示例#1
0
 def test_cell_intensity(self):
     # Test that bcc structure gives lower intensity for h + k + l != even.
     c = TEMCalculator()
     latt = Lattice.cubic(4.209)
     cubic = Structure(latt, ["Cs", "Cl"], [[0, 0, 0], [0.5, 0.5, 0.5]])
     point = [(2, 1, 0)]
     point2 = [(2, 2, 0)]
     spacings = c.get_interplanar_spacings(cubic, point)
     spacings2 = c.get_interplanar_spacings(cubic, point2)
     angles = c.bragg_angles(spacings)
     angles2 = c.bragg_angles(spacings2)
     cellint = c.cell_intensity(cubic, angles)
     cellint2 = c.cell_intensity(cubic, angles2)
     self.assertGreater(cellint2[(2, 2, 0)], cellint[(2, 1, 0)])
示例#2
0
 def test_normalized_cell_intensity(self):
     # Test that the method correctly normalizes a value.
     c = TEMCalculator()
     latt = Lattice.cubic(4.209)
     cubic = Structure(latt, ["Cs", "Cl"], [[0, 0, 0], [0.5, 0.5, 0.5]])
     point = [(2, 0, 0)]
     spacings = c.get_interplanar_spacings(cubic, point)
     angles = c.bragg_angles(spacings)
     cellint = c.normalized_cell_intensity(cubic, angles)
     self.assertAlmostEqual(cellint[(2, 0, 0)], 1)
示例#3
0
 def test_x_ray_factors(self):
     c = TEMCalculator()
     latt = Lattice.cubic(4.209)
     cubic = Structure(latt, ["Cs", "Cl"], [[0, 0, 0], [0.5, 0.5, 0.5]])
     point = [(-10, 3, 0)]
     spacings = c.get_interplanar_spacings(cubic, point)
     angles = c.bragg_angles(spacings)
     x_ray = c.x_ray_factors(cubic, angles)
     self.assertAlmostEqual(x_ray["Cs"][(-10, 3, 0)], 14.42250869579648)
     self.assertAlmostEqual(x_ray["Cl"][(-10, 3, 0)], 2.7804915737999103)
示例#4
0
 def test_cell_scattering_factors(self):
     # Test that fcc structure gives 0 intensity for mixed even, odd hkl.
     c = TEMCalculator()
     nacl = Structure.from_spacegroup("Fm-3m", Lattice.cubic(5.692),
                                      ["Na", "Cl"],
                                      [[0, 0, 0], [0.5, 0.5, 0.5]])
     point = [(2, 1, 0)]
     spacings = c.get_interplanar_spacings(nacl, point)
     angles = c.bragg_angles(spacings)
     cellscatt = c.cell_scattering_factors(nacl, angles)
     self.assertAlmostEqual(cellscatt[(2, 1, 0)], 0)
示例#5
0
 def test_get_s2(self):
     # Tests that the appropriate s2 factor is returned.
     c = TEMCalculator()
     latt = Lattice.cubic(4.209)
     cubic = Structure(latt, ["Cs", "Cl"], [[0, 0, 0], [0.5, 0.5, 0.5]])
     point = [(-10, 3, 0)]
     spacings = c.get_interplanar_spacings(cubic, point)
     angles = c.bragg_angles(spacings)
     s2 = c.get_s2(angles)
     for p in s2:
         self.assertAlmostEqual(s2[p], 1.5381852947115047)
示例#6
0
 def test_electron_scattering_factors(self):
     # Test the electron atomic scattering factor, values approximate with
     # international table of crystallography volume C. Rounding error when converting hkl to sin(theta)/lambda.
     # Error increases as sin(theta)/lambda is smaller.
     c = TEMCalculator()
     latt = Lattice.cubic(4.209)
     cubic = Structure(latt, ["Cs", "Cl"], [[0, 0, 0], [0.5, 0.5, 0.5]])
     nacl = Structure.from_spacegroup("Fm-3m", Lattice.cubic(5.692),
                                      ["Na", "Cl"],
                                      [[0, 0, 0], [0.5, 0.5, 0.5]])
     point = [(2, 1, 3)]
     point_nacl = [(4, 2, 0)]
     spacings = c.get_interplanar_spacings(cubic, point)
     spacings_nacl = c.get_interplanar_spacings(nacl, point_nacl)
     angles = c.bragg_angles(spacings)
     angles_nacl = c.bragg_angles(spacings_nacl)
     elscatt = c.electron_scattering_factors(cubic, angles)
     elscatt_nacl = c.electron_scattering_factors(nacl, angles_nacl)
     self.assertAlmostEqual(elscatt["Cs"][(2, 1, 3)], 2.890, places=1)
     self.assertAlmostEqual(elscatt["Cl"][(2, 1, 3)], 1.138, places=1)
     self.assertAlmostEqual(elscatt_nacl["Na"][(4, 2, 0)], 0.852, places=1)
     self.assertAlmostEqual(elscatt_nacl["Cl"][(4, 2, 0)], 1.372, places=1)