
        for j, elem in enumerate(sample_indices):
            data[contig][sample_labels[elem]] += int(
                allelesets[0][j] not in 'Xx-')
    outfile = OutputFile(path=args.out,
                         headers=(["contig"] +
                                  [sample_labels[x] for x in sample_indices]))
    for contig in data:
        outfile.write_entry(data[contig])
    return ''
示例#2
0
def filter_mvf(args):
    """Main method"""
    if args.more_help is True:
        modulehelp()
        sys.exit()
    if args.mvf is None and args.test is None:
        raise RuntimeError("No input file specified with --mvf")
    if args.out is None and args.test is None:
        raise RuntimeError("No output file specified with --out")
    # Establish Input MVF
    if args.test is not None:
        ncol = args.test_nchar or len(args.test.split()[1])
    else:
        mvf = MultiVariantFile(args.mvf, 'read')
        ncol = mvf.metadata['ncol']
    # Create Actionset
    if args.labels:
        labels = mvf.get_sample_labels()[:]
        for i in range(len(args.actions)):
            action = args.actions[i]
            arr = action.split(':')
            if arr[0] in ('columns', 'collapsepriority', 'collapsemerge',
                          'allelegroup', 'notmultigroup'):
                for j in range(1, len(arr)):
                    arr[j] = ','.join(
                        [str(labels.index(x)) for x in arr[j].split(',')])
            args.actions[i] = ':'.join(arr)
    actionset = build_actionset(args.actions, ncol)
    # TESTING MODE
    if args.test:
        loc, alleles = args.test.split()
        linefail = False
        transformed = False
        # invar = invariant (single character)
        # refvar (all different than reference, two chars)
        # onecov (single coverage, + is second character)
        # onevar (one variable base, + is third character)
        # full = full alleles (all chars)
        if args.verbose:
            print(alleles)
        linetype = get_linetype(alleles)
        sys.stdout.write("MVF Encoding type '{}' detected\n".format(linetype))
        for actionname, actiontype, actionfunc, actionarg in actionset:
            sys.stdout.write("Applying action {} ({}): ".format(
                actionname, actiontype))
            if actiontype == 'filter':
                if not actionfunc(alleles, linetype):
                    linefail = True
                    sys.stdout.write("Filter Fail\n")
                    break
                else:
                    sys.stdout.write("Filter Pass\n")
            elif actiontype == 'transform':
                transformed = True
                alleles = actionfunc(alleles, linetype)
                linetype = get_linetype(alleles)
                if linetype == 'empty':
                    linefail = True
                    sys.stdout.write("Transform removed all alleles\n")
                    break
                else:
                    sys.stdout.write("Transform result {}\n".format(alleles))
            elif actiontype == 'location':
                loc = loc.split(':')
                loc[1] = int(loc[1])
                if actionfunc(loc) is False:
                    linefail = True
                    sys.stdout.write("Location Fail\n")
                    break
                else:
                    sys.stdout.write("Location Pass\n")
        if linefail is False:
            if transformed:
                if linetype == 'full':
                    alleles = encode_mvfstring(alleles)
                if alleles:
                    test_output = "{}\t{}\n".format(loc, alleles)
                    sys.stdout.write("Final output = {}\n".format(test_output))
                else:
                    sys.stdout.write("Transform removed all alleles\n")
            else:
                sys.stdout.write("No changes applied\n")
                sys.stdout.write("Final output = {}\n".format(args.test))
        sys.exit()
    # MAIN MODE
    # Set up file handler
    outmvf = MultiVariantFile(args.out, 'write', overwrite=args.overwrite)
    outmvf.metadata = deepcopy(mvf.metadata)
    # reprocess header if actions are used that filter columns
    if any(x == y[0] for x in ('columns', 'collapsepriority', 'collapsemerge')
           for y in actionset):
        if args.labels:
            labels = outmvf.metadata['labels'][:]
        else:
            labels = [x for x in outmvf.metadata['samples']]
        for actionname, actiontype, actionfunc, actionarg in actionset:
            if actionname == 'columns':
                labels = [labels[x] for x in actionarg[0]]
            elif actionname in ('collapsepriority', 'collapsemerge'):
                labels = [
                    labels[x] for x in range(len(labels))
                    if x not in actionarg[0][1:]
                ]
        if args.labels:
            oldindices = mvf.get_sample_indices(labels)
        else:
            oldindices = labels[:]
        newsamples = {}
        for i, _ in enumerate(labels):
            newsamples[i] = mvf.metadata['samples'][oldindices[i]]
        outmvf.metadata['samples'] = newsamples.copy()
        outmvf.metadata['labels'] = labels[:]
    outmvf.write_data(outmvf.get_header())
    # End header editing
    linebuffer = []
    nbuffer = 0
    for chrom, pos, allelesets in mvf.iterentries(decode=False):
        linefail = False
        transformed = False
        # invar = invariant (single character)
        # refvar (all different than reference, two chars)
        # onecov (single coverage, + is second character)
        # onevar (one variable base, + is third character)
        # full = full alleles (all chars)
        alleles = allelesets[0]
        linetype = get_linetype(alleles)
        if linetype == 'empty':
            continue
        if args.verbose is True:
            sys.stdout.write(" {} {}".format(alleles, linetype))
        for actionname, actiontype, actionfunc, actionargs in actionset:
            if actiontype == 'filter':
                if not actionfunc(alleles, linetype):
                    linefail = True
            elif actiontype == 'transform':
                transformed = True
                alleles = actionfunc(alleles, linetype)
                linetype = get_linetype(alleles)
                if linetype == 'empty':
                    linefail = True
            elif actiontype == 'location':
                if actionfunc([chrom, pos]) is False:
                    linefail = True
            if linefail:
                break
        if linefail is False:
            if transformed:
                if linetype == 'full':
                    alleles = mvf.encode(alleles)
                if not alleles:
                    linefail = True
            nbuffer += 1
            linebuffer.append((chrom, pos, (alleles, )))
            if args.verbose:
                sys.stdout.write("{}\n".format(alleles))
            if nbuffer == args.line_buffer:
                outmvf.write_entries(linebuffer)
                linebuffer = []
                nbuffer = 0
        elif args.verbose:
            sys.stdout.write("FAIL\n")
    if linebuffer:
        outmvf.write_entries(linebuffer)
        linebuffer = []
    return ''
示例#3
0
def calc_group_unique_allele_window(args):
    """Count the number of and relative rate of uniquely held alleles
       spatially along chromosomes (i.e. Lineage-specific rates)"""
    data = {}
    mvf = MultiVariantFile(args.mvf, 'read')
    if mvf.flavor != 'codon':
        raise RuntimeError(
            "\n=====================\nERROR: MVF is not codon flavor!")
    annotations = {}
    coordinates = {}
    labels = mvf.get_sample_labels()[:]
    ncol = len(labels)
    current_contig = None
    current_position = 0
    counts = Counter()
    totals = Counter()
    args.start_contig = (args.start_contig
                         if args.start_contig is not None else 0)
    args.end_contig = (args.end_contig
                       if args.end_contig is not None else 100000000000)
    if args.output_align is True:
        outputalign = []
    if args.gff is not None:
        annotations, coordinates = (parse_gff_analysis(args.gff))
    if args.allele_groups is not None:
        args.allele_groups = procarg_allelegroups(args.allele_groups, mvf)
    if args.species_groups is None:
        args.species_groups = args.allele_groups
    else:
        args.species_groups = procarg_speciesgroups(args.species_groups, mvf)
    fieldtags = [
        'likelihood', 'bgdnds0', 'bgdnds1', 'bgdnds2a', 'bgdnds2b', 'fgdnds0',
        'fgdnds1', 'fgdnds2a', 'fgdnds2b', 'dndstree', 'errorstate'
    ]
    if args.branch_lrt is not None:
        with open(args.branch_lrt, 'w') as branchlrt:
            genealign = []
            branchlrt.write(
                "\t".join(['contig', 'ntaxa', 'alignlength', 'lrtscore'] +
                          ["null.{}".format(x) for x in fieldtags] +
                          ["test.{}".format(x)
                           for x in fieldtags] + ['tree']) + "\n")
    groups = args.allele_groups.values()
    if args.species_groups is not None:
        speciesgroups = args.species_groups.values()
    allsets = set([])
    for group in groups:
        allsets.update(group)
    allsets = list(sorted(allsets))
    speciesnames = args.species_groups.keys()
    speciesrev = {}
    if args.species_groups is not None:
        for species in args.species_groups:
            speciesrev.update([(x, species)
                               for x in args.species_groups[species]])
    if args.mincoverage is not None:
        if args.mincoverage < len(groups) * 2:
            raise RuntimeError("""
                Error: GroupUniqueAlleleWindow:
                --mincoverage cannot be lower than the twice the number
                of specified groups in --allele-groups
                """)
    genealign = []
    for contig, pos, allelesets in mvf:
        if not current_contig:
            current_contig = contig[:]
        if contig != current_contig or (args.windowsize > 0 and pos >
                                        current_position + args.windowsize):
            xkey = (
                current_contig,
                current_position,
            )
            data[xkey] = counts.copy()
            data[xkey].update([
                ('contig', (mvf.get_contig_labels(ids=current_contig)
                            if args.use_labels is True else current_contig)),
                ('position', current_position),
                ('nonsynyonymous_changes',
                 counts.get('nonsynonymous_changes', 0) or 0),
                ('synyonymous_changes', counts.get('synonymous_changes', 0)
                 or 0)
            ])
            data[xkey].update([
                ('ns_ratio',
                 (float(data[xkey].get('nonsynonymous_changes', 0)) /
                  (data[xkey].get('synonymous_changes', 1.0)))),
                ('annotation', annotations.get(data[xkey]['contig'], '.')),
                ('coordinates', coordinates.get(data[xkey]['contig'], '.'))
            ])
            if genealign:
                if (args.end_contig >= int(current_contig)) and (
                        args.start_contig <= int(current_contig)):
                    (pamlnull, pamltest, tree) = paml_branchsite(
                        genealign,
                        labels[:],
                        species=speciesnames,
                        speciesrev=speciesrev,
                        codemlpath=args.codeml_path,
                        raxmlpath=args.raxml_path,
                        pamltmp=args.paml_tmp,
                        target=args.target,
                        targetspec=args.num_target_species,
                        allsampletrees=args.all_sample_trees,
                        outgroup=args.outgroup)
                    lrtscore = -1
                    if (pamlnull.get('likelihood', -1) != -1
                            and pamltest.get('likelihood', -1) != -1):
                        lrtscore = 2 * (pamltest['likelihood'] -
                                        pamlnull['likelihood'])
                    with open(args.branch_lrt, 'a') as branchlrt:
                        branchlrt.write("\t".join([
                            str(x) for x in [
                                data[xkey]['contig'],
                                len(genealign),
                                len(genealign[0]) * 3, lrtscore
                            ] + [pamlnull.get(y, -1) for y in fieldtags] +
                            [pamltest.get(y, -1)
                             for y in fieldtags] + [str(tree).rstrip()]
                        ]) + "\n")
            genealign = None
            totals.add('genes_total')
            if counts.get('total_codons', 0) > 0:
                totals.add('genes_tested')
            if counts.get('total_nsyn_codons', 0) > 0:
                totals.add('genes_with_nsyn')
            if contig != current_contig:
                current_contig = contig[:]
                current_position = 0
            elif args.windowsize > 0:
                current_position += args.windowsize
            counts = Counter()
        proteins = allelesets[0]
        codons = allelesets[1:4]
        if len(proteins) == 1 and all(len(x) == 1 for x in codons):
            if proteins == '*' or ''.join(codons) in MLIB.stop_codons:
                continue
            counts.add('total_codons')
            totals.add('total_codons')
            if args.output_align is True:
                if not outputalign:
                    outputalign = [[''.join(codons)]
                                   for x in range(mvf.metadata['ncol'])]
                else:
                    for ialign, xalign in enumerate(outputalign):
                        xalign.append(''.join(codons))
            if args.branch_lrt is not None:
                if not genealign:
                    genealign = [[''.join(codons)] for x in range(ncol)]
                else:
                    for ialign in range(len(genealign)):
                        genealign[ialign].append(''.join(codons))
            continue
        if len(proteins) > 1:
            if allelesets[0][1] == '+':
                continue
        proteins = mvf.decode(proteins)
        if args.mincoverage is not None:
            if sum([int(x not in 'X-')
                    for x in proteins]) < (args.mincoverage):
                continue
        species_groups = [[proteins[i] for i in x if proteins[i] not in '-X']
                          for x in speciesgroups]
        if any(len(x) == 0 for x in species_groups):
            continue
        xcodons = [mvf.decode(x) for x in codons]
        codons = [''.join(x) for x in zip(*xcodons)]
        if any(codons[x] in MLIB.stop_codons for x in allsets):
            continue
        if any(
                any(x != species_groups[0][0] for x in y)
                for y in species_groups):
            totals.add('total_nsyn_codons')
            counts.add('total_nsyn_codons')
        totals.add('total_codons')
        totals.add('tested_codons')
        counts.add('total_codons')
        totals.add('variable_codons',
                   val=int(
                       sum([int(len(set(x) - set('X-')) > 1)
                            for x in xcodons]) > 0))
        if args.output_align is not None:
            if not outputalign:
                outputalign = [[x] for x in codons]
            else:
                for ialign in range(len(outputalign)):
                    outputalign[ialign].append(codons[ialign])
        if args.branch_lrt is not None:
            if not genealign:
                genealign = [[x] for x in codons]
            else:
                for ialign in range(len(codons)):
                    genealign[ialign].append(codons[ialign])
        nonsyn_change = False
        synon_change = False
        codon_groups = [
            set([
                codons[i] for i in x
                if '-' not in codons[i] and 'X' not in codons[i]
            ]) for x in groups
        ]
        protein_groups = None
        for i in range(len(codon_groups)):
            if any(base in codon for base in 'RYWKMS'
                   for codon in codon_groups[i]):
                codon_groups[i] = hapgroup(codon_groups[i])
        if all(
                grp1.isdisjoint(grp0)
                for grp0, grp1 in combinations(codon_groups, 2)):
            protein_groups = [
                set([
                    MLIB.codon_tables['full'][''.join(x)]
                    for x in codon_groups[i]
                ]) for i in range(len(codon_groups))
            ]
            if all(
                    grp1.isdisjoint(grp0)
                    for grp0, grp1 in combinations(protein_groups, 2)):
                nonsyn_change = True
            elif all(grp1 == grp0
                     for grp0, grp1 in combinations(protein_groups, 2)):
                synon_change = True
        if nonsyn_change:
            if args.verbose is True:
                print('NON', contig, pos, allelesets,
                      codon_groups, protein_groups, groups,
                      mvf.get_contig_labels(ids=contig))
            counts.add('nonsynonymous_changes')
            totals.add('nonsynonymous_changes')
        elif synon_change:
            if args.verbose is True:
                print('SYN', contig, pos, allelesets,
                      codon_groups, protein_groups, groups,
                      mvf.get_contig_labels(ids=contig))
            counts.add('synonymous_changes')
            totals.add('synonymous_changes')
    args.totals = totals
    # WRITE OUTPUT
    headers = [
        "contig", "position", "nonsynonymous_changes", "synonymous_changes",
        "ns_ratio", "nonsynonymous_total", "synonymous_total", "pvalue",
        "total_codons", "annotation", "coordinates"
    ]
    if args.windowsize == -1:
        headers.remove('position')
    if args.chi_test is None:
        headers.remove('pvalue')
    outfile = OutputFile(path=args.out, headers=headers)
    sorted_entries = sorted(
        [(data[k]['ns_ratio'], k)
         for k in data if data[k].get('nonsynonymous_changes', 0) > 0],
        reverse=True)
    for _, k in sorted_entries:
        outfile.write_entry(data[k])
    with open(args.out + '.total', 'w') as totalfile:
        for entry in args.totals.iter_sorted():
            totalfile.write(entry)
    if args.output_align is not None:
        with open(args.output_align, 'w') as alignfile:
            alignfile.write("\n".join([
                ">{}\n{}".format(mvf.metadata['labels'][i],
                                 ''.join(outputalign[i]))
                for i in range(len(outputalign))
            ]))
    return ''
示例#4
0
def plot_chromoplot(args):
    """Main method"""
    pallette = Pallette()
    if args.colors is not None:
        pallette.basecolors = args.colors
    # Establish MVF and parse chromosome information
    if args.quiet is False:
        print("Reading MVF...")
    mvf = MultiVariantFile(args.mvf, 'read')
    if args.quiet is False:
        print("Parsing headers...")
    if args.contig_ids is not None:
        contigids = args.contig_ids[0].split(",")
    elif args.contig_labels is not None:
        contigids = mvf.get_contig_ids(labels=args.contig_labels[0].split(","))
    else:
        contigids = mvf.get_contig_ids()
    if args.quiet is False:
        print("Plotting chromoplot for contigs: {}".format(
            ",".join(contigids)))
    sample_labels = mvf.get_sample_labels()
    if args.sample_indices is not None:
        sample_indices = [int(x) for x in args.sample_indices[0].split(",")]
    elif args.sample_labels is not None:
        sample_indices = mvf.get_sample_indices(
            labels=args.sample_labels[0].split(","))
    else:
        sample_indices = mvf.get_sample_indices()
    assert len(sample_indices) >= 3
    if args.outgroup_indices is not None:
        outgroup_indices = [
            int(x) for x in args.outgroup_indices[0].split(",")
        ]
    elif args.outgroup_labels is not None:
        outgroup_indices = mvf.get_sample_indices(
            labels=args.outgroup_labels[0].split(","))
    assert len(outgroup_indices) >= 1
    quartets = [(x, y, z, outgroup)
                for x, y, z in combinations(sample_indices, 3)
                for outgroup in outgroup_indices]
    # Begin iterations
    for quartet_indices in quartets:
        quartet_labels = [sample_labels[x] for x in quartet_indices]
        if args.quiet is False:
            print("Beginning quartet {}".format(",".join(quartet_labels)))
        params = {
            'contigs': [[
                contigid, mvf.metadata['contigs'][contigid]['label'],
                mvf.metadata['contigs'][contigid]['length']
            ] for contigid in contigids],
            'outpath':
            ((args.out_prefix if args.out_prefix is not None else '')
             or '_'.join(quartet_labels)) + ".png",
            'labels':
            quartet_labels,
            'indices':
            quartet_indices,
            'windowsize':
            args.windowsize,
            'majority':
            args.majority,
            'infotrack':
            args.info_track,
            'yscale':
            args.yscale,
            'xscale':
            args.xscale,
            'quiet':
            args.quiet,
            'plottype':
            args.plot_type
        }
        chromoplot = Chromoplot(params=params, pallette=pallette)
        current_contig = ''
        for contig, pos, allelesets in mvf.iterentries(subset=quartet_indices,
                                                       decode=True,
                                                       contigs=contigids):
            if contig != current_contig:
                if args.quiet is False:
                    print("Starting contig {}".format(contig))
                    current_contig = contig[:]
            alleles = allelesets[0]
            if '-' in alleles:
                site_code = 'gap'
            elif any(x not in 'ATGCatgc' for x in alleles):
                site_code = 'ambiguous'
            elif alleles[3] not in alleles[:3]:
                site_code = 'nonpolar'
            elif len(set(alleles)) > 2:
                site_code = 'triallelic'
            else:
                site_code = sum([
                    2**(3 - j) * (alleles[j] != alleles[3]) for j in range(3)
                ])
            chromoplot.add_data(str(contig), int(pos // args.windowsize),
                                site_code)
        contig = ''
        current_contig = ''
        if not args.quiet:
            print("Writing image...")
        chromoplot.plot_chromoplot()

        if not args.quiet:
            print("Writing log...")
        chromoplot.write_total_log()
    return ''
示例#5
0
def mvf_join(args):
    """Main method"""
    concatmvf = MultiVariantFile(args.out, 'write', overwrite=args.overwrite)
    # Copy the first file's metadata
    if args.main_header_file:
        if args.main_header_file not in args.mvf:
            raise RuntimeError("{} not found in files".format(
                args.main_header_file))
        else:
            args.main_header_file = args.mvf.index(args.main_header_file)
    else:
        args.main_header_file = 0
    first_mvf = MultiVariantFile(args.mvf[args.main_header_file], 'read')
    concatmvf.metadata = first_mvf.metadata.copy()
    # Open each MVF file, read headers to make unified header
    transformers = []
    for mvfname in args.mvf:
        # This will create a dictionary of samples{old:new}, contigs{old:new}
        transformer = MvfTransformer()
        mvf = MultiVariantFile(mvfname, 'read')
        for i, label in enumerate(mvf.get_sample_labels()):
            if label not in concatmvf.get_sample_labels():
                concatmvf.metadata['labels'].append(label)
                concatmvf.metadata['samples'][
                    concatmvf.metadata['labels'].index(label)] = {
                        'label': label
                    }
            if concatmvf.metadata['labels'].index(label) != i:
                transformer.set_label(
                    i, concatmvf.metadata['labels'].index(label))
        for contigid, contigdata in iter(mvf.metadata['contigs'].items()):
            if contigdata['label'] not in [
                    concatmvf.metadata['contigs'][x]['label']
                    for x in concatmvf.metadata['contigs']
            ]:
                newid = (contigid not in concatmvf.metadata['contigs']
                         and contigid or concatmvf.get_next_contig_id())
                concatmvf.metadata['contigs'][newid] = contigdata
            else:
                for concatid, concatdata in (
                        concatmvf.metadata['contigs'].items()):
                    if contigdata['label'] == concatdata['label']:
                        newid = concatid
                        break
            if newid != contigid:
                transformer.set_contig(contigid, newid)
        transformers.append(transformer)
    # Write output header
    concatmvf.write_data(concatmvf.get_header())
    # Now loop through each file
    entries = []
    nentries = 0
    for ifile, mvfname in enumerate(args.mvf):
        if not args.quiet:
            sys.stderr.write("Processing {} ...\n".format(mvfname))
        transformer = transformers[ifile]
        mvf = MultiVariantFile(mvfname, 'read')
        for contigid, pos, allelesets in mvf.iterentries(decode=False,
                                                         quiet=args.quiet):
            if transformer.labels:
                allelesets = [mvf.decode(x) for x in allelesets]
                for j, alleles in enumerate(allelesets):
                    allelesets[j] = concatmvf.encode(''.join([
                        x in transformer.labels
                        and alleles[transformer.labels[x]] or alleles[x]
                        for x in range(len(alleles))
                    ]))
            if transformer.contigs:
                contigid = (contigid in transformer['contigs']
                            and transformer['contigs'][contigid] or contigid)
            entries.append((contigid, pos, allelesets))
            nentries += 1
            if nentries == args.line_buffer:
                concatmvf.write_entries(entries)
                entries = []
                nentries = 0
        if entries:
            concatmvf.write_entries(entries)
            entries = []
            nentries = 0
        if not args.quiet:
            sys.stderr.write("done\n")
    return ''
示例#6
0
def calc_pairwise_distances(args):
    """Count the pairwise nucleotide distance between
       combinations of samples in a window
    """
    args.qprint("Running CalcPairwiseDistances")
    mvf = MultiVariantFile(args.mvf, 'read')
    args.qprint("Input MVF: Read")
    data = {}
    sample_labels = mvf.get_sample_labels()
    if args.sample_indices is not None:
        sample_indices = [int(x) for x in args.sample_indices[0].split(",")]
    elif args.sample_labels is not None:
        sample_indices = mvf.get_sample_indices(
            labels=args.sample_labels[0].split(","))
    else:
        sample_indices = mvf.get_sample_indices()
    args.qprint("Calculating for samples: {}".format(list(sample_indices)))
    current_contig = None
    current_position = 0
    data_in_buffer = False
    sample_pairs = [tuple(x) for x in combinations(sample_indices, 2)]
    base_matches = dict((x, {}) for x in sample_pairs)
    all_match = {}
    if mvf.flavor == 'dna':
        allele_frames = (0, )
        args.data_type = 'dna'
    elif mvf.flavor == 'prot':
        allele_frames = (0, )
        args.data_type = 'dna'
    elif mvf.flavor == 'codon':
        if args.data_type == 'prot':
            allele_frames = (0, )
        else:
            allele_frames = (1, 2, 3)
            args.data_type = 'dna'
    args.qprint("MVF flavor is: {}".format(mvf.flavor))
    args.qprint("Data type is: {}".format(args.data_type))
    args.qprint("Ambiguous mode: {}".format(args.ambig))
    args.qprint("Processing MVF Records")
    pwdistance_function = get_pairwise_function(args.data_type, args.ambig)
    if args.emit_counts:
        outfile_emitcounts = open(args.out + ".pairwisecounts", 'w')
    for contig, pos, allelesets in mvf.iterentries(decode=None):
        # Check Minimum Site Coverage
        if check_mincoverage(args.mincoverage, allelesets[0]) is False:
            continue
        # Establish first contig
        if current_contig is None:
            current_contig = contig[:]
            if args.windowsize > 0:
                while pos > current_position + args.windowsize - 1:
                    current_position += args.windowsize
        # Check if windows are specified.
        if not same_window((current_contig, current_position),
                           (contig, pos), args.windowsize):
            data[(current_contig, current_position)] = {
                'contig': current_contig,
                'position': current_position
            }
            all_diff, all_total = pwdistance_function(all_match)
            for samplepair in base_matches:
                ndiff, ntotal = pwdistance_function(base_matches[samplepair])
                taxa = "{};{}".format(sample_labels[samplepair[0]],
                                      sample_labels[samplepair[1]])
                data[(current_contig, current_position)].update({
                    '{};ndiff'.format(taxa):
                    ndiff + all_diff,
                    '{};ntotal'.format(taxa):
                    ntotal + all_total,
                    '{};dist'.format(taxa):
                    zerodiv(ndiff + all_diff, ntotal + all_total)
                })
            if contig != current_contig:
                current_contig = contig[:]
                current_position = 0
                if args.windowsize > 0:
                    while pos > current_position + args.windowsize - 1:
                        current_position += args.windowsize
            else:
                current_position += args.windowsize
            if args.emit_counts:
                args.qprint("Writing Full Count Table")
                for p0, p1 in base_matches:
                    outfile_emitcounts.write("#{}\t{}\t{}\t{}\n{}\n".format(
                        p0, p1, current_position, current_contig, "\n".join([
                            "{} {}".format(x,
                                           (base_matches[(p0, p1)].get(x, 0) +
                                            all_match.get(x, 0)))
                            for x in set(base_matches[(p0,
                                                       p1)]).union(all_match)
                        ])))
            base_matches = dict((x, {}) for x in sample_pairs)
            all_match = {}
            data_in_buffer = False
        for iframe in allele_frames:
            alleles = allelesets[iframe]
            if len(alleles) == 1:
                all_match["{0}{0}".format(alleles)] = (
                    all_match.get("{0}{0}".format(alleles), 0) + 1)
                data_in_buffer = True
                continue
            if alleles[1] == '+':
                if 'X' in alleles or '-' in alleles:
                    continue
                samplepair = (0, int(alleles[3:]))
                if any(x not in sample_indices for x in samplepair):
                    continue
                basepair = "{}{}".format(alleles[0], alleles[2])
                base_matches[samplepair][basepair] = (
                    base_matches[samplepair].get(basepair, 0) + 1)
                data_in_buffer = True
                continue
            alleles = mvf.decode(alleles)
            valid_positions = [
                i for i, x in enumerate(alleles)
                if x not in 'X-' and i in sample_indices
            ]
            for i, j in combinations(valid_positions, 2):
                samplepair = (i, j)
                basepair = "{}{}".format(alleles[i], alleles[j])
                base_matches[samplepair][basepair] = (
                    base_matches[samplepair].get(basepair, 0) + 1)
            data_in_buffer = True
        #print(base_matches)
    if data_in_buffer is True:
        # Check whether, windows, contigs, or total
        if args.windowsize == 0:
            current_contig = 'TOTAL'
            current_position = 0
        elif args.windowsize == -1:
            current_position = 0
        data[(current_contig, current_position)] = {
            'contig': current_contig,
            'position': current_position
        }
        # print("All match")
        all_diff, all_total = pwdistance_function(all_match)
        for samplepair in base_matches:
            # print(samplepair)
            ndiff, ntotal = pwdistance_function(base_matches[samplepair])
            taxa = "{};{}".format(sample_labels[samplepair[0]],
                                  sample_labels[samplepair[1]])
            data[(current_contig, current_position)].update({
                '{};ndiff'.format(taxa):
                ndiff + all_diff,
                '{};ntotal'.format(taxa):
                ntotal + all_total,
                '{};dist'.format(taxa):
                zerodiv(ndiff + all_diff, ntotal + all_total)
            })
        if args.emit_counts:
            args.qprint("Writing Full Count Table")
            for p0, p1 in base_matches:
                outfile_emitcounts.write("#{}\t{}\t{}\t{}\n{}\n".format(
                    p0, p1, current_position, current_contig, "\n".join([
                        "{} {}".format(x, (base_matches[(p0, p1)].get(x, 0) +
                                           all_match.get(x, 0)))
                        for x in set(base_matches[(p0, p1)]).union(all_match)
                    ])))
    args.qprint("Writing Output")
    headers = ['contig', 'position']
    for samplepair in sample_pairs:
        headers.extend([
            '{};{};{}'.format(sample_labels[samplepair[0]],
                              sample_labels[samplepair[1]], x)
            for x in ('ndiff', 'ntotal', 'dist')
        ])
    outfile = OutputFile(path=args.out, headers=headers)
    sorted_entries = sorted([(data[k]['contig'], data[k]['position'], k)
                             for k in data])
    for _, _, k in sorted_entries:
        outfile.write_entry(data[k])
    if args.emit_counts:
        outfile_emitcounts.close()
    return ''
示例#7
0
def calc_character_count(args):
    """Count the number of and relative rate of certain bases
       spatially along chromosomes
    """
    mvf = MultiVariantFile(args.mvf, 'read')
    data = {}
    current_contig = None
    current_position = 0
    all_match = 0
    all_total = 0
    data_in_buffer = False

    # Set up base matching from special words
    def proc_special_word(argx):
        if argx == 'dna':
            argx = MLIB.validchars['dna']
        elif argx == 'dnaambig2':
            argx = MLIB.validchars['dna+ambig2']
        elif argx == 'dnaambig3':
            argx = MLIB.validchars['dna+ambig3']
        elif argx == 'dnaambigall':
            argx = MLIB.validchars['dna+ambigall']
        elif argx == 'prot':
            argx = MLIB.validchars['amino']
        return argx

    args.base_match = proc_special_word(args.base_match)
    args.base_total = proc_special_word(args.base_total)
    # Set up sample indices
    sample_labels = mvf.get_sample_labels()
    if args.sample_indices is not None:
        sample_indices = [int(x) for x in args.sample_indices[0].split(",")]
    elif args.sample_labels is not None:
        sample_indices = mvf.get_sample_indices(
            labels=args.sample_labels[0].split(","))
    else:
        sample_indices = mvf.get_sample_indices()
    # Set up contig ids
    if args.contig_ids is not None:
        contig_ids = args.contig_ids[0].split(",")
    elif args.contig_labels is not None:
        contig_ids = mvf.get_contig_ids(
            labels=args.contig_labels[0].split(","))
    else:
        contig_ids = None
    match_counts = dict().fromkeys([sample_labels[i] for i in sample_indices],
                                   0)
    total_counts = dict().fromkeys([sample_labels[i] for i in sample_indices],
                                   0)
    for contig, pos, allelesets in mvf.iterentries(decode=False,
                                                   contigs=contig_ids):
        # Check Minimum Site Coverage
        if check_mincoverage(args.mincoverage, allelesets[0]) is False:
            continue
        #if contig not in contig_ids:
        #   continue
        # Establish first contig
        if current_contig is None:
            current_contig = contig[:]
            if args.windowsize > 0:
                while pos > current_position + args.windowsize - 1:
                    current_position += args.windowsize
        # Check if windows are specified.
        if not same_window((current_contig, current_position),
                           (contig, pos), args.windowsize):
            data[(current_contig, current_position)] = {
                'contig': current_contig,
                'position': current_position
            }
            for k in match_counts:
                data[(current_contig, current_position)].update([
                    (k + '.match', match_counts[k] + all_match),
                    (k + '.total', total_counts[k] + all_total),
                    (k + '.prop', ((float(match_counts[k] + all_match) /
                                    float(total_counts[k] + all_total))
                                   if total_counts[k] + all_total > 0 else 0))
                ])
            if contig != current_contig:
                current_contig = contig[:]
                current_position = 0
            else:
                current_position += (0 if args.windowsize == -1 else
                                     args.windowsize)
            match_counts = dict().fromkeys(
                [sample_labels[i] for i in sample_indices], 0)
            total_counts = dict().fromkeys(
                [sample_labels[i] for i in sample_indices], 0)
            all_total = 0
            all_match = 0
            data_in_buffer = False
        else:
            alleles = allelesets[0]
            if len(alleles) == 1:
                if args.base_match is None:
                    all_match += 1
                elif alleles in args.base_match:
                    all_match += 1
                if args.base_total is None:
                    all_total += 1
                elif alleles in args.base_total:
                    all_total += 1
            else:
                alleles = mvf.decode(alleles)
                for i in sample_indices:
                    if args.base_match is None:
                        match_counts[sample_labels[i]] += 1
                    elif alleles[i] in args.base_match:
                        match_counts[sample_labels[i]] += 1
                    if args.base_total is None:
                        total_counts[sample_labels[i]] += 1
                    elif alleles[i] in args.base_total:
                        total_counts[sample_labels[i]] += 1
            data_in_buffer = True
    if data_in_buffer:
        data[(current_contig, current_position)] = {
            'contig': current_contig,
            'position': current_position
        }
        for k in match_counts:
            data[(current_contig, current_position)].update([
                (k + '.match', match_counts[k] + all_match),
                (k + '.total', total_counts[k] + all_total),
                (k + '.prop', ((float(match_counts[k] + all_match) /
                                float(total_counts[k] + all_total))
                               if total_counts[k] + all_total > 0 else 0))
            ])
    # WRITE OUTPUT
    headers = ['contig', 'position']
    for label in sample_labels:
        headers.extend([label + x for x in ('.match', '.total', '.prop')])
    outfile = OutputFile(path=args.out, headers=headers)
    sorted_entries = sorted([(data[k]['contig'], data[k]['position'], k)
                             for k in data])
    for _, _, k in sorted_entries:
        outfile.write_entry(data[k])
    return ''
示例#8
0
def calc_all_character_count_per_sample(args):
    """Count the number of and relative rate of certain bases
       spatially along chromosomes
    """
    args.qprint("Running CalcAllCharacterCountPerSample")
    mvf = MultiVariantFile(args.mvf, 'read')
    current_contig = None
    current_position = 0
    data_in_buffer = False
    # Set up sample indices
    sample_labels = mvf.get_sample_labels()
    if args.sample_indices is not None:
        sample_indices = [int(x) for x in args.sample_indices[0].split(",")]
    elif args.sample_labels is not None:
        sample_indices = mvf.get_sample_indices(
            labels=args.sample_labels[0].split(","))
    else:
        sample_indices = mvf.get_sample_indices()
    # Set up contig ids
    if args.contig_ids is not None:
        contig_ids = args.contig_ids[0].split(",")
    elif args.contig_labels is not None:
        contig_ids = mvf.get_contig_ids(
            labels=args.contig_labels[0].split(","))
    else:
        contig_ids = None
    data = dict((i, {}) for i in sample_indices)
    data_characters = [{} for i in sample_indices]
    for contig, pos, allelesets in mvf.iterentries(decode=False,
                                                   contigs=contig_ids):
        # Check Minimum Site Coverage
        if check_mincoverage(args.mincoverage, allelesets[0]) is False:
            continue
        if current_contig is None:
            current_contig = contig[:]
            if args.windowsize > 0:
                while pos > current_position + args.windowsize - 1:
                    current_position += args.windowsize
        # Check if windows are specified.
        if not same_window((current_contig, current_position),
                           (contig, pos), args.windowsize):
            args.qprint("Processing contig {}".format(current_contig))
            for i in sample_indices:
                data[i][(current_contig, current_position)] = {
                    'contig': current_contig,
                    'position': current_position
                }
                data[i][(current_contig,
                         current_position)].update(data_characters[i])
            if contig != current_contig:
                current_contig = contig[:]
                current_position = 0
            else:
                current_position += (0 if args.windowsize == -1 else
                                     args.windowsize)
            data_characters = [{} for i in sample_indices]
            data_in_buffer = False
        alleles = allelesets[0]
        if len(alleles) == 1:
            for i in sample_indices:
                data_characters[i][alleles[0]] = (
                    data_characters[i].get(alleles[0], 0) + 1)
        else:
            alleles = mvf.decode(alleles)
            for i in sample_indices:
                data_characters[i][alleles[i]] = (
                    data_characters[i].get(alleles[i], 0) + 1)
        data_in_buffer = True
    if data_in_buffer:
        for i in sample_indices:
            data[i][(current_contig, current_position)] = {
                'contig': current_contig,
                'position': current_position
            }
            data[i][(current_contig,
                     current_position)].update(data_characters[i])
    # WRITE OUTPUT
    all_chars = set([])
    for sampleid in data:
        for window in data[sampleid]:
            all_chars.update([
                x for x in data[sampleid][window]
                if x not in ('contig', 'position')
            ])
    headers = ['contig', 'position']
    headers.extend(list(sorted(all_chars)))
    outfile = OutputFile(path=args.out, headers=headers)

    for sampleid in sorted(data):
        outfile.write("#{}\n".format(sample_labels[sampleid]))
        sorted_entries = sorted([(data[sampleid][k]['contig'],
                                  data[sampleid][k]['position'], k)
                                 for k in data[sampleid]])
        for _, _, k in sorted_entries:
            outfile.write_entry(data[sampleid][k], defaultvalue='0')
    return ''
示例#9
0
def calc_dstat_combinations(args):
    """Calculate genome-wide D-statstics for
       all possible trio combinations of samples
       and outgroups specified.
    """
    mvf = MultiVariantFile(args.mvf, 'read')
    data = {}
    sample_labels = mvf.get_sample_labels()
    if args.outgroup_indices is not None:
        outgroup_indices = [
            int(x) for x in args.outgroup_indices[0].split(",")
        ]
    elif args.outgroup_labels is not None:
        outgroup_indices = mvf.get_sample_indices(
            labels=args.outgroup_labels[0].split(","))
    if args.sample_indices is not None:
        sample_indices = [int(x) for x in args.sample_indices[0].split(",")]
    elif args.sample_labels is not None:
        sample_indices = mvf.get_sample_indices(
            labels=args.sample_labels[0].split(","))
    else:
        sample_indices = mvf.get_sample_indices()
    if args.contig_ids is not None:
        contig_ids = args.contig_ids[0].split(",")
    elif args.contig_labels is not None:
        contig_ids = mvf.get_contig_ids(
            labels=args.contig_labels[0].split(","))
    else:
        contig_ids = None
    if any(x in outgroup_indices for x in sample_indices):
        raise RuntimeError("Sample and Outgroup column lists cannot overlap.")
    for contig, _, allelesets in mvf:
        if contig not in contig_ids:
            continue
        alleles = mvf.decode(allelesets[0])
        for i, j, k in combinations(sample_indices, 3):
            for outgroup in outgroup_indices:
                subset = [alleles[x] for x in [i, j, k, outgroup]]
                if any(x not in 'ATGC' for x in subset):
                    continue
                if subset[-1] not in subset[:3]:
                    continue
                if len(set(subset)) != 2:
                    continue
                # [ABBA, BABA, BBAA]
                val = (0 + 1 * (subset[0] == subset[3]) + 2 *
                       (subset[1] == subset[3]) + 4 * (subset[2] == subset[3]))
                if val in (1, 2):
                    val -= 1
                elif val == 4:
                    val = 2
                else:
                    continue
                tetrad = (i, j, k, outgroup)
                if tetrad not in data:
                    data[tetrad] = {}
                if contig not in data[tetrad]:
                    data[tetrad][contig] = [0, 0, 0]
                data[tetrad][contig][val] += 1
    # WRITE OUTPUT
    headers = ['sample0', 'sample1', 'sample2', "outgroup"]
    for xcontig in contig_ids:
        headers.extend([
            '{}:abba'.format(xcontig), '{}:baba'.format(xcontig),
            '{}:bbaa'.format(xcontig), '{}:D'.format(xcontig)
        ])
    outfile = OutputFile(path=args.out, headers=headers)
    for i, j, k in combinations(sample_indices, 3):
        for outgroup in outgroup_indices:
            tetrad = tuple([i, j, k, outgroup])
            if tetrad not in data:
                continue
            entry = dict(('sample{}'.format(i), sample_labels[x])
                         for i, x in enumerate(tetrad[:3]))
            entry['outgroup'] = sample_labels[outgroup]
            for contig in contig_ids:
                if contig not in data[tetrad]:
                    entry.update(dict().fromkeys([
                        '{}:abba'.format(contig), '{}:baba'.format(contig),
                        '{}:bbaa'.format(contig), '{}:D'.format(contig)
                    ], '0'))
                else:
                    [abba, baba, bbaa] = data[tetrad][contig]
                    if abba > baba and abba > bbaa:

                        dstat = zerodiv(baba - bbaa, baba + bbaa)
                    elif baba > bbaa and baba > abba:
                        dstat = zerodiv(abba - bbaa, abba + bbaa)
                    else:
                        dstat = zerodiv(abba - baba, abba + baba)
                    entry.update([('{}:abba'.format(contig), abba),
                                  ('{}:baba'.format(contig), baba),
                                  ('{}:bbaa'.format(contig), bbaa),
                                  ('{}:D'.format(contig), dstat)])
            outfile.write_entry(entry)
    return ''
示例#10
0
def calc_pattern_count(args):
    """Count biallelic patterns spatially along
       chromosomes (e.g,, for use in DFOIL or Dstats
       http://www.github.com/jbpease/dfoil).
       The last sample specified will determine the 'A'
       versus 'B' allele.
    """
    mvf = MultiVariantFile(args.mvf, 'read')
    data = {}
    current_contig = None
    current_position = 0
    sitepatterns = {}

    # sample_labels = mvf.get_sample_labels()
    if args.sample_indices is not None:
        sample_indices = [int(x) for x in args.sample_indices[0].split(",")]
    elif args.sample_labels is not None:
        sample_indices = mvf.get_sample_indices(
            labels=args.sample_labels[0].split(","))
    else:
        sample_indices = mvf.get_sample_indices()
    nsamples = len(sample_indices)
    for contig, pos, allelesets in mvf:
        # Check Minimum Site Coverage
        if check_mincoverage(args.mincoverage, allelesets[0]) is False:
            continue
        # Establish first contig
        if current_contig is None:
            current_contig = contig[:]
            if args.windowsize > 0:
                while pos > current_position + args.windowsize - 1:
                    current_position += args.windowsize
        # Check if windows are specified.
        if not same_window((current_contig, current_position),
                           (contig, pos), args.windowsize):
            data[(current_contig,
                  current_position)] = dict([('contig', current_contig),
                                             ('position', current_position)])
            data[(current_contig, current_position)].update(sitepatterns)
            sitepatterns = {}
            if contig != current_contig:
                current_position = 0
                current_contig = contig[:]
            else:
                current_position += (0 if args.windowsize == -1 else
                                     args.windowsize)
        if len(allelesets[0]) == 1:
            if allelesets[0] in 'ATGC':
                pattern = 'A' * nsamples
            else:
                continue
        elif allelesets[0][1] == '+':
            continue
        else:
            alleles = mvf.decode(allelesets[0])
            alleles = [alleles[x] for x in sample_indices]
            if any(x in alleles for x in 'X-RYKMWS'):
                continue
            if len(set(alleles)) > 2:
                continue
            pattern = ''.join(
                ['A' if x == alleles[-1] else 'B' for x in alleles[:-1]]) + 'A'
        sitepatterns[pattern] = sitepatterns.get(pattern, 0) + 1
    if sitepatterns:
        data[(current_contig,
              current_position)] = dict([('contig', current_contig),
                                         ('position', current_position)])
        data[(current_contig, current_position)].update(sitepatterns)
    # WRITE OUTPUT
    headers = ['contig', 'position']
    headers.extend(
        [MLIB.abpattern(x, nsamples) for x in range(0, 2**nsamples, 2)])
    outfile = OutputFile(path=args.out, headers=headers)
    outfile.write("#{}\n".format(",".join(
        mvf.get_sample_labels(sample_indices))))
    sorted_entries = sorted([(data[k]['contig'], data[k]['position'], k)
                             for k in data])
    for _, _, k in sorted_entries:
        outfile.write_entry(data[k])
    # WRITE LIST OUTPUT
    if args.output_lists is True:
        sorted_entries = sorted([(data[k]['contig'], data[k]['position'], k)
                                 for k in data])
        total_counts = {}
        for contig, pos, k in sorted_entries:
            outfilepath = "{}-{}-{}.counts.list".format(args.out, contig, pos)
            with open(outfilepath, 'w') as outfile:
                outfile.write("pattern,count\n")
                for pattern, pcount in sorted(data[k].items()):
                    if pattern in ['contig', 'position']:
                        continue
                    outfile.write("{},{}\n".format(pattern, pcount))
                    total_counts[pattern] = (total_counts.get(pattern, 0) +
                                             pcount)
        outfilepath = "{}-TOTAL.counts.list".format(args.out)
        with open(outfilepath, 'w') as outfile:
            outfile.write("pattern,count\n")
            for pattern, pcount in sorted(total_counts.items()):
                if pattern in ['contig', 'position']:
                    continue
                outfile.write("{},{}\n".format(pattern, pcount))
    return ''
示例#11
0
def merge_mvf(args):
    """Main method"""
    args.qprint("Running MergeMVF")
    if any(fpath.endswith('.gz') for fpath in args.mvf):
        print("WARNING! Running MergeMVF with gzipped input files is "
              "extremely slow and strongly discouraged.")
    concatmvf = MultiVariantFile(args.out, 'write', overwrite=args.overwrite)
    # Copy the first file's metadata
    args.qprint("Reading First File and Establishing Output")
    if args.main_header_file:
        if args.main_header_file not in args.mvf:
            raise RuntimeError("{} not found in files".format(
                args.main_header_file))
        else:
            args.main_header_file = args.mvf.index(args.main_header_file)
    else:
        args.main_header_file = 0
    first_mvf = MultiVariantFile(args.mvf[args.main_header_file], 'read')
    concatmvf.metadata = first_mvf.metadata.copy()
    # Open each MVF file, read headers to make unified header
    transformers = []
    mvfmetadata = []
    concatmvf_reverse_contig = dict(
        (x['label'], k) for (k, x) in concatmvf.metadata['contigs'].items())
    inputfiles = []
    for mvfname in args.mvf:
        args.qprint("Reading headers from {}".format(mvfname))
        # This will create a dictionary of samples{old:new}, contigs{old:new}
        args.qprint("Processing Headers and Indexing: {}".format(mvfname))
        transformer = MvfTransformer()
        mvf = MultiVariantFile(mvfname,
                               'read',
                               contigindex=(not args.skip_index))
        if args.skip_index:
            mvf.read_index_file()
        mvf.reset_max_contig_id()
        mvfmetadata.append(mvf.metadata)
        for i, label in enumerate(mvf.get_sample_labels()):
            if label not in concatmvf.get_sample_labels():
                concatmvf.metadata['labels'].append(label)
                concatmvf.metadata['samples'][
                    concatmvf.metadata['labels'].index(label)] = {
                        'label': label
                    }
#            if concatmvf.metadata['labels'].index(label) != i:
            transformer.set_label(i, concatmvf.metadata['labels'].index(label))
        for contigid, contigdata in iter(mvf.metadata['contigs'].items()):
            if contigdata['label'] not in concatmvf_reverse_contig:
                newid = (contigid
                         if contigid not in concatmvf.metadata['contigs'] else
                         concatmvf.get_next_contig_id())
                concatmvf.metadata['contigs'][newid] = contigdata
                concatmvf_reverse_contig[contigdata['label']] = newid
            else:
                newid = concatmvf_reverse_contig[contigdata['label']]
            transformer.set_contig(contigid, newid)
        transformers.append(transformer)
        inputfiles.append(mvf)
    # Write output header
    args.qprint("Writing headers to merge output")
    concatmvf.reset_ncol()
    concatmvf.write_data(concatmvf.get_header())
    contigs = concatmvf.metadata['contigs']
    # Now loop through each file
    blank_entry = '-' * len(concatmvf.metadata['samples'])
    for current_contig in contigs:
        contig_merged_entries = {}
        args.qprint("Merging Contig: {}".format(current_contig))
        for ifile, mvffile in enumerate(inputfiles):
            if current_contig not in transformers[ifile].contigs:
                continue
            localcontig = transformers[ifile].contigs[current_contig]
            for chrom, pos, allelesets in mvffile.itercontigentries(
                    localcontig, decode=True):
                if pos not in contig_merged_entries:
                    contig_merged_entries[pos] = blank_entry[:]
                for j, base in enumerate(allelesets[0]):
                    xcoord = transformers[ifile].labels_rev[j]
                    if contig_merged_entries[pos][xcoord] != '-':
                        if contig_merged_entries[pos][xcoord] == base:
                            continue
                        if base == '-' or base == 'X':
                            continue
                        raise RuntimeError(
                            "Merging columns have two different bases: {} {} {}"
                            .format(pos, contig_merged_entries[pos][xcoord],
                                    base))
                    contig_merged_entries[pos] = (
                        contig_merged_entries[pos][:xcoord] + base +
                        contig_merged_entries[pos][xcoord + 1:])
        concatmvf.write_entries(
            ((current_contig, coord, (entry, ))
             for coord, entry in sorted(contig_merged_entries.items())),
            encoded=False)
        args.qprint("Entries written for contig {}: {}".format(
            current_contig, len(contig_merged_entries)))
    return ''
示例#12
0
def infer_window_tree(args):
    """Main method"""
    # ESTABLISH FILE OBJECTS
    mvf = MultiVariantFile(args.mvf, 'read')
    # Set up contig ids
    if args.contig_ids is not None:
        contig_ids = args.contig_ids[0].split(",")
    elif args.contig_labels is not None:
        contig_ids = mvf.get_contig_ids(
            labels=args.contig_labels[0].split(","))
    else:
        contig_ids = mvf.get_contig_ids()
    treefile = OutputFile(
        args.out,
        headers=[
            'contig',
            'windowstart',
            'windowsize',
            'tree',
            'topology',
            'topoid',
            # 'templabels', ### USED FOR DEBUGGING ###
            'alignlength',
            'aligndepth',
            'status'
        ])
    topofile = OutputFile(args.out + '.counts',
                          headers=['rank', 'topology', 'count'])
    if args.sample_indices is not None:
        sample_indices = [int(x) for x in args.sample_indices[0].split(",")]
    elif args.sample_labels is not None:
        sample_indices = mvf.get_sample_indices(
            labels=args.sample_labels[0].split(","))
    else:
        sample_indices = mvf.get_sample_indices()
    if not os.path.exists(args.temp_dir):
        os.mkdir(args.temp_dir)
    os.chdir(args.temp_dir)
    # SETUP PARAMS
    main_labels = mvf.get_sample_labels(sample_indices)
    if args.choose_allele in ['randomboth', 'majorminor']:
        main_labels = [label + x for x in ['a', 'b'] for label in main_labels]
    params = {
        'outgroups':
        args.raxml_outgroups or [],
        'rootwith':
        (args.root_with.split(',') if args.root_with is not None else None),
        'minsites':
        args.min_sites,
        'minseqcoverage':
        args.min_seq_coverage,
        'mindepth':
        args.min_depth,
        'raxmlpath':
        args.raxml_path,
        'raxmlopts':
        args.raxml_opts,
        'duplicateseq':
        args.duplicate_seq,
        'model':
        args.raxml_model,
        'bootstrap':
        args.bootstrap,
        'windowsize':
        args.windowsize,
        'chooseallele':
        args.choose_allele,
        'tempdir':
        args.temp_dir,
        'tempprefix':
        args.temp_prefix
    }
    # WINDOW START INTERATION
    verify_raxml(params)
    current_contig = ''
    current_position = 0
    window_data = None
    skip_contig = False
    topo_ids = {}
    topo_counts = {}
    for contig, pos, allelesets in mvf.iterentries(contigs=contig_ids,
                                                   subset=sample_indices,
                                                   quiet=args.quiet,
                                                   no_invariant=False,
                                                   no_ambig=False,
                                                   no_gap=False,
                                                   decode=True):
        if current_contig == contig:
            if skip_contig is True:
                continue
        if not same_window((current_contig, current_position),
                           (contig, pos), args.windowsize):
            skip_contig = False
            if window_data is not None:
                entry = window_data.maketree_raxml(params)
                if entry['status'] != 'ok':
                    if args.output_empty:
                        treefile.write_entry(entry)
                    if args.windowsize != -1:
                        skip_contig = True
                else:
                    topo = entry["topology"]
                    topo_counts[topo] = topo_counts.get(topo, 0) + 1
                    if topo not in topo_ids:
                        topo_ids[topo] = (topo_ids
                                          and max(topo_ids.values()) + 1 or 0)
                    entry["topoid"] = topo_ids[topo]
                    treefile.write_entry(entry)
                current_position = (current_position + args.windowsize if
                                    (contig == current_contig
                                     and args.windowsize > 0) else 0)
            current_contig = contig[:]
            window_data = None
            window_data = WindowData(
                window_params={
                    'contigname': (mvf.get_contig_labels(
                        ids=current_contig) if args.output_contig_labels
                                   is not None else current_contig[:]),
                    "windowstart": (
                        '-1' if args.windowsize == -1 else current_position +
                        0),
                    "windowsize":
                    args.windowsize,
                    "labels":
                    main_labels[:]
                })
        # ADD ALLELES
        if mvf.flavor == 'dna':
            if args.choose_allele != 'none':
                allelesets[0] = hapsplit(allelesets[0], args.choose_allele)
            window_data.append_alleles(allelesets[0], mindepth=args.min_depth)
    # LAST LOOP
    if window_data:
        entry = window_data.maketree_raxml(params)
        if entry['status'] != 'ok':
            if args.output_empty:
                treefile.write_entry(entry)
        else:
            topo = entry["topology"]
            topo_counts[topo] = topo_counts.get(topo, 0) + 1
            if topo not in topo_ids:
                topo_ids[topo] = (max(topo_ids.values()) +
                                  1 if topo_ids else 0)
            entry["topoid"] = topo_ids[topo]
            treefile.write_entry(entry)
        window_data = None
    # END WINDOW ITERATION
    topo_list = sorted([(v, k) for k, v in topo_counts.items()], reverse=True)
    for rank, [value, topo] in enumerate(topo_list):
        topofile.write_entry({'rank': rank, 'count': value, 'topology': topo})
    return ''
示例#13
0
def mvf2fasta(args):
    """Main method"""
    mvf = MultiVariantFile(args.mvf, 'read')
    if (mvf.flavor in ("dna", "rna") and args.output_data == "prot") or (
            mvf.flavor == "prot" and args.output_data in ("dna", "rna")):
        raise RuntimeError(
            "--output-data {} incompatiable with '{}' flavor mvf".format(
                args.output_data, mvf.flavor))
    regions, max_region_coord, regionlabel = parse_regions_arg(
        args.regions, mvf.metadata['contigs'])
    sample_labels = mvf.get_sample_labels()
    if args.sample_indices is not None:
        sample_indices = [int(x) for x in
                          args.sample_indices[0].split(",")]
    elif args.sample_labels is not None:
        sample_indices = mvf.get_sample_indices(
            labels=args.sample_labels[0].split(","))
    else:
        sample_indices = mvf.get_sample_indices()
    skipcontig = ''
    tmp_files = dict((fn, open("{}-{}.tmp".format(
        fn, randint(1000000, 9999999)), 'w+', args.buffer))
        for fn in sample_labels)
    labelwritten = dict.fromkeys(sample_labels, False)
    write_buffer = {}
    current_contig = None
    for contig, pos, allelesets in mvf.iterentries(
            contigs=[x for x in max_region_coord], decode=True):
        if current_contig is None:
            current_contig = contig[:]
        if contig == skipcontig:
            continue
        if (contig not in max_region_coord) or (
                max_region_coord[contig] is not None and
                pos > max_region_coord[contig]):
            skipcontig = contig[:]
            continue
        inregion = False
        for rcontig, rstart, rstop, _ in regions:
            if contig == rcontig:
                if rstart is None or pos >= rstart:
                    if rstop is None or pos <= rstop:
                        inregion = True
                        break
        if inregion is False:
            continue
        for col, label in zip(sample_indices, sample_labels):
            if not labelwritten[label]:
                if args.label_type == 'long':
                    xlabel = "{} region={}".format(label, regionlabel)
                elif args.label_type == 'short':
                    xlabel = "{}".format(label)
                tmp_files[label].write(">{}\n".format(xlabel))
                labelwritten[label] = True
            if mvf.flavor == 'dna':
                tmp_files[label].write(
                    "N" if allelesets[0][col] == 'X'
                    else allelesets[0][col])
            elif mvf.flavor in ('codon', 'prot') and (
                    args.output_data == 'prot'):
                tmp_files[label].write(allelesets[0][col])
            elif mvf.flavor == 'codon' and args.output_data == 'dna':
                codon = ["N" if allelesets[x][col] == 'X' else
                         allelesets[x][col] for x in (1, 2, 3)]
                if not args.gene_mode:
                    tmp_files[label].write(''.join(codon))
                else:
                    if contig != current_contig:
                        if mvf.metadata['contigs'][current_contig].get(
                            'strand', "+") == '-':
                            write_buffer[label] = write_buffer[label][::-1]
                        tmp_files[label].write(''.join(write_buffer[label]))
                    if label not in write_buffer:
                        write_buffer[label] = []
                    write_buffer[label].append(''.join(codon))
        if args.gene_mode and current_contig != contig:
            write_buffer = {}
            current_contig = contig[:]
    if write_buffer:
        for label in write_buffer:
            if mvf.metadata['contigs'][current_contig].get(
                'strand', "+") == '-':
                write_buffer[label] = write_buffer[label][::-1]
            tmp_files[label].write(''.join(write_buffer[label]))
        write_buffer = {}
    with open(args.out, 'w') as outfile:
        for filehandler in tmp_files.values():
            filehandler.seek(0, 0)
            buff = filehandler.read(args.buffer)
            while len(buff):
                outfile.write(buff)
                buff = filehandler.read(args.buffer)
            outfile.write("\n")
            filehandler.close()
            os.remove(os.path.join(args.temp_dir, filehandler.name))
    return ''
示例#14
0
def mvf2phy(args):
    """Main method"""
    mvf = MultiVariantFile(args.mvf, 'read')
    if (mvf.flavor in ("dna", "rna") and args.output_data == "prot") or (
            mvf.flavor == "prot" and args.output_data in ("dna", "rna")):
        raise RuntimeError(
            "--outdput-data {} incompatiable with '{}' flavor mvf".format(
                args.output_data, mvf.flavor))
    max_region_coord = dict.fromkeys(mvf.metadata['contigs'], None)
    if args.regions is not None:
        _, max_region_coord, _ = parse_regions_arg(
            args.regions, mvf.metadata['contigs'])
    sample_labels = mvf.get_sample_labels()
    if args.sample_indices is not None:
        sample_indices = [int(x) for x in
                          args.sample_indices[0].split(",")]
    elif args.sample_labels is not None:
        sample_indices = mvf.get_sample_indices(
            labels=args.sample_labels[0].split(","))
    else:
        sample_indices = mvf.get_sample_indices()
    skipcontig = ''
    tmp_files = dict((fn, open("{}-{}.tmp".format(
        fn, randint(1000000, 9999999)), 'w+', args.buffer))
        for fn in sample_labels)
    labelwritten = dict.fromkeys(sample_labels, False)
    curcontigname = None
    curcontigstart = 1
    curcontigend = 1
    if args.partition is True:
        partprefix = "PROT" if args.output_data == "prot" else "DNA"
        partitionfile = open("{}.part".format(args.out), 'w')
    for contig, _, allelesets in mvf.iterentries(
            contigs=(mvf.metadata['contigs'] if args.regions is None else
                     [x for x in max_region_coord]), decode=True):
        if contig == skipcontig:
            continue
        if contig not in max_region_coord:
            skipcontig = contig[:]
            continue
        if curcontigname is None:
            curcontigname = contig[:]
        elif contig != curcontigname:
            if args.partition is True:
                if curcontigend > curcontigstart:
                    partitionfile.write("{}, {} = {}-{}\n".format(
                        partprefix, mvf.get_contig_labels(
                            ids=curcontigname),
                        curcontigstart, curcontigend - 1))
            curcontigname = contig[:]
            # reset start as one position after end of last
            curcontigstart = curcontigend
            curcontigend = curcontigend + 1
        for col, label in zip(sample_indices, sample_labels):
            if not labelwritten[label]:
                if args.label_type == 'long':
                    tmp_files[label].write("{}{}".format(
                        label[:100], " "*(100 - len(label[:100]))))
                elif args.label_type == 'short':
                    tmp_files[label].write("{}{}".format(
                        label[:20], " "*(20 - len(label[:20]))))
                labelwritten[label] = True
            if mvf.flavor == 'dna':
                tmp_files[label].write(
                    allelesets[0][col] == 'X' and
                    'N' or allelesets[0][col])
                if label == sample_labels[0]:
                    curcontigend += 1
            elif ((mvf.flavor == 'codon' and args.output_data == 'prot') or (
                    mvf.flavor == 'prot')):
                tmp_files[label].write(allelesets[0][col])
                if label == sample_labels[0]:
                    curcontigend += 1
            elif mvf.flavor == 'codon':
                codon = ["N" if allelesets[x][col] == 'X' else
                         allelesets[x][col] for x in (1, 2, 3)]
                tmp_files[label].write(''.join(codon))
                if label == sample_labels[0]:
                    curcontigend += 3
    first_file = True
    totalseqlen = 0
    with open(args.out, 'w') as outfile:
        for filehandler in tmp_files.values():
            # read first file to establish sequence length for phylip header
            if first_file is True:
                filehandler.seek(0, 0)
                buff = filehandler.read(args.buffer)
                while buff != '':
                    if " " in buff:
                        totalseqlen += len(buff.strip().split(" ")[-1])
                    else:
                        totalseqlen += len(buff.strip())
                    buff = filehandler.read(args.buffer)
                outfile.write("{} {}\n".format(
                    len(sample_labels), totalseqlen))
                first_file = False
            filehandler.seek(0, 0)
            buff = filehandler.read(args.buffer)
            while buff != '':
                if first_file is True:
                    outfile.write("{} {}\n".format(
                        len(sample_labels), len(buff.split()[1])))
                    first_file = False
                outfile.write(buff)
                buff = filehandler.read(args.buffer)
            outfile.write("\n")
            filehandler.close()
            os.remove(os.path.join(args.temp_dir, filehandler.name))
    if args.partition is True:
        if curcontigend > curcontigstart:
            partitionfile.write("{}, {} = {}-{}\n".format(
                partprefix, mvf.get_contig_labels(ids=curcontigname),
                curcontigstart, curcontigend - 1))
        partitionfile.close()
    return ''
示例#15
0
def calc_pairwise_distances(args):
    """Count the pairwise nucleotide distance between
       combinations of samples in a window
    """
    mvf = MultiVariantFile(args.mvf, 'read')
    data = {}
    sample_labels = mvf.get_sample_labels()
    if args.sample_indices is not None:
        sample_indices = [int(x) for x in
                          args.sample_indices[0].split(",")]
    elif args.sample_labels is not None:
        sample_indices = mvf.get_sample_indices(
            labels=args.sample_labels[0].split(","))
    else:
        sample_indices = mvf.get_sample_indices()
    current_contig = None
    current_position = 0
    data_in_buffer = False
    sample_pairs = [tuple(x) for x in combinations(sample_indices, 2)]
    base_matches = dict([(x, {}) for x in sample_pairs])
    all_match = {}
    for contig, pos, allelesets in mvf:
        # Check Minimum Site Coverage
        if check_mincoverage(args.mincoverage, allelesets[0]) is False:
            continue
        # Establish first contig
        if current_contig is None:
            current_contig = contig[:]
            while pos > current_position + args.windowsize - 1:
                current_position += args.windowsize
        # Check if windows are specified.
        if not same_window((current_contig, current_position),
                           (contig, pos), args.windowsize):
            data[(current_contig, current_position)] = {
                'contig': current_contig, 'position': current_position}
            if mvf.flavor == 'dna':
                all_diff, all_total = pairwise_distance_nuc(all_match)
            elif mvf.flavor == 'prot':
                all_diff, all_total = pairwise_distance_prot(all_match)
            for samplepair in base_matches:
                if mvf.flavor == 'dna':
                    ndiff, ntotal = pairwise_distance_nuc(
                        base_matches[samplepair])
                elif mvf.flavor == 'prot':
                    ndiff, ntotal = pairwise_distance_prot(
                        base_matches[samplepair])
                taxa = "{};{}".format(sample_labels[samplepair[0]],
                                      sample_labels[samplepair[1]])
                data[(current_contig, current_position)].update({
                    '{};ndiff'.format(taxa): ndiff + all_diff,
                    '{};ntotal'.format(taxa): ntotal + all_total,
                    '{};dist'.format(taxa): zerodiv(ndiff + all_diff,
                                                    ntotal + all_total)})
            if contig != current_contig:
                current_contig = contig[:]
                current_position = 0
                while pos > current_position + args.windowsize - 1:
                    current_position += args.windowsize
            else:
                current_position += args.windowsize
            base_matches = dict([(x, {}) for x in sample_pairs])
            all_match = {}
            data_in_buffer = False
        alleles = allelesets[0]
        if len(alleles) == 1:
            all_match["{}{}".format(alleles, alleles)] = (
                all_match.get("{}{}".format(alleles, alleles),
                              0) + 1)
            data_in_buffer = True
            continue
        if alleles[1] == '+':
            if 'X' in alleles or '-' in alleles:
                continue
            samplepair = (0, int(alleles[3:]))
            if any(x not in sample_indices for x in samplepair):
                continue
            basepair = "{}{}".format(alleles[0], alleles[2])
            base_matches[samplepair][basepair] = (
                base_matches[samplepair].get(basepair, 0) + 1)
            data_in_buffer = True
            continue
        alleles = mvf.decode(alleles)
        valid_positions = [i for i, x in enumerate(alleles)
                           if x not in 'X-']
        for i, j in combinations(valid_positions, 2):
            samplepair = (i, j)
            if any(x not in sample_indices for x in samplepair):
                continue
            basepair = "{}{}".format(alleles[i], alleles[j])
            base_matches[samplepair][basepair] = (
                base_matches[samplepair].get(basepair, 0) + 1)
        data_in_buffer = True
    if data_in_buffer is True:
        # Check whether, windows, contigs, or total
        if args.windowsize == 0:
            current_contig = 'TOTAL'
            current_position = 0
        elif args.windowsize == -1:
            current_position = 0
        data[(current_contig, current_position)] = {
            'contig': current_contig, 'position': current_position}
        if mvf.flavor == 'dna':
            all_diff, all_total = pairwise_distance_nuc(all_match)
        elif mvf.flavor == 'prot':
            all_diff, all_total = pairwise_distance_prot(all_match)
        for samplepair in base_matches:
            if mvf.flavor == 'dna':
                ndiff, ntotal = pairwise_distance_nuc(base_matches[samplepair])
            elif mvf.flavor == 'prot':
                ndiff, ntotal = pairwise_distance_prot(
                    base_matches[samplepair])
            taxa = "{};{}".format(sample_labels[samplepair[0]],
                                  sample_labels[samplepair[1]])
            data[(current_contig, current_position)].update({
                '{};ndiff'.format(taxa): ndiff + all_diff,
                '{};ntotal'.format(taxa): ntotal + all_total,
                '{};dist'.format(taxa): zerodiv(ndiff + all_diff,
                                                ntotal + all_total)})
    headers = ['contig', 'position']
    for samplepair in sample_pairs:
        headers.extend(['{};{};{}'.format(
            sample_labels[samplepair[0]],
            sample_labels[samplepair[1]],
            x) for x in ('ndiff', 'ntotal', 'dist')])
    outfile = OutputFile(path=args.out, headers=headers)
    sorted_entries = sorted([(
        data[k]['contig'], data[k]['position'], k)
                             for k in data])
    for _, _, k in sorted_entries:
        outfile.write_entry(data[k])
    return ''