示例#1
0
    def test_strategies(self):
        simplest_strategy_1 = SimplestChemenvStrategy()
        simplest_strategy_2 = SimplestChemenvStrategy(distance_cutoff=1.5, angle_cutoff=0.5)
        self.assertFalse(simplest_strategy_1 == simplest_strategy_2)
        simplest_strategy_1_from_dict = SimplestChemenvStrategy.from_dict(simplest_strategy_1.as_dict())
        self.assertTrue(simplest_strategy_1, simplest_strategy_1_from_dict)

        effective_csm_estimator = {'function': 'power2_inverse_decreasing',
                                   'options': {'max_csm': 8.0}}
        self_csm_weight = SelfCSMNbSetWeight()
        surface_definition = {'type': 'standard_elliptic',
                              'distance_bounds': {'lower': 1.1, 'upper': 1.9},
                              'angle_bounds': {'lower': 0.1, 'upper': 0.9}}
        surface_definition_2 = {'type': 'standard_elliptic',
                              'distance_bounds': {'lower': 1.1, 'upper': 1.9},
                              'angle_bounds': {'lower': 0.1, 'upper': 0.95}}
        da_area_weight = DistanceAngleAreaNbSetWeight(weight_type='has_intersection',
                                                      surface_definition=surface_definition,
                                                      nb_sets_from_hints='fallback_to_source',
                                                      other_nb_sets='0_weight',
                                                      additional_condition=DistanceAngleAreaNbSetWeight.AC.ONLY_ACB)
        da_area_weight_2 = DistanceAngleAreaNbSetWeight(weight_type='has_intersection',
                                                      surface_definition=surface_definition_2,
                                                      nb_sets_from_hints='fallback_to_source',
                                                      other_nb_sets='0_weight',
                                                      additional_condition=DistanceAngleAreaNbSetWeight.AC.ONLY_ACB)
        weight_estimator = {'function': 'smootherstep',
                            'options': {'delta_csm_min': 0.5,
                                        'delta_csm_max': 3.0}}
        symmetry_measure_type = 'csm_wcs_ctwcc'
        delta_weight = DeltaCSMNbSetWeight(effective_csm_estimator=effective_csm_estimator,
                                           weight_estimator=weight_estimator,
                                           symmetry_measure_type=symmetry_measure_type)
        bias_weight = CNBiasNbSetWeight.linearly_equidistant(weight_cn1=1.0, weight_cn13=4.0)
        bias_weight_2 = CNBiasNbSetWeight.linearly_equidistant(weight_cn1=1.0, weight_cn13=5.0)
        angle_weight = AngleNbSetWeight()
        nad_weight = NormalizedAngleDistanceNbSetWeight(average_type='geometric', aa=1, bb=1)
        multi_weights_strategy_1 = MultiWeightsChemenvStrategy(dist_ang_area_weight=da_area_weight,
                                                               self_csm_weight=self_csm_weight,
                                                               delta_csm_weight=delta_weight,
                                                               cn_bias_weight=bias_weight,
                                                               angle_weight=angle_weight,
                                                               normalized_angle_distance_weight=nad_weight,
                                                               symmetry_measure_type=symmetry_measure_type)
        multi_weights_strategy_2 = MultiWeightsChemenvStrategy(dist_ang_area_weight=da_area_weight,
                                                               self_csm_weight=self_csm_weight,
                                                               delta_csm_weight=delta_weight,
                                                               cn_bias_weight=bias_weight_2,
                                                               angle_weight=angle_weight,
                                                               normalized_angle_distance_weight=nad_weight,
                                                               symmetry_measure_type=symmetry_measure_type)
        multi_weights_strategy_3 = MultiWeightsChemenvStrategy(dist_ang_area_weight=da_area_weight_2,
                                                               self_csm_weight=self_csm_weight,
                                                               delta_csm_weight=delta_weight,
                                                               cn_bias_weight=bias_weight,
                                                               angle_weight=angle_weight,
                                                               normalized_angle_distance_weight=nad_weight,
                                                               symmetry_measure_type=symmetry_measure_type)
        multi_weights_strategy_1_from_dict = MultiWeightsChemenvStrategy.from_dict(multi_weights_strategy_1.as_dict())

        self.assertTrue(multi_weights_strategy_1 == multi_weights_strategy_1_from_dict)
        self.assertFalse(simplest_strategy_1 == multi_weights_strategy_1)
        self.assertFalse(multi_weights_strategy_1 == multi_weights_strategy_2)
        self.assertFalse(multi_weights_strategy_1 == multi_weights_strategy_3)
        self.assertFalse(multi_weights_strategy_2 == multi_weights_strategy_3)
示例#2
0
    def test_strategies(self):
        simplest_strategy_1 = SimplestChemenvStrategy()
        simplest_strategy_2 = SimplestChemenvStrategy(distance_cutoff=1.5,
                                                      angle_cutoff=0.5)
        self.assertFalse(simplest_strategy_1 == simplest_strategy_2)
        simplest_strategy_1_from_dict = SimplestChemenvStrategy.from_dict(
            simplest_strategy_1.as_dict())
        self.assertTrue(simplest_strategy_1, simplest_strategy_1_from_dict)

        effective_csm_estimator = {
            "function": "power2_inverse_decreasing",
            "options": {
                "max_csm": 8.0
            },
        }
        self_csm_weight = SelfCSMNbSetWeight()
        surface_definition = {
            "type": "standard_elliptic",
            "distance_bounds": {
                "lower": 1.1,
                "upper": 1.9
            },
            "angle_bounds": {
                "lower": 0.1,
                "upper": 0.9
            },
        }
        surface_definition_2 = {
            "type": "standard_elliptic",
            "distance_bounds": {
                "lower": 1.1,
                "upper": 1.9
            },
            "angle_bounds": {
                "lower": 0.1,
                "upper": 0.95
            },
        }
        da_area_weight = DistanceAngleAreaNbSetWeight(
            weight_type="has_intersection",
            surface_definition=surface_definition,
            nb_sets_from_hints="fallback_to_source",
            other_nb_sets="0_weight",
            additional_condition=DistanceAngleAreaNbSetWeight.AC.ONLY_ACB,
        )
        da_area_weight_2 = DistanceAngleAreaNbSetWeight(
            weight_type="has_intersection",
            surface_definition=surface_definition_2,
            nb_sets_from_hints="fallback_to_source",
            other_nb_sets="0_weight",
            additional_condition=DistanceAngleAreaNbSetWeight.AC.ONLY_ACB,
        )
        weight_estimator = {
            "function": "smootherstep",
            "options": {
                "delta_csm_min": 0.5,
                "delta_csm_max": 3.0
            },
        }
        symmetry_measure_type = "csm_wcs_ctwcc"
        delta_weight = DeltaCSMNbSetWeight(
            effective_csm_estimator=effective_csm_estimator,
            weight_estimator=weight_estimator,
            symmetry_measure_type=symmetry_measure_type,
        )
        bias_weight = CNBiasNbSetWeight.linearly_equidistant(weight_cn1=1.0,
                                                             weight_cn13=4.0)
        bias_weight_2 = CNBiasNbSetWeight.linearly_equidistant(weight_cn1=1.0,
                                                               weight_cn13=5.0)
        angle_weight = AngleNbSetWeight()
        nad_weight = NormalizedAngleDistanceNbSetWeight(
            average_type="geometric", aa=1, bb=1)
        multi_weights_strategy_1 = MultiWeightsChemenvStrategy(
            dist_ang_area_weight=da_area_weight,
            self_csm_weight=self_csm_weight,
            delta_csm_weight=delta_weight,
            cn_bias_weight=bias_weight,
            angle_weight=angle_weight,
            normalized_angle_distance_weight=nad_weight,
            symmetry_measure_type=symmetry_measure_type,
        )
        multi_weights_strategy_2 = MultiWeightsChemenvStrategy(
            dist_ang_area_weight=da_area_weight,
            self_csm_weight=self_csm_weight,
            delta_csm_weight=delta_weight,
            cn_bias_weight=bias_weight_2,
            angle_weight=angle_weight,
            normalized_angle_distance_weight=nad_weight,
            symmetry_measure_type=symmetry_measure_type,
        )
        multi_weights_strategy_3 = MultiWeightsChemenvStrategy(
            dist_ang_area_weight=da_area_weight_2,
            self_csm_weight=self_csm_weight,
            delta_csm_weight=delta_weight,
            cn_bias_weight=bias_weight,
            angle_weight=angle_weight,
            normalized_angle_distance_weight=nad_weight,
            symmetry_measure_type=symmetry_measure_type,
        )
        multi_weights_strategy_1_from_dict = MultiWeightsChemenvStrategy.from_dict(
            multi_weights_strategy_1.as_dict())

        self.assertTrue(
            multi_weights_strategy_1 == multi_weights_strategy_1_from_dict)
        self.assertFalse(simplest_strategy_1 == multi_weights_strategy_1)
        self.assertFalse(multi_weights_strategy_1 == multi_weights_strategy_2)
        self.assertFalse(multi_weights_strategy_1 == multi_weights_strategy_3)
        self.assertFalse(multi_weights_strategy_2 == multi_weights_strategy_3)
示例#3
0
    def test_strategies(self):
        simplest_strategy_1 = SimplestChemenvStrategy()
        simplest_strategy_2 = SimplestChemenvStrategy(distance_cutoff=1.5,
                                                      angle_cutoff=0.5)
        self.assertFalse(simplest_strategy_1 == simplest_strategy_2)
        simplest_strategy_1_from_dict = SimplestChemenvStrategy.from_dict(
            simplest_strategy_1.as_dict())
        self.assertTrue(simplest_strategy_1, simplest_strategy_1_from_dict)

        effective_csm_estimator = {
            'function': 'power2_inverse_decreasing',
            'options': {
                'max_csm': 8.0
            }
        }
        self_csm_weight = SelfCSMNbSetWeight()
        surface_definition = {
            'type': 'standard_elliptic',
            'distance_bounds': {
                'lower': 1.1,
                'upper': 1.9
            },
            'angle_bounds': {
                'lower': 0.1,
                'upper': 0.9
            }
        }
        surface_definition_2 = {
            'type': 'standard_elliptic',
            'distance_bounds': {
                'lower': 1.1,
                'upper': 1.9
            },
            'angle_bounds': {
                'lower': 0.1,
                'upper': 0.95
            }
        }
        da_area_weight = DistanceAngleAreaNbSetWeight(
            weight_type='has_intersection',
            surface_definition=surface_definition,
            nb_sets_from_hints='fallback_to_source',
            other_nb_sets='0_weight',
            additional_condition=DistanceAngleAreaNbSetWeight.AC.ONLY_ACB)
        da_area_weight_2 = DistanceAngleAreaNbSetWeight(
            weight_type='has_intersection',
            surface_definition=surface_definition_2,
            nb_sets_from_hints='fallback_to_source',
            other_nb_sets='0_weight',
            additional_condition=DistanceAngleAreaNbSetWeight.AC.ONLY_ACB)
        weight_estimator = {
            'function': 'smootherstep',
            'options': {
                'delta_csm_min': 0.5,
                'delta_csm_max': 3.0
            }
        }
        symmetry_measure_type = 'csm_wcs_ctwcc'
        delta_weight = DeltaCSMNbSetWeight(
            effective_csm_estimator=effective_csm_estimator,
            weight_estimator=weight_estimator,
            symmetry_measure_type=symmetry_measure_type)
        bias_weight = CNBiasNbSetWeight.linearly_equidistant(weight_cn1=1.0,
                                                             weight_cn13=4.0)
        bias_weight_2 = CNBiasNbSetWeight.linearly_equidistant(weight_cn1=1.0,
                                                               weight_cn13=5.0)
        angle_weight = AngleNbSetWeight()
        nad_weight = NormalizedAngleDistanceNbSetWeight(
            average_type='geometric', aa=1, bb=1)
        multi_weights_strategy_1 = MultiWeightsChemenvStrategy(
            dist_ang_area_weight=da_area_weight,
            self_csm_weight=self_csm_weight,
            delta_csm_weight=delta_weight,
            cn_bias_weight=bias_weight,
            angle_weight=angle_weight,
            normalized_angle_distance_weight=nad_weight,
            symmetry_measure_type=symmetry_measure_type)
        multi_weights_strategy_2 = MultiWeightsChemenvStrategy(
            dist_ang_area_weight=da_area_weight,
            self_csm_weight=self_csm_weight,
            delta_csm_weight=delta_weight,
            cn_bias_weight=bias_weight_2,
            angle_weight=angle_weight,
            normalized_angle_distance_weight=nad_weight,
            symmetry_measure_type=symmetry_measure_type)
        multi_weights_strategy_3 = MultiWeightsChemenvStrategy(
            dist_ang_area_weight=da_area_weight_2,
            self_csm_weight=self_csm_weight,
            delta_csm_weight=delta_weight,
            cn_bias_weight=bias_weight,
            angle_weight=angle_weight,
            normalized_angle_distance_weight=nad_weight,
            symmetry_measure_type=symmetry_measure_type)
        multi_weights_strategy_1_from_dict = MultiWeightsChemenvStrategy.from_dict(
            multi_weights_strategy_1.as_dict())

        self.assertTrue(
            multi_weights_strategy_1 == multi_weights_strategy_1_from_dict)
        self.assertFalse(simplest_strategy_1 == multi_weights_strategy_1)
        self.assertFalse(multi_weights_strategy_1 == multi_weights_strategy_2)
        self.assertFalse(multi_weights_strategy_1 == multi_weights_strategy_3)
        self.assertFalse(multi_weights_strategy_2 == multi_weights_strategy_3)