def compute_svd(mat: Matrix) -> (Matrix, Matrix, Matrix): if mat.num_cols() > mat.num_rows(): u, s, v = compute_svd(mat.transpose()) return v, s.transpose(), u elif mat.num_rows() > mat.num_cols(): # mat is m x n, m > n # q should be m x m, r should be m x n q, r = compute_qr_factorization(mat) # truncate r to be n x n, truncate q to be m x n r_truncated = MatrixView.with_size( r, (0, 0), (mat.num_cols(), mat.num_cols())).to_matrix() u, s, v = compute_svd(r_truncated) u_padded = Matrix.identity(mat.num_rows()) MatrixView.with_size(u_padded, (0, 0), (mat.num_cols(), mat.num_cols())).set( MatrixView.whole(u)) u = q.multiply(u_padded) s_padded = Matrix.zeroes(mat.num_rows(), mat.num_cols()) MatrixView.with_size(s_padded, (0, 0), (mat.num_cols(), mat.num_cols())).set( MatrixView.whole(s)) s = s_padded return u, s, v else: # matrix is square b, left, right = reduce_to_bidiagonal(mat) u, s, v = compute_svd_bidiagonal(b) for index, hh in list(enumerate(left))[::-1]: u = hh.multiply_left(u, index) v_transpose = v.transpose() for index, hh in list(enumerate(right))[::-1]: v_transpose = hh.multiply_right(v_transpose, index + 1) return u, s, v_transpose.transpose()
def compute_qr_factorization(mat: Matrix) -> (Matrix, Matrix): # Do not overwrite original matrix mat = mat.copy() householders = [] # store householder transformations iterations = min(mat.num_rows(), mat.num_cols()) for iteration in range(iterations): col = mat.get_col(iteration) # Zero out the entries below the diagonal hh = Householder(col[iteration:]) householders.append((iteration, hh)) mat = hh.multiply_left(mat, pad_top=iteration) # Accumulate the householder transformations q_mat = Matrix.identity(mat.num_rows()) for iteration, hh in householders[::-1]: q_mat = hh.multiply_left(q_mat, pad_top=iteration) return (q_mat, mat)
def test_identity_triangular(self): identity = Matrix.identity(3) utils.assert_upper_triangular(identity) utils.assert_lower_triangular(identity)
def test_householder_inverse(self): vec = [5, 4, 3, 2, 1] householder = Householder(vec) householder_mat = householder.to_matrix() product = householder_mat.multiply(householder_mat) utils.assert_matrix_equal(product, Matrix.identity(5))
def test_identity(self): identity = Matrix.identity(3) assert identity.all_cols() == [[1, 0, 0], [0, 1, 0], [0, 0, 1]]
def test_givens_inverse(self): givens = Givens(1, 1).to_matrix() product = givens.transpose().multiply(givens) utils.assert_matrix_equal(product, Matrix.identity(2))
def compute_svd_bidiagonal(mat: Matrix) -> (Matrix, Matrix, Matrix): dims = mat.num_cols() u = Matrix.identity(dims) v = Matrix.identity(dims) while True: # while not converged # find max off-diagonal max_off_diag = 0 diag_sum = 0 for i in range(dims - 1): max_off_diag = max(max_off_diag, abs(mat.get(i, i + 1))) for i in range(dims): diag_sum += abs(mat.get(i, i)) diag_sum /= dims if max_off_diag < diag_sum * 1e-6 and max_off_diag < 1e-8: break # introduce the bulge givens = Givens( mat.get(0, 0)**2 - mat.get(dims - 1, dims - 1)**2 - mat.get(dims - 2, dims - 1)**2, mat.get(0, 1) * mat.get(0, 0)).transpose() mat = givens.multiply_right(mat) v = givens.transpose().multiply_left(v) # chase the bulge for iteration in range(0, dims - 1): # zero subdiagonal givens_lower = Givens(mat.get(iteration, iteration), mat.get(iteration + 1, iteration)) mat = givens_lower.multiply_left(mat, pad_top=iteration) u = givens_lower.transpose().multiply_right(u, pad_top=iteration) # zero above superdiagonal if iteration != dims - 2: givens_upper = Givens(mat.get(iteration, iteration + 1), mat.get(iteration, iteration + 2)).transpose() mat = givens_upper.multiply_right(mat, pad_top=iteration + 1) v = givens_upper.transpose().multiply_left(v, pad_top=iteration + 1) v = v.transpose() # Ensure singular values are non-negative for i in range(dims): if mat.get(i, i) < 0: MatrixView.with_size(mat, (i, i), (1, 1)).scale(-1) MatrixView(u, (0, i), (u.num_rows() - 1, i)).scale(-1) # reorder columns sv = [(mat.get(i, i), i) for i in range(dims)] sv.sort() sv = sv[::-1] sorted_v_cols = [v.get_col(index) for value, index in sv] sorted_u_cols = [u.get_col(index) for value, index in sv] v = Matrix.from_cols(sorted_v_cols) u = Matrix.from_cols(sorted_u_cols) mat = Matrix.zeroes(dims, dims) for index, (value, _) in enumerate(sv): MatrixView.with_size(mat, (index, index), (1, 1)).set_element(0, 0, value) return u, mat, v