示例#1
0
def test_RegularizedInversion(par):
    """Solve regularized inversion in least squares sense
    """
    np.random.seed(10)
    G = np.random.normal(0, 10, (par['ny'], par['nx'])).astype('float32') + \
        par['imag']*np.random.normal(0, 10,
                                     (par['ny'], par['nx'])).astype('float32')
    Gop = MatrixMult(G, dtype=par['dtype'])
    Reg = MatrixMult(np.eye(par['nx']), dtype=par['dtype'])
    Weigth = Diagonal(np.ones(par['ny']), dtype=par['dtype'])
    x = np.ones(par['nx']) + par['imag']*np.ones(par['nx'])
    x0 = np.random.normal(0, 10, par['nx']) + \
         par['imag']*np.random.normal(0, 10, par['nx']) if par['x0'] else None
    y = Gop*x

    # regularized inversion with regularization
    xinv = RegularizedInversion(Gop, [Reg], y, epsRs=[1e-8], x0=x0,
                                returninfo=False,
                                **dict(damp=0, iter_lim=200, show=0))
    assert_array_almost_equal(x, xinv, decimal=3)
    # regularized inversion with weight
    xinv = RegularizedInversion(Gop, None, y, Weight=Weigth,
                                x0=x0,
                                returninfo=False,
                                **dict(damp=0, iter_lim=200, show=0))
    assert_array_almost_equal(x, xinv, decimal=3)
    # regularized inversion with regularization
    xinv = RegularizedInversion(Gop, [Reg], y, Weight=Weigth,
                                epsRs=[1e-8], x0=x0,
                                returninfo=False,
                                **dict(damp=0, iter_lim=200, show=0))
    assert_array_almost_equal(x, xinv, decimal=3)
示例#2
0
def test_WeightedInversion(par):
    """Compare results for normal equations and regularized inversion
    when used to solve weighted least square inversion
    """
    np.random.seed(10)
    G = np.random.normal(0, 10, (par['ny'], par['nx'])).astype('float32') + \
        par['imag'] * np.random.normal(0, 10, (par['ny'], par['nx'])).astype(
            'float32')
    Gop = MatrixMult(G, dtype=par['dtype'])
    w = np.arange(par['ny'])
    w1 = np.sqrt(w)
    Weigth = Diagonal(w, dtype=par['dtype'])
    Weigth1 = Diagonal(w1, dtype=par['dtype'])
    x = np.ones(par['nx']) + par['imag'] * np.ones(par['nx'])
    y = Gop * x

    xne = NormalEquationsInversion(Gop, None, y, Weight=Weigth,
                                   returninfo=False,
                                   **dict(maxiter=5, tol=1e-10))
    xreg = RegularizedInversion(Gop, None, y, Weight=Weigth1,
                                returninfo=False,
                                **dict(damp=0, iter_lim=5, show=0))
    print(xne)
    print(xreg)
    assert_array_almost_equal(xne, xreg, decimal=3)
def test_skinnyregularization(par):
    """Solve inversion with a skinny regularization (rows are smaller than
    the number of elements in the model vector)
    """
    np.random.seed(10)
    d = np.arange(par['nx'] - 1).astype(par['dtype']) + 1.
    Dop = Diagonal(d, dtype=par['dtype'])
    Regop = HStack([Identity(par['nx'] // 2), Identity(par['nx'] // 2)])

    x = np.arange(par['nx'] - 1)
    y = Dop * x

    xinv = NormalEquationsInversion(Dop, [
        Regop,
    ], y, epsRs=[
        1e-4,
    ])
    assert_array_almost_equal(x, xinv, decimal=2)

    xinv = RegularizedInversion(Dop, [
        Regop,
    ], y, epsRs=[
        1e-4,
    ])
    assert_array_almost_equal(x, xinv, decimal=2)
示例#4
0
def PrestackInversion(data,
                      theta,
                      wav,
                      m0=None,
                      linearization='akirich',
                      explicit=False,
                      simultaneous=False,
                      epsI=None,
                      epsR=None,
                      dottest=False,
                      returnres=False,
                      epsRL1=None,
                      kind='centered',
                      **kwargs_solver):
    r"""Pre-stack linearized seismic inversion.

    Invert pre-stack seismic operator to retrieve a set of elastic property
    profiles from band-limited seismic pre-stack data (i.e., angle gathers).
    Depending on the choice of input parameters, inversion can be
    trace-by-trace with explicit operator or global with either
    explicit or linear operator.

    Parameters
    ----------
    data : :obj:`np.ndarray`
        Band-limited seismic post-stack data of size
        :math:`[(n_{lins} \times) n_{t0} \times n_{\theta} (\times n_x \times n_y)]`
    theta : :obj:`np.ndarray`
        Incident angles in degrees
    wav : :obj:`np.ndarray`
        Wavelet in time domain (must had odd number of elements
        and centered to zero)
    m0 : :obj:`np.ndarray`, optional
        Background model of size :math:`[n_{t0} \times n_{m}
        (\times n_x \times n_y)]`
    linearization : :obj:`str` or :obj:`list`, optional
        choice of linearization, ``akirich``: Aki-Richards, ``fatti``: Fatti
        ``PS``: PS or a combination of them (required only when ``m0``
        is ``None``).
    explicit : :obj:`bool`, optional
        Create a chained linear operator (``False``, preferred for large data)
        or a ``MatrixMult`` linear operator with dense matrix
        (``True``, preferred for small data)
    simultaneous : :obj:`bool`, optional
        Simultaneously invert entire data (``True``) or invert
        trace-by-trace (``False``) when using ``explicit`` operator
        (note that the entire data is always inverted when working
        with linear operator)
    epsI : :obj:`float` or :obj:`list`, optional
        Damping factor(s) for Tikhonov regularization term. If a list of
        :math:`n_{m}` elements is provided, the regularization term will have
        different strenght for each elastic property
    epsR : :obj:`float`, optional
        Damping factor for additional Laplacian regularization term
    dottest : :obj:`bool`, optional
        Apply dot-test
    returnres : :obj:`bool`, optional
        Return residuals
    epsRL1 : :obj:`float`, optional
        Damping factor for additional blockiness regularization term
    kind : :obj:`str`, optional
        Derivative kind (``forward`` or ``centered``).
    **kwargs_solver
        Arbitrary keyword arguments for :py:func:`scipy.linalg.lstsq`
        solver (if ``explicit=True`` and  ``epsR=None``)
        or :py:func:`scipy.sparse.linalg.lsqr` solver (if ``explicit=False``
        and/or ``epsR`` is not ``None``))

    Returns
    -------
    minv : :obj:`np.ndarray`
        Inverted model of size :math:`[n_{t0} \times n_{m}
        (\times n_x \times n_y)]`
    datar : :obj:`np.ndarray`
        Residual data (i.e., data - background data) of
        size :math:`[n_{t0} \times n_{\theta} (\times n_x \times n_y)]`

    Notes
    -----
    The different choices of cost functions and solvers used in the
    seismic pre-stack inversion module follow the same convention of the
    seismic post-stack inversion module.

    Refer to :py:func:`pylops.avo.poststack.PoststackInversion` for
    more details.
    """
    ncp = get_array_module(data)

    # find out dimensions
    if m0 is None and linearization is None:
        raise NotImplementedError('either m0 or linearization '
                                  'must be provided')
    elif m0 is None:
        if isinstance(linearization, str):
            nm = _linearizations[linearization]
        else:
            nm = _linearizations[linearization[0]]
    else:
        nm = m0.shape[1]

    data_shape = data.shape
    data_ndim = data.ndim
    n_lins = 1
    multi = 0
    if not isinstance(linearization, str):
        n_lins = data_shape[0]
        data_shape = data_shape[1:]
        data_ndim -= 1
        multi = 1

    if data_ndim == 2:
        dims = 1
        nt0, ntheta = data_shape
        nspat = None
        nspatprod = nx = 1
    elif data_ndim == 3:
        dims = 2
        nt0, ntheta, nx = data_shape
        nspat = (nx, )
        nspatprod = nx
    else:
        dims = 3
        nt0, ntheta, nx, ny = data_shape
        nspat = (nx, ny)
        nspatprod = nx * ny
        data = data.reshape(nt0, ntheta, nspatprod)

    # check if background model and data have same shape
    if m0 is not None:
        if nt0 != m0.shape[0] or\
        (dims >= 2 and nx != m0.shape[2]) or\
        (dims == 3 and ny != m0.shape[3]):
            raise ValueError('data and m0 must have same time and space axes')

    # create operator
    if isinstance(linearization, str):
        # single operator
        PPop = PrestackLinearModelling(wav,
                                       theta,
                                       nt0=nt0,
                                       spatdims=nspat,
                                       linearization=linearization,
                                       explicit=explicit,
                                       kind=kind)
    else:
        # multiple operators
        if not isinstance(wav, (list, tuple)):
            wav = [
                wav,
            ] * n_lins
        PPop = [
            PrestackLinearModelling(w,
                                    theta,
                                    nt0=nt0,
                                    spatdims=nspat,
                                    linearization=lin,
                                    explicit=explicit)
            for w, lin in zip(wav, linearization)
        ]
        if explicit:
            PPop = MatrixMult(np.vstack([Op.A for Op in PPop]),
                              dims=nspat,
                              dtype=PPop[0].A.dtype)
        else:
            PPop = VStack(PPop)

    if dottest:
        Dottest(PPop,
                n_lins * nt0 * ntheta * nspatprod,
                nt0 * nm * nspatprod,
                raiseerror=True,
                verb=True,
                backend=get_module_name(ncp))

    # swap axes for explicit operator
    if explicit:
        data = data.swapaxes(0 + multi, 1 + multi)
        if m0 is not None:
            m0 = m0.swapaxes(0, 1)

    # invert model
    if epsR is None:
        # create and remove background data from original data
        datar = data.flatten() if m0 is None else \
            data.flatten() - PPop * m0.flatten()
        # inversion without spatial regularization
        if explicit:
            if epsI is None and not simultaneous:
                # solve unregularized equations indipendently trace-by-trace
                minv = \
                    get_lstsq(data)(PPop.A,
                                    datar.reshape(n_lins*nt0*ntheta, nspatprod).squeeze(),
                                    **kwargs_solver)[0]
            elif epsI is None and simultaneous:
                # solve unregularized equations simultaneously
                if ncp == np:
                    minv = lsqr(PPop, datar, **kwargs_solver)[0]
                else:
                    minv = cgls(PPop,
                                datar,
                                x0=ncp.zeros(int(PPop.shape[1]), PPop.dtype),
                                **kwargs_solver)[0]
            elif epsI is not None:
                # create regularized normal equations
                PP = ncp.dot(PPop.A.T, PPop.A) + \
                     epsI * ncp.eye(nt0*nm, dtype=PPop.A.dtype)
                datarn = np.dot(PPop.A.T,
                                datar.reshape(nt0 * ntheta, nspatprod))
                if not simultaneous:
                    # solve regularized normal eqs. trace-by-trace
                    minv = get_lstsq(data)(PP, datarn, **kwargs_solver)[0]
                else:
                    # solve regularized normal equations simultaneously
                    PPop_reg = MatrixMult(PP, dims=nspatprod)
                    if ncp == np:
                        minv = lsqr(PPop_reg, datarn.ravel(),
                                    **kwargs_solver)[0]
                    else:
                        minv = cgls(PPop_reg,
                                    datarn.ravel(),
                                    x0=ncp.zeros(int(PPop_reg.shape[1]),
                                                 PPop_reg.dtype),
                                    **kwargs_solver)[0]
            #else:
            #    # create regularized normal eqs. and solve them simultaneously
            #    PP = np.dot(PPop.A.T, PPop.A) + epsI * np.eye(nt0*nm)
            #    datarn = PPop.A.T * datar.reshape(nt0*ntheta, nspatprod)
            #    PPop_reg = MatrixMult(PP, dims=ntheta*nspatprod)
            #    minv = lstsq(PPop_reg, datarn.flatten(), **kwargs_solver)[0]
        else:
            # solve unregularized normal equations simultaneously with lop
            if ncp == np:
                minv = lsqr(PPop, datar, **kwargs_solver)[0]
            else:
                minv = cgls(PPop,
                            datar,
                            x0=ncp.zeros(int(PPop.shape[1]), PPop.dtype),
                            **kwargs_solver)[0]
    else:
        # Create Thicknov regularization
        if epsI is not None:
            if isinstance(epsI, (list, tuple)):
                if len(epsI) != nm:
                    raise ValueError('epsI must be a scalar or a list of'
                                     'size nm')
                RegI = Diagonal(np.array(epsI),
                                dims=(nt0, nm, nspatprod),
                                dir=1)
            else:
                RegI = epsI * Identity(nt0 * nm * nspatprod)

        if epsRL1 is None:
            # L2 inversion with spatial regularization
            if dims == 1:
                Regop = SecondDerivative(nt0 * nm,
                                         dtype=PPop.dtype,
                                         dims=(nt0, nm))
            elif dims == 2:
                Regop = Laplacian((nt0, nm, nx), dirs=(0, 2), dtype=PPop.dtype)
            else:
                Regop = Laplacian((nt0, nm, nx, ny),
                                  dirs=(2, 3),
                                  dtype=PPop.dtype)
            if epsI is None:
                Regop = (Regop, )
                epsR = (epsR, )
            else:
                Regop = (Regop, RegI)
                epsR = (epsR, 1)
            minv = \
                RegularizedInversion(PPop, Regop, data.ravel(),
                                     x0=m0.flatten() if m0 is not None
                                     else None, epsRs=epsR,
                                     returninfo=False, **kwargs_solver)
        else:
            # Blockiness-promoting inversion with spatial regularization
            if dims == 1:
                RegL1op = FirstDerivative(nt0 * nm, dtype=PPop.dtype)
                RegL2op = None
            elif dims == 2:
                RegL1op = FirstDerivative(nt0 * nx * nm,
                                          dims=(nt0, nm, nx),
                                          dir=0,
                                          dtype=PPop.dtype)
                RegL2op = SecondDerivative(nt0 * nx * nm,
                                           dims=(nt0, nm, nx),
                                           dir=2,
                                           dtype=PPop.dtype)
            else:
                RegL1op = FirstDerivative(nt0 * nx * ny * nm,
                                          dims=(nt0, nm, nx, ny),
                                          dir=0,
                                          dtype=PPop.dtype)
                RegL2op = Laplacian((nt0, nm, nx, ny),
                                    dirs=(2, 3),
                                    dtype=PPop.dtype)
            if dims == 1:
                if epsI is not None:
                    RegL2op = (RegI, )
                    epsR = (1, )
            else:
                if epsI is None:
                    RegL2op = (RegL2op, )
                    epsR = (epsR, )
                else:
                    RegL2op = (RegL2op, RegI)
                    epsR = (epsR, 1)
            epsRL1 = (epsRL1, )
            if 'mu' in kwargs_solver.keys():
                mu = kwargs_solver['mu']
                kwargs_solver.pop('mu')
            else:
                mu = 1.
            if 'niter_outer' in kwargs_solver.keys():
                niter_outer = kwargs_solver['niter_outer']
                kwargs_solver.pop('niter_outer')
            else:
                niter_outer = 3
            if 'niter_inner' in kwargs_solver.keys():
                niter_inner = kwargs_solver['niter_inner']
                kwargs_solver.pop('niter_inner')
            else:
                niter_inner = 5
            minv = SplitBregman(PPop, (RegL1op, ),
                                data.ravel(),
                                RegsL2=RegL2op,
                                epsRL1s=epsRL1,
                                epsRL2s=epsR,
                                mu=mu,
                                niter_outer=niter_outer,
                                niter_inner=niter_inner,
                                x0=None if m0 is None else m0.flatten(),
                                **kwargs_solver)[0]

    # compute residual
    if returnres:
        if epsR is None:
            datar -= PPop * minv.ravel()
        else:
            datar = data.ravel() - PPop * minv.ravel()

    # re-swap axes for explicit operator
    if explicit:
        if m0 is not None:
            m0 = m0.swapaxes(0, 1)

    # reshape inverted model and residual data
    if dims == 1:
        if explicit:
            minv = minv.reshape(nm, nt0).swapaxes(0, 1)
            if returnres:
                datar = datar.reshape(n_lins, ntheta, nt0).squeeze().swapaxes(
                    0 + multi, 1 + multi)
        else:
            minv = minv.reshape(nt0, nm)
            if returnres:
                datar = datar.reshape(n_lins, nt0, ntheta).squeeze()
    elif dims == 2:
        if explicit:
            minv = minv.reshape(nm, nt0, nx).swapaxes(0, 1)
            if returnres:
                datar = datar.reshape(n_lins, ntheta, nt0,
                                      nx).squeeze().swapaxes(
                                          0 + multi, 1 + multi)
        else:
            minv = minv.reshape(nt0, nm, nx)
            if returnres:
                datar = datar.reshape(n_lins, nt0, ntheta, nx).squeeze()
    else:
        if explicit:
            minv = minv.reshape(nm, nt0, nx, ny).swapaxes(0, 1)
            if returnres:
                datar = datar.reshape(n_lins, ntheta, nt0, nx,
                                      ny).squeeze().swapaxes(
                                          0 + multi, 1 + multi)
        else:
            minv = minv.reshape(nt0, nm, nx, ny)
            if returnres:
                datar = datar.reshape(n_lins, nt0, ntheta, nx, ny).squeeze()

    if m0 is not None and epsR is None:
        minv = minv + m0

    if returnres:
        return minv, datar
    else:
        return minv
示例#5
0
def SplitBregman(Op,
                 RegsL1,
                 data,
                 niter_outer=3,
                 niter_inner=5,
                 RegsL2=None,
                 dataregsL2=None,
                 mu=1.,
                 epsRL1s=None,
                 epsRL2s=None,
                 tol=1e-10,
                 tau=1.,
                 x0=None,
                 restart=False,
                 show=False,
                 **kwargs_lsqr):
    r"""Split Bregman for mixed L2-L1 norms.

    Solve an unconstrained system of equations with mixed L2-L1 regularization
    terms given the operator ``Op``, a list of L1 regularization terms
    ``RegsL1``, and an optional list of L2 regularization terms ``RegsL2``.

    Parameters
    ----------
    Op : :obj:`pylops.LinearOperator`
        Operator to invert
    RegsL1 : :obj:`list`
        L1 regularization operators
    data : :obj:`numpy.ndarray`
        Data
    niter_outer : :obj:`int`
        Number of iterations of outer loop
    niter_inner : :obj:`int`
        Number of iterations of inner loop
    RegsL2 : :obj:`list`
        Additional L2 regularization operators
        (if ``None``, L2 regularization is not added to the problem)
    dataregsL2 : :obj:`list`, optional
        L2 Regularization data (must have the same number of elements
        of ``RegsL2`` or equal to ``None`` to use a zero data for every
        regularization operator in ``RegsL2``)
    mu : :obj:`float`, optional
         Data term damping
    epsRL1s : :obj:`list`
         L1 Regularization dampings (must have the same number of elements
         as ``RegsL1``)
    epsRL2s : :obj:`list`
         L2 Regularization dampings (must have the same number of elements
         as ``RegsL2``)
    tol : :obj:`float`, optional
        Tolerance. Stop outer iterations if difference between inverted model
        at subsequent iterations is smaller than ``tol``
    tau : :obj:`float`, optional
        Scaling factor in the Bregman update (must be close to 1)
    x0 : :obj:`numpy.ndarray`, optional
        Initial guess
    restart : :obj:`bool`, optional
        The unconstrained inverse problem in inner loop is initialized with
        the initial guess (``True``) or with the last estimate (``False``)
    show : :obj:`bool`, optional
        Display iterations log
    **kwargs_lsqr
        Arbitrary keyword arguments for
        :py:func:`scipy.sparse.linalg.lsqr` solver

    Returns
    -------
    xinv : :obj:`numpy.ndarray`
        Inverted model
    itn_out : :obj:`int`
        Iteration number of outer loop upon termination

    Notes
    -----
    Solve the following system of unconstrained, regularized equations
    given the operator :math:`\mathbf{Op}` and a set of mixed norm (L2 and L1)
    regularization terms :math:`\mathbf{R_{L2,i}}` and
    :math:`\mathbf{R_{L1,i}}`, respectively:

    .. math::
        J = \mu/2 ||\textbf{d} - \textbf{Op} \textbf{x} |||_2 +
        \sum_i \epsilon_{{R}_{L2,i}} ||\mathbf{d_{{R}_{L2,i}}} -
        \mathbf{R_{L2,i}} \textbf{x} |||_2 +
        \sum_i || \mathbf{R_{L1,i}} \textbf{x} |||_1

    where :math:`\mu` and :math:`\epsilon_{{R}_{L2,i}}` are the damping factors
    used to weight the different terms of the cost function.

    The generalized Split Bergman algorithm is used to solve such cost
    function: the algorithm is composed of a sequence of unconstrained
    inverse problems and Bregman updates. Note that the L1 terms are not
    weighted in the  original cost function but are first converted into
    constraints and then re-inserted in the cost function with Lagrange
    multipliers :math:`\epsilon_{{R}_{L1,i}}`, which effectively act as
    damping factors for those terms. See [1]_ for detailed derivation.

    The :py:func:`scipy.sparse.linalg.lsqr` solver and a fast shrinkage
    algorithm are used within the inner loop to solve the unconstrained
    inverse problem, and the same procedure is repeated ``niter_outer`` times
    until convergence.

    .. [1] Goldstein T. and Osher S., "The Split Bregman Method for
       L1-Regularized Problems", SIAM J. on Scientific Computing, vol. 2(2),
       pp. 323-343. 2008.

    """
    if show:
        tstart = time.time()
        print('Split-Bregman optimization\n'
              '---------------------------------------------------------\n'
              'The Operator Op has %d rows and %d cols\n'
              'niter_outer = %3d     niter_inner = %3d   tol = %2.2e\n'
              'mu = %2.2e         epsL1 = %s\t  epsL2 = %s     ' %
              (Op.shape[0], Op.shape[1], niter_outer, niter_inner, tol, mu,
               str(epsRL1s), str(epsRL2s)))
        print('---------------------------------------------------------\n')
        head1 = '   Itn          x[0]           r2norm          r12norm'
        print(head1)

    # L1 regularizations
    nregsL1 = len(RegsL1)
    b = [np.zeros(RegL1.shape[0]) for RegL1 in RegsL1]
    d = b.copy()

    # L2 regularizations
    nregsL2 = 0 if RegsL2 is None else len(RegsL2)
    if nregsL2 > 0:
        Regs = RegsL2 + RegsL1
        if dataregsL2 is None:
            dataregsL2 = [np.zeros(Op.shape[1])] * nregsL2
    else:
        Regs = RegsL1
        dataregsL2 = []

    # Rescale dampings
    epsRs = [np.sqrt(epsRL2s[ireg] / 2) / np.sqrt(mu / 2) for ireg in
             range(nregsL2)] + \
            [np.sqrt(epsRL1s[ireg] / 2) / np.sqrt(mu / 2) for ireg in
             range(nregsL1)]
    xinv = np.zeros_like(np.zeros(Op.shape[1])) if x0 is None else x0
    xold = np.inf * np.ones_like(np.zeros(Op.shape[1]))

    itn_out = 0
    while np.linalg.norm(xinv - xold) > tol and itn_out < niter_outer:
        xold = xinv
        for _ in range(niter_inner):
            # Regularized problem
            dataregs = \
                dataregsL2 + [d[ireg] - b[ireg] for ireg in range(nregsL1)]
            xinv = RegularizedInversion(Op,
                                        Regs,
                                        data,
                                        dataregs=dataregs,
                                        epsRs=epsRs,
                                        x0=x0 if restart else xinv,
                                        **kwargs_lsqr)
            # Shrinkage
            d = [
                _shrinkage(RegsL1[ireg] * xinv + b[ireg], epsRL1s[ireg])
                for ireg in range(nregsL1)
            ]
        # Bregman update
        b = [
            b[ireg] + tau * (RegsL1[ireg] * xinv - d[ireg])
            for ireg in range(nregsL1)
        ]
        itn_out += 1

        if show:
            costdata = mu / 2. * np.linalg.norm(data - Op.matvec(xinv))**2
            costregL2 = 0 if RegsL2 is None else \
                [epsRL2 * np.linalg.norm(dataregL2 - RegL2.matvec(xinv)) ** 2
                 for epsRL2, RegL2, dataregL2 in zip(epsRL2s, RegsL2, dataregsL2)]
            costregL1 = [
                np.linalg.norm(RegL1.matvec(xinv), ord=1)
                for epsRL1, RegL1 in zip(epsRL1s, RegsL1)
            ]
            cost = costdata + np.sum(np.array(costregL2)) + \
                   np.sum(np.array(costregL1))
            msg = '%6g  %12.5e       %10.3e        %9.3e' % \
                  (np.abs(itn_out), xinv[0], costdata, cost)
            print(msg)

    if show:
        print('\nIterations = %d        Total time (s) = %.2f' %
              (itn_out, time.time() - tstart))
        print('---------------------------------------------------------\n')
    return xinv, itn_out
def SeismicInterpolation(data,
                         nrec,
                         iava,
                         iava1=None,
                         kind='fk',
                         nffts=None,
                         sampling=None,
                         spataxis=None,
                         spat1axis=None,
                         taxis=None,
                         paxis=None,
                         p1axis=None,
                         centeredh=True,
                         nwins=None,
                         nwin=None,
                         nover=None,
                         design=False,
                         engine='numba',
                         dottest=False,
                         **kwargs_solver):
    r"""Seismic interpolation (or regularization).

    Interpolate seismic data from irregular to regular spatial grid.
    Depending on the size of the input ``data``, interpolation is either
    2- or 3-dimensional. In case of 3-dimensional interpolation,
    data can be irregularly sampled in either one or both spatial directions.

    Parameters
    ----------
    data : :obj:`np.ndarray`
        Irregularly sampled seismic data of size
        :math:`[n_{r_y} (\times n_{r_x} \times n_t)]`
    nrec : :obj:`int` or :obj:`tuple`
        Number of elements in the regularly sampled (reconstructed) spatial
        array, :math:`n_{R_y}` for 2-dimensional data and
        :math:`(n_{R_y}, n_{R_x})` for 3-dimensional data
    iava : :obj:`list` or :obj:`numpy.ndarray`
        Integer (or floating) indices of locations of available samples in
        first dimension of regularly sampled spatial grid of interpolated
        signal. The :class:`pylops.basicoperators.Restriction` operator is
        used in case of integer indices, while the
        :class:`pylops.signalprocessing.Iterp` operator is used in
        case of floating indices.
    iava1 : :obj:`list` or :obj:`numpy.ndarray`, optional
        Integer (or floating) indices of locations of available samples in
        second dimension of regularly sampled spatial grid of interpolated
        signal. Can be used only in case of 3-dimensional data.
    kind : :obj:`str`, optional
        Type of inversion: ``fk`` (default), ``spatial``, ``radon-linear``,
        ``chirpradon-linear``, ``radon-parabolic`` or , ``radon-hyperbolic``
        and ``sliding``
    nffts : :obj:`int` or :obj:`tuple`, optional
        nffts : :obj:`tuple`, optional
        Number of samples in Fourier Transform for each direction.
        Required if ``kind='fk'``
    sampling : :obj:`tuple`, optional
        Sampling steps ``dy`` (, ``dx``) and ``dt``. Required if ``kind='fk'``
        or ``kind='radon-linear'``
    spataxis : :obj:`np.ndarray`, optional
        First spatial axis. Required for ``kind='radon-linear'``,
        ``kind='chirpradon-linear'``, ``kind='radon-parabolic'``,
        ``kind='radon-hyperbolic'``, can also be provided instead of
        ``sampling`` for ``kind='fk'``
    spat1axis : :obj:`np.ndarray`, optional
        Second spatial axis. Required for ``kind='radon-linear'``,
        ``kind='chirpradon-linear'``, ``kind='radon-parabolic'``,
        ``kind='radon-hyperbolic'``, can also be provided instead of
        ``sampling`` for ``kind='fk'``
    taxis : :obj:`np.ndarray`, optional
        Time axis. Required for ``kind='radon-linear'``,
        ``kind='chirpradon-linear'``, ``kind='radon-parabolic'``,
        ``kind='radon-hyperbolic'``, can also be provided instead of
        ``sampling`` for ``kind='fk'``
    paxis : :obj:`np.ndarray`, optional
        First Radon axis. Required for ``kind='radon-linear'``,
        ``kind='chirpradon-linear'``, ``kind='radon-parabolic'``,
        ``kind='radon-hyperbolic'`` and ``kind='sliding'``
    p1axis : :obj:`np.ndarray`, optional
        Second Radon axis. Required for ``kind='radon-linear'``,
        ``kind='chirpradon-linear'``, ``kind='radon-parabolic'``,
        ``kind='radon-hyperbolic'`` and ``kind='sliding'``
    centeredh : :obj:`bool`, optional
        Assume centered spatial axis (``True``) or not (``False``).
        Required for ``kind='radon-linear'``, ``kind='radon-parabolic'``
        and ``kind='radon-hyperbolic'``
    nwins : :obj:`int` or :obj:`tuple`, optional
        Number of windows. Required for ``kind='sliding'``
    nwin : :obj:`int` or :obj:`tuple`, optional
        Number of samples of window. Required for ``kind='sliding'``
    nover : :obj:`int` or :obj:`tuple`, optional
        Number of samples of overlapping part of window. Required for
        ``kind='sliding'``
    design : :obj:`bool`, optional
        Print number of sliding window (``True``) or not (``False``) when
        using ``kind='sliding'``
    engine : :obj:`str`, optional
        Engine used for Radon computations (``numpy/numba``
        for ``Radon2D`` and ``Radon3D`` or ``numpy/fftw``
        for ``ChirpRadon2D`` and ``ChirpRadon3D`` or )
    dottest : :obj:`bool`, optional
        Apply dot-test
    **kwargs_solver
        Arbitrary keyword arguments for
        :py:func:`pylops.optimization.leastsquares.RegularizedInversion` solver
        if ``kind='spatial'`` or
        :py:func:`pylops.optimization.sparsity.FISTA` solver otherwise

    Returns
    -------
    recdata : :obj:`np.ndarray`
        Reconstructed data of size :math:`[n_{R_y} (\times n_{R_x} \times n_t)]`
    recprec : :obj:`np.ndarray`
        Reconstructed data in the sparse or preconditioned domain in case of
        ``kind='fk'``, ``kind='radon-linear'``, ``kind='radon-parabolic'``,
        ``kind='radon-hyperbolic'`` and ``kind='sliding'``
    cost : :obj:`np.ndarray`
        Cost function norm

    Raises
    ------
    KeyError
        If ``kind`` is neither ``spatial``, ``fl``, ``radon-linear``,
        ``radon-parabolic``, ``radon-hyperbolic`` nor ``sliding``

    Notes
    -----
    The problem of seismic data interpolation (or regularization) can be
    formally written as

    .. math::
        \mathbf{y} = \mathbf{R} \mathbf{x}

    where a restriction or interpolation operator is applied along the spatial
    direction(s). Here :math:`\mathbf{y} = [\mathbf{y}_{R1}^T, \mathbf{y}_{R2}^T,...,
    \mathbf{y}_{RN^T}]^T` where each vector :math:`\mathbf{y}_{Ri}`
    contains all time samples recorded in the seismic data at the specific
    receiver :math:`R_i`. Similarly, :math:`\mathbf{x} = [\mathbf{x}_{r1}^T,
    \mathbf{x}_{r2}^T,..., \mathbf{x}_{rM}^T]`, contains all traces at the
    regularly and finely sampled receiver locations :math:`r_i`.

    Several alternative approaches can be taken to solve such a problem. They
    mostly differ in the choice of the regularization (or preconditining) used
    to mitigate the ill-posedness of the problem:

        * ``spatial``: least-squares inversion in the original time-space domain
          with an additional spatial smoothing regularization term,
          corresponding to the cost function
          :math:`J = ||\mathbf{y} - \mathbf{R} \mathbf{x}||_2 +
          \epsilon_\nabla \nabla ||\mathbf{x}||_2` where :math:`\nabla` is
          a second order space derivative implemented via
          :class:`pylops.basicoperators.SecondDerivative` in 2-dimensional case
          and :class:`pylops.basicoperators.Laplacian` in 3-dimensional case
        * ``fk``: L1 inversion in frequency-wavenumber preconditioned domain
          corresponding to the cost function
          :math:`J = ||\mathbf{y} - \mathbf{R} \mathbf{F} \mathbf{x}||_2` where
          :math:`\mathbf{F}` is frequency-wavenumber transform implemented via
          :class:`pylops.signalprocessing.FFT2D` in 2-dimensional case
          and :class:`pylops.signalprocessing.FFTND` in 3-dimensional case
        * ``radon-linear``: L1 inversion in linear Radon preconditioned domain
          using the same cost function as ``fk`` but with :math:`\mathbf{F}`
          being a Radon transform implemented via
          :class:`pylops.signalprocessing.Radon2D` in 2-dimensional case
          and :class:`pylops.signalprocessing.Radon3D` in 3-dimensional case
        * ``radon-parabolic``: L1 inversion in parabolic Radon
          preconditioned domain
        * ``radon-hyperbolic``: L1 inversion in hyperbolic Radon
          preconditioned domain
        * ``sliding``: L1 inversion in sliding-linear Radon
          preconditioned domain using the same cost function as ``fk``
          but with :math:`\mathbf{F}` being a sliding Radon transform
          implemented via :class:`pylops.signalprocessing.Sliding2D` in
          2-dimensional case and :class:`pylops.signalprocessing.Sliding3D`
          in 3-dimensional case

    """
    ncp = get_array_module(data)

    dtype = data.dtype
    ndims = data.ndim
    if ndims == 1 or ndims > 3:
        raise ValueError('data must have 2 or 3 dimensions')
    if ndims == 2:
        dimsd = data.shape
        dims = (nrec, dimsd[1])
    else:
        dimsd = data.shape
        dims = (nrec[0], nrec[1], dimsd[2])

    # sampling
    if taxis is not None:
        dt = taxis[1] - taxis[0]
    if spataxis is not None:
        dspat = np.abs(spataxis[1] - spataxis[0])
    if spat1axis is not None:
        dspat1 = np.abs(spat1axis[1] - spat1axis[0])

    # create restriction/interpolation operator
    if iava.dtype == float:
        Rop = Interp(np.prod(dims),
                     iava,
                     dims=dims,
                     dir=0,
                     kind='linear',
                     dtype=dtype)
        if ndims == 3 and iava1 is not None:
            dims1 = (len(iava), nrec[1], dimsd[2])
            Rop1 = Interp(np.prod(dims1),
                          iava1,
                          dims=dims1,
                          dir=1,
                          kind='linear',
                          dtype=dtype)
            Rop = Rop1 * Rop
    else:
        Rop = Restriction(np.prod(dims), iava, dims=dims, dir=0, dtype=dtype)
        if ndims == 3 and iava1 is not None:
            dims1 = (len(iava), nrec[1], dimsd[2])
            Rop1 = Restriction(np.prod(dims1),
                               iava1,
                               dims=dims1,
                               dir=1,
                               dtype=dtype)
            Rop = Rop1 * Rop

    # create other operators for inversion
    if kind == 'spatial':
        prec = False
        dotcflag = 0
        if ndims == 3 and iava1 is not None:
            Regop = Laplacian(dims=dims, dirs=(0, 1), dtype=dtype)
        else:
            Regop = SecondDerivative(np.prod(dims),
                                     dims=(dims),
                                     dir=0,
                                     dtype=dtype)
        SIop = Rop
    elif kind == 'fk':
        prec = True
        dimsp = nffts
        dotcflag = 1
        if ndims == 3:
            if sampling is None:
                if spataxis is None or spat1axis is None or taxis is None:
                    raise ValueError('Provide either sampling or spataxis, '
                                     'spat1axis and taxis for kind=%s' % kind)
                else:
                    sampling = (np.abs(spataxis[1] - spataxis[1]),
                                np.abs(spat1axis[1] - spat1axis[1]),
                                np.abs(taxis[1] - taxis[1]))
            Pop = FFTND(dims=dims, nffts=nffts, sampling=sampling)
            Pop = Pop.H
        else:
            if sampling is None:
                if spataxis is None or taxis is None:
                    raise ValueError('Provide either sampling or spataxis, '
                                     'and taxis for kind=%s' % kind)
                else:
                    sampling = (np.abs(spataxis[1] - spataxis[1]),
                                np.abs(taxis[1] - taxis[1]))
            Pop = FFT2D(dims=dims, nffts=nffts, sampling=sampling)
            Pop = Pop.H
        SIop = Rop * Pop
    elif 'chirpradon' in kind:
        prec = True
        dotcflag = 0
        if ndims == 3:
            Pop = ChirpRadon3D(
                taxis, spataxis, spat1axis,
                (np.max(paxis) * dspat / dt, np.max(p1axis) * dspat1 / dt)).H
            dimsp = (spataxis.size, spat1axis.size, taxis.size)
        else:
            Pop = ChirpRadon2D(taxis, spataxis, np.max(paxis) * dspat / dt).H
            dimsp = (spataxis.size, taxis.size)
        SIop = Rop * Pop
    elif 'radon' in kind:
        prec = True
        dotcflag = 0
        kindradon = kind.split('-')[-1]
        if ndims == 3:
            Pop = Radon3D(taxis,
                          spataxis,
                          spat1axis,
                          paxis,
                          p1axis,
                          centeredh=centeredh,
                          kind=kindradon,
                          engine=engine)
            dimsp = (paxis.size, p1axis.size, taxis.size)

        else:
            Pop = Radon2D(taxis,
                          spataxis,
                          paxis,
                          centeredh=centeredh,
                          kind=kindradon,
                          engine=engine)
            dimsp = (paxis.size, taxis.size)
        SIop = Rop * Pop
    elif kind == 'sliding':
        prec = True
        dotcflag = 0
        if ndims == 3:
            nspat, nspat1 = spataxis.size, spat1axis.size
            spataxis_local = np.linspace(-dspat * nwin[0] // 2,
                                         dspat * nwin[0] // 2, nwin[0])
            spat1axis_local = np.linspace(-dspat1 * nwin[1] // 2,
                                          dspat1 * nwin[1] // 2, nwin[1])
            dimsslid = (nspat, nspat1, taxis.size)
            if ncp == np:
                npaxis, np1axis = paxis.size, p1axis.size
                Op = Radon3D(taxis,
                             spataxis_local,
                             spat1axis_local,
                             paxis,
                             p1axis,
                             centeredh=True,
                             kind='linear',
                             engine=engine)
            else:
                npaxis, np1axis = nwin[0], nwin[1]
                Op = ChirpRadon3D(taxis, spataxis_local, spat1axis_local,
                                  (np.max(paxis) * dspat / dt,
                                   np.max(p1axis) * dspat1 / dt)).H
            dimsp = (nwins[0] * npaxis, nwins[1] * np1axis, dimsslid[2])
            Pop = Sliding3D(Op,
                            dimsp,
                            dimsslid,
                            nwin,
                            nover, (npaxis, np1axis),
                            tapertype='cosine')
            # to be able to reshape correctly the preconditioned model
            dimsp = (nwins[0], nwins[1], npaxis, np1axis, dimsslid[2])
        else:
            nspat = spataxis.size
            spataxis_local = np.linspace(-dspat * nwin // 2, dspat * nwin // 2,
                                         nwin)
            dimsslid = (nspat, taxis.size)
            if ncp == np:
                npaxis = paxis.size
                Op = Radon2D(taxis,
                             spataxis_local,
                             paxis,
                             centeredh=True,
                             kind='linear',
                             engine=engine)
            else:
                npaxis = nwin
                Op = ChirpRadon2D(taxis, spataxis_local,
                                  np.max(paxis) * dspat / dt).H
            dimsp = (nwins * npaxis, dimsslid[1])
            Pop = Sliding2D(Op,
                            dimsp,
                            dimsslid,
                            nwin,
                            nover,
                            tapertype='cosine',
                            design=design)
        SIop = Rop * Pop
    else:
        raise KeyError('kind must be spatial, fk, radon-linear, '
                       'radon-parabolic, radon-hyperbolic or sliding')

    # dot-test
    if dottest:
        Dottest(SIop,
                np.prod(dimsd),
                np.prod(dimsp) if prec else np.prod(dims),
                complexflag=dotcflag,
                raiseerror=True,
                verb=True)

    # inversion
    if kind == 'spatial':
        recdata = \
            RegularizedInversion(SIop, [Regop], data.flatten(),
                                 **kwargs_solver)
        if isinstance(recdata, tuple):
            recdata = recdata[0]
        recdata = recdata.reshape(dims)
        recprec = None
        cost = None
    else:
        recprec = FISTA(SIop, data.flatten(), **kwargs_solver)
        if len(recprec) == 3:
            cost = recprec[2]
        else:
            cost = None
        recprec = recprec[0]
        recdata = np.real(Pop * recprec)

        recprec = recprec.reshape(dimsp)
        recdata = recdata.reshape(dims)

    return recdata, recprec, cost
示例#7
0
def PoststackInversion(data,
                       wav,
                       m0=None,
                       explicit=False,
                       simultaneous=False,
                       epsI=None,
                       epsR=None,
                       dottest=False,
                       **kwargs_solver):
    r"""Post-stack linearized seismic inversion.

    Invert post-stack seismic operator to retrieve an acoustic
    impedance profile from band-limited seismic post-stack data.
    Depending on the choice of input parameters, inversion can be
    trace-by-trace with explicit operator or global with either
    explicit or linear operator.

    Parameters
    ----------
    data : :obj:`np.ndarray`
        Band-limited seismic post-stack data of size :math:`[n_{t0} \times n_x]`
    wav : :obj:`np.ndarray`
        Wavelet in time domain (must had odd number of elements and centered to zero)
    m0 : :obj:`np.ndarray`, optional
        Background model of size :math:`[n_{t0} \times n_x]`
    explicit : :obj:`bool`, optional
        Create a chained linear operator (``False``, preffered for large data)
        or a ``MatrixMult`` linear operator with dense matrix
        (``True``, preffered for small data)
    simultaneous : :obj:`bool`, optional
        Simultaneously invert entire data (``True``) or invert
        trace-by-trace (``False``) when using ``explicit`` operator
        (note that the entire data is always inverted when working with linear operator)
    epsI : :obj:`float`, optional
        Damping factor for Tikhonov regularization term
    epsR : :obj:`float`, optional
        Damping factor for additional Laplacian regularization term
    dottest : :obj:`bool`, optional
        Apply dot-test
    **kwargs_solver
        Arbitrary keyword arguments for :py:func:`scipy.linalg.lstsq`
        solver (if ``explicit=True`` and  ``epsR=None``)
        or :py:func:`scipy.sparse.linalg.lsqr` solver (if ``explicit=False``
        and/or ``epsR`` is not ``None``))

    Returns
    -------
    minv : :obj:`np.ndarray`
        Inverted model of size :math:`[n_{t0} \times n_x]`
    dr : :obj:`np.ndarray`
        Residual data (i.e., data - background data) of
        size :math:`[n_{t0} \times n_x]`

    Notes
    -----
    The cost function and solver used in the seismic post-stack inversion module depends on the choice of
    ``explicit``, ``simultaneous``, ``epsI``, and ``epsR`` parameters:

    * ``explicit=True``, ``epsI=None`` and ``epsR=None``: the explicit solver :py:func:`scipy.linalg.lstsq`
      is used if ``simultaneous=False`` (or the iterative solver :py:func:`scipy.sparse.linalg.lsqr`
      is used if ``simultaneous=True``)
    * ``explicit=True`` with ``epsI`` and ``epsR=None``: the regularized normal equations
      :math:`\mathbf{W}^T\mathbf{d} =  (\mathbf{W}^T \mathbf{W} + \epsilon_I^2 \mathbf{I}) \mathbf{AI}`
      are instead fed into the :py:func:`scipy.linalg.lstsq` solver if ``simultaneous=False``
      (or the iterative solver :py:func:`scipy.sparse.linalg.lsqr` if ``simultaneous=True``)
    * ``explicit=False`` and ``epsR=None``: the iterative solver :py:func:`scipy.sparse.linalg.lsqr` is used
    * ``explicit=False`` with ``epsR``: the iterative solver
      :py:func:`pylops.optimization.leastsquares.RegularizedInversion` is used

    Note that the convergence of iterative solvers such as :py:func:`scipy.sparse.linalg.lsqr`
    can be very slow for this type of operator. It is suggested to take a two steps
    approach with first a trace-by-trace inversion using the explicit operator,
    followed by a regularized global inversion using the outcome of the previous
    inversion as initial guess.
    """
    if data.ndim == 1:
        dims = 1
        nt0 = data.size
        nspat = None
        nother = nx = 1
    elif data.ndim == 2:
        dims = 2
        nt0, nx = data.shape
        nspat = (nx, )
        nother = nx
    else:
        dims = 3
        nt0, nx, ny = data.shape
        nspat = (nx, ny)
        nother = nx * ny
        data = data.reshape(nt0, nother)

    # check if background model and data have same shape
    if m0 is not None and data.shape != m0.shape:
        raise ValueError('data and m0 must have same shape')

    # create operator
    PPop = PoststackLinearModelling(wav,
                                    nt0=nt0,
                                    ndims=nspat,
                                    explicit=explicit)
    if dottest:
        assert Dottest(PPop, nt0 * nother, nt0 * nother, verb=True)

    # create and remove background data from original data
    datar = data.flatten(
    ) if m0 is None else data.flatten() - PPop * m0.flatten()
    # invert model
    if epsR is None:
        # inversion without spatial regularization
        if explicit:
            if epsI is None and not simultaneous:
                # solve unregularized equations indipendently trace-by-trace
                minv = lstsq(PPop.A,
                             datar.reshape(nt0, nother).squeeze(),
                             **kwargs_solver)[0]
            elif epsI is None and simultaneous:
                # solve unregularized equations simultaneously
                minv = lsqr(PPop, datar, **kwargs_solver)[0]
            elif epsI is not None:
                # create regularized normal equations
                PP = np.dot(PPop.A.T, PPop.A) + epsI * np.eye(nt0)
                datar = np.dot(PPop.A.T, datar.reshape(nt0, nother))
                if not simultaneous:
                    # solve regularized normal equations indipendently trace-by-trace
                    minv = lstsq(PP, datar.reshape(nt0, nother),
                                 **kwargs_solver)[0]
                else:
                    # solve regularized normal equations simultaneously
                    PPop_reg = MatrixMult(PP, dims=nother)
                    minv = lsqr(PPop_reg, datar.flatten(), **kwargs_solver)[0]
            else:
                # create regularized normal equations and solve them simultaneously
                PP = np.dot(PPop.A, PPop.A) + epsI * np.eye(nt0)
                datar = PPop.A.T * datar.reshape(nt0, nother)
                PPop_reg = MatrixMult(PP, dims=nother)
                minv = lstsq(PPop_reg, datar.flatten(), **kwargs_solver)[0]
        else:
            # solve unregularized normal equations simultaneously with lop
            minv = lsqr(PPop, datar, **kwargs_solver)[0]
    else:
        # inversion with spatial regularization
        if dims == 1:
            Regop = SecondDerivative(nt0, dtype=PPop.dtype)
        elif dims == 2:
            Regop = Laplacian((nt0, nx), dtype=PPop.dtype)
        else:
            Regop = Laplacian((nt0, nx, ny), dirs=(1, 2), dtype=PPop.dtype)

        minv = RegularizedInversion(PPop, [Regop],
                                    data.flatten(),
                                    x0=m0.flatten(),
                                    epsRs=[epsR],
                                    returninfo=False,
                                    **kwargs_solver)

    if dims == 1:
        minv = minv.squeeze()
        datar = datar.squeeze()
    elif dims == 2:
        minv = minv.reshape(nt0, nx)
        datar = datar.reshape(nt0, nx)
    else:
        minv = minv.reshape(nt0, nx, ny)
        datar = datar.reshape(nt0, nx, ny)

    if m0 is not None and epsR is None:
        minv = minv + m0

    return minv, datar
示例#8
0
def PoststackInversion(data,
                       wav,
                       m0=None,
                       explicit=False,
                       simultaneous=False,
                       epsI=None,
                       epsR=None,
                       dottest=False,
                       epsRL1=None,
                       **kwargs_solver):
    r"""Post-stack linearized seismic inversion.

    Invert post-stack seismic operator to retrieve an elastic parameter of
    choice from band-limited seismic post-stack data.
    Depending on the choice of input parameters, inversion can be
    trace-by-trace with explicit operator or global with either
    explicit or linear operator.

    Parameters
    ----------
    data : :obj:`np.ndarray`
        Band-limited seismic post-stack data of size
        :math:`[n_{t0} (\times n_x \times n_y)]`
    wav : :obj:`np.ndarray`
        Wavelet in time domain (must have odd number of elements
        and centered to zero). If 1d, assume stationary wavelet for the entire
        time axis. If 2d of size :math:`[n_{t0} \times n_h]` use as
        non-stationary wavelet
    m0 : :obj:`np.ndarray`, optional
        Background model of size :math:`[n_{t0} (\times n_x \times n_y)]`
    explicit : :obj:`bool`, optional
        Create a chained linear operator (``False``, preferred for large data)
        or a ``MatrixMult`` linear operator with dense matrix
        (``True``, preferred for small data)
    simultaneous : :obj:`bool`, optional
        Simultaneously invert entire data (``True``) or invert
        trace-by-trace (``False``) when using ``explicit`` operator
        (note that the entire data is always inverted when working
        with linear operator)
    epsI : :obj:`float`, optional
        Damping factor for Tikhonov regularization term
    epsR : :obj:`float`, optional
        Damping factor for additional Laplacian regularization term
    dottest : :obj:`bool`, optional
        Apply dot-test
    epsRL1 : :obj:`float`, optional
        Damping factor for additional blockiness regularization term
    **kwargs_solver
        Arbitrary keyword arguments for :py:func:`scipy.linalg.lstsq`
        solver (if ``explicit=True`` and  ``epsR=None``)
        or :py:func:`scipy.sparse.linalg.lsqr` solver (if ``explicit=False``
        and/or ``epsR`` is not ``None``)

    Returns
    -------
    minv : :obj:`np.ndarray`
        Inverted model of size :math:`[n_{t0} (\times n_x \times n_y)]`
    datar : :obj:`np.ndarray`
        Residual data (i.e., data - background data) of
        size :math:`[n_{t0} (\times n_x \times n_y)]`

    Notes
    -----
    The cost function and solver used in the seismic post-stack inversion
    module depends on the choice of ``explicit``, ``simultaneous``, ``epsI``,
    and ``epsR`` parameters:

    * ``explicit=True``, ``epsI=None`` and ``epsR=None``: the explicit
      solver :py:func:`scipy.linalg.lstsq` is used if ``simultaneous=False``
      (or the iterative solver :py:func:`scipy.sparse.linalg.lsqr` is used
      if ``simultaneous=True``)
    * ``explicit=True`` with ``epsI`` and ``epsR=None``: the regularized
      normal equations :math:`\mathbf{W}^T\mathbf{d} = (\mathbf{W}^T
      \mathbf{W} + \epsilon_I^2 \mathbf{I}) \mathbf{AI}` are instead fed
      into the :py:func:`scipy.linalg.lstsq` solver if ``simultaneous=False``
      (or the iterative solver :py:func:`scipy.sparse.linalg.lsqr`
      if ``simultaneous=True``)
    * ``explicit=False`` and ``epsR=None``: the iterative solver
      :py:func:`scipy.sparse.linalg.lsqr` is used
    * ``explicit=False`` with ``epsR`` and ``epsRL1=None``: the iterative
      solver :py:func:`pylops.optimization.leastsquares.RegularizedInversion`
      is used to solve the spatially regularized problem.
    * ``explicit=False`` with ``epsR`` and ``epsRL1``: the iterative
      solver :py:func:`pylops.optimization.sparsity.SplitBregman`
      is used to solve the blockiness-promoting (in vertical direction)
      and spatially regularized (in additional horizontal directions) problem.

    Note that the convergence of iterative solvers such as
    :py:func:`scipy.sparse.linalg.lsqr` can be very slow for this type of
    operator. It is suggested to take a two steps approach with first a
    trace-by-trace inversion using the explicit operator, followed by a
    regularized global inversion using the outcome of the previous
    inversion as initial guess.
    """
    ncp = get_array_module(wav)

    # check if background model and data have same shape
    if m0 is not None and data.shape != m0.shape:
        raise ValueError('data and m0 must have same shape')

    # find out dimensions
    if data.ndim == 1:
        dims = 1
        nt0 = data.size
        nspat = None
        nspatprod = nx = 1
    elif data.ndim == 2:
        dims = 2
        nt0, nx = data.shape
        nspat = (nx, )
        nspatprod = nx
    else:
        dims = 3
        nt0, nx, ny = data.shape
        nspat = (nx, ny)
        nspatprod = nx * ny
        data = data.reshape(nt0, nspatprod)

    # create operator
    PPop = PoststackLinearModelling(wav,
                                    nt0=nt0,
                                    spatdims=nspat,
                                    explicit=explicit)
    if dottest:
        Dottest(PPop,
                nt0 * nspatprod,
                nt0 * nspatprod,
                raiseerror=True,
                backend=get_module_name(ncp),
                verb=True)

    # create and remove background data from original data
    datar = data.flatten() if m0 is None else \
        data.flatten() - PPop * m0.flatten()
    # invert model
    if epsR is None:
        # inversion without spatial regularization
        if explicit:
            if epsI is None and not simultaneous:
                # solve unregularized equations indipendently trace-by-trace
                minv = \
                get_lstsq(data)(PPop.A, datar.reshape(nt0, nspatprod).squeeze(),
                                **kwargs_solver)[0]
            elif epsI is None and simultaneous:
                # solve unregularized equations simultaneously
                if ncp == np:
                    minv = lsqr(PPop, datar, **kwargs_solver)[0]
                else:
                    minv = \
                        cgls(PPop, datar,
                             x0=ncp.zeros(int(PPop.shape[1]), PPop.dtype),
                             **kwargs_solver)[0]
            elif epsI is not None:
                # create regularized normal equations
                PP = ncp.dot(PPop.A.T, PPop.A) + \
                     epsI * ncp.eye(nt0, dtype=PPop.A.dtype)
                datarn = ncp.dot(PPop.A.T, datar.reshape(nt0, nspatprod))
                if not simultaneous:
                    # solve regularized normal eqs. trace-by-trace
                    minv = get_lstsq(data)(PP, datarn, **kwargs_solver)[0]
                else:
                    # solve regularized normal equations simultaneously
                    PPop_reg = MatrixMult(PP, dims=nspatprod)
                    if ncp == np:
                        minv = lsqr(PPop_reg, datar.ravel(),
                                    **kwargs_solver)[0]
                    else:
                        minv = cgls(PPop_reg,
                                    datar.ravel(),
                                    x0=ncp.zeros(int(PPop_reg.shape[1]),
                                                 PPop_reg.dtype),
                                    **kwargs_solver)[0]
            else:
                # create regularized normal eqs. and solve them simultaneously
                PP = ncp.dot(PPop.A.T, PPop.A) + \
                     epsI * ncp.eye(nt0, dtype=PPop.A.dtype)
                datarn = PPop.A.T * datar.reshape(nt0, nspatprod)
                PPop_reg = MatrixMult(PP, dims=nspatprod)
                minv = \
                    get_lstsq(data)(PPop_reg.A, datarn.flatten(),
                                    **kwargs_solver)[0]
        else:
            # solve unregularized normal equations simultaneously with lop
            if ncp == np:
                minv = lsqr(PPop, datar, **kwargs_solver)[0]
            else:
                minv = \
                    cgls(PPop, datar,
                         x0=ncp.zeros(int(PPop.shape[1]), PPop.dtype),
                         **kwargs_solver)[0]
    else:
        if epsRL1 is None:
            # L2 inversion with spatial regularization
            if dims == 1:
                Regop = SecondDerivative(nt0, dtype=PPop.dtype)
            elif dims == 2:
                Regop = Laplacian((nt0, nx), dtype=PPop.dtype)
            else:
                Regop = Laplacian((nt0, nx, ny), dirs=(1, 2), dtype=PPop.dtype)

            minv = RegularizedInversion(
                PPop, [Regop],
                data.flatten(),
                x0=None if m0 is None else m0.flatten(),
                epsRs=[epsR],
                returninfo=False,
                **kwargs_solver)
        else:
            # Blockiness-promoting inversion with spatial regularization
            if dims == 1:
                RegL1op = FirstDerivative(nt0,
                                          kind='forward',
                                          dtype=PPop.dtype)
                RegL2op = None
            elif dims == 2:
                RegL1op = FirstDerivative(nt0 * nx,
                                          dims=(nt0, nx),
                                          dir=0,
                                          kind='forward',
                                          dtype=PPop.dtype)
                RegL2op = SecondDerivative(nt0 * nx,
                                           dims=(nt0, nx),
                                           dir=1,
                                           dtype=PPop.dtype)
            else:
                RegL1op = FirstDerivative(nt0 * nx * ny,
                                          dims=(nt0, nx, ny),
                                          dir=0,
                                          kind='forward',
                                          dtype=PPop.dtype)
                RegL2op = Laplacian((nt0, nx, ny),
                                    dirs=(1, 2),
                                    dtype=PPop.dtype)

            if 'mu' in kwargs_solver.keys():
                mu = kwargs_solver['mu']
                kwargs_solver.pop('mu')
            else:
                mu = 1.
            if 'niter_outer' in kwargs_solver.keys():
                niter_outer = kwargs_solver['niter_outer']
                kwargs_solver.pop('niter_outer')
            else:
                niter_outer = 3
            if 'niter_inner' in kwargs_solver.keys():
                niter_inner = kwargs_solver['niter_inner']
                kwargs_solver.pop('niter_inner')
            else:
                niter_inner = 5
            if not isinstance(epsRL1, (list, tuple)):
                epsRL1 = list([epsRL1])
            if not isinstance(epsR, (list, tuple)):
                epsR = list([epsR])
            minv = SplitBregman(PPop, [RegL1op],
                                data.ravel(),
                                RegsL2=[RegL2op],
                                epsRL1s=epsRL1,
                                epsRL2s=epsR,
                                mu=mu,
                                niter_outer=niter_outer,
                                niter_inner=niter_inner,
                                x0=None if m0 is None else m0.flatten(),
                                **kwargs_solver)[0]

    # compute residual
    if epsR is None:
        datar -= PPop * minv.ravel()
    else:
        datar = data.ravel() - PPop * minv.ravel()

    # reshape inverted model and residual data
    if dims == 1:
        minv = minv.squeeze()
        datar = datar.squeeze()
    elif dims == 2:
        minv = minv.reshape(nt0, nx)
        datar = datar.reshape(nt0, nx)
    else:
        minv = minv.reshape(nt0, nx, ny)
        datar = datar.reshape(nt0, nx, ny)

    if m0 is not None and epsR is None:
        minv = minv + m0

    return minv, datar