示例#1
0
 def test_read_extra_abivars(self):
     vars_out = {'ecut': 40}
     f = open('extra_abivars', 'w')
     f.write(str(vars_out))
     f.close()
     vars_in = read_extra_abivars()
     self.assertEqual(vars_out, vars_in)
     os.remove('extra_abivars')
示例#2
0
 def test_read_extra_abivars(self):
     """
     Testing helper function to read extra variables
     """
     vars_out = {'ecut': 40}
     f = open('extra_abivars', 'w')
     f.write(str(vars_out))
     f.close()
     vars_in = read_extra_abivars()
     self.assertEqual(vars_out, vars_in)
     os.remove('extra_abivars')
示例#3
0
 def test_read_extra_abivars(self):
     """
     Testing helper function to read extra variables
     """
     vars_out = {'ecut': 40}
     f = open('extra_abivars', 'w')
     f.write(str(vars_out))
     f.close()
     vars_in = read_extra_abivars()
     self.assertEqual(vars_out, vars_in)
     os.remove('extra_abivars')
示例#4
0
    def create(self):
        """
        create single abinit G0W0 flow
        """
        # manager = 'slurm' if 'ceci' in self.spec['mode'] else 'shell'
        # an AbiStructure object has an overwritten version of get_sorted_structure that sorts according to Z
        # this could also be pulled into the constructor of Abistructure
        # abi_structure = self.structure.get_sorted_structure()
        from abipy import abilab
        item = copy.copy(self.structure.item)
        self.structure.__class__ = abilab.Structure
        self.structure = self.structure.get_sorted_structure_z()
        self.structure.item = item
        abi_structure = self.structure
        manager = TaskManager.from_user_config()
        # Initialize the flow.
        flow = Flow(self.work_dir, manager, pickle_protocol=0)
        # flow = Flow(self.work_dir, manager)
        # kpoint grid defined over density 40 > ~ 3 3 3
        if self.spec['converge'] and not self.all_converged:
            # (2x2x2) gamma centered mesh for the convergence test on nbands and ecuteps
            # if kp_in is present in the specs a kp_in X kp_in x kp_in mesh is used for the convergence study
            if 'kp_in' in self.spec.data.keys():
                if self.spec['kp_in'] > 9:
                    print('WARNING:\nkp_in should be < 13 to generate an n x n x n mesh\nfor larger values a grid with '
                          'density kp_in will be generated')
                kppa = self.spec['kp_in']
            else:
                kppa = 2
        else:
            # use the specified density for the final calculation with the converged nbands and ecuteps of other
            # stand alone calculations
            kppa = self.spec['kp_grid_dens']
        gamma = True

        # 'standard' parameters for stand alone calculation
        scf_nband = self.get_bands(self.structure) + 20
        # additional bands to accommodate for nbdbuf and a bit extra
        nscf_nband = [10 * self.get_bands(self.structure)]

        nksmall = None
        ecuteps = [8]

        extra_abivars = dict()

        # read user defined extra abivars from file  'extra_abivars' should be dictionary
        extra_abivars.update(read_extra_abivars())
        # self.bands_fac = 0.5 if 'gwcomp' in extra_abivars.keys() else 1
        # self.convs['nscf_nbands']['test_range'] =
        # tuple([self.bands_fac*x for x in self.convs['nscf_nbands']['test_range']])

        ecut = extra_abivars.pop('ecut', 44)
        ecutsigx = extra_abivars.pop('ecutsigx', 44)

        if ecutsigx > ecut:
            raise RuntimeError('ecutsigx can not be largen than ecut')
        if ecutsigx < max(ecuteps):
            raise RuntimeError('ecutsigx < ecuteps this is not realistic')

        response_models = ['godby']
        if 'ppmodel' in extra_abivars.keys():
            response_models = [extra_abivars.pop('ppmodel')]

        if self.option is not None:
            for k in self.option.keys():
                if k == 'ecut':
                    ecut = self.option[k]
                if k in ['ecuteps', 'nscf_nbands']:
                    pass
                else:
                    extra_abivars.update({k: self.option[k]})

        try:
            grid = read_grid_from_file(s_name(self.structure)+".full_res")['grid']
            all_done = read_grid_from_file(s_name(self.structure)+".full_res")['all_done']
            workdir = os.path.join(s_name(self.structure), 'w'+str(grid))
        except (IOError, OSError):
            grid = 0
            all_done = False
            workdir = None

        if not all_done:
            if (self.spec['test'] or self.spec['converge']) and not self.all_converged:
                if self.spec['test']:
                    print('| setting test calculation')
                    tests = SingleAbinitGWWork(self.structure, self.spec).tests
                    response_models = []
                else:
                    if grid == 0:
                        print('| setting convergence calculations for grid 0')
                        # tests = SingleAbinitGWWorkFlow(self.structure, self.spec).convs
                        tests = self.convs
                    else:
                        print('| extending grid')
                        # tests = expand(SingleAbinitGWWorkFlow(self.structure, self.spec).convs, grid)
                        tests = expand(self.convs, grid)
                ecuteps = []
                nscf_nband = []
                for test in tests:
                    if tests[test]['level'] == 'scf':
                        if self.option is None:
                            extra_abivars.update({test + '_s': tests[test]['test_range']})
                        elif test in self.option:
                            extra_abivars.update({test: self.option[test]})
                        else:
                            extra_abivars.update({test + '_s': tests[test]['test_range']})
                    else:
                        for value in tests[test]['test_range']:
                            if test == 'nscf_nbands':
                                nscf_nband.append(value * self.get_bands(self.structure))
                                # scr_nband takes nscf_nbands if not specified
                                # sigma_nband takes scr_nbands if not specified
                            if test == 'ecuteps':
                                ecuteps.append(value)
                            if test == 'response_model':
                                response_models.append(value)
            elif self.all_converged:
                print('| setting up for testing the converged values at the high kp grid ')
                # add a bandstructure and dos calculation
                if os.path.isfile('bands'):
                    nksmall = -30
                    # negative value > only bandstructure
                else:
                    nksmall = 30
                # in this case a convergence study has already been performed.
                # The resulting parameters are passed as option
                ecuteps = [self.option['ecuteps'], self.option['ecuteps'] + self.convs['ecuteps']['test_range'][1] -
                           self.convs['ecuteps']['test_range'][0]]
                nscf_nband = [self.option['nscf_nbands'], self.option['nscf_nbands'] + self.convs['nscf_nbands'][
                    'test_range'][1] - self.convs['nscf_nbands']['test_range'][0]]
                # for option in self.option:
                #    if option not in ['ecuteps', 'nscf_nband']:
                #        extra_abivars.update({option + '_s': self.option[option]})
        else:
            print('| all is done for this material')
            return

        logger.info('ecuteps : %s ' % str(ecuteps))
        logger.info('extra   : %s ' % str(extra_abivars))
        logger.info('nscf_nb : %s ' % str(nscf_nband))
        inputs = g0w0_convergence_inputs(abi_structure, self.pseudo_table, kppa, nscf_nband, ecuteps, ecutsigx,
                                         scf_nband, ecut, accuracy="normal", spin_mode="unpolarized", smearing=None,
                                         response_models=response_models, charge=0.0, sigma_nband=None, scr_nband=None,
                                         gamma=gamma, nksmall=nksmall, extra_abivars=extra_abivars)

        work = G0W0Work(scf_inputs=inputs[0], nscf_inputs=inputs[1], scr_inputs=inputs[2], sigma_inputs=inputs[3])

        # work = g0w0_extended_work(abi_structure, self.pseudo_table, kppa, nscf_nband, ecuteps, ecutsigx, scf_nband,
        # accuracy="normal", spin_mode="unpolarized", smearing=None, response_models=response_models,
        # charge=0.0, sigma_nband=None, scr_nband=None, gamma=gamma, nksmall=nksmall, **extra_abivars)

        print(workdir)
        flow.register_work(work, workdir=workdir)
        return flow.allocate()
示例#5
0
    def process_data(self, structure):
        """
        Process the data of a set of GW calculations:
        for 'single' and 'test' calculations the data is read and outputted
        for the parameter scanning part of a convergence calculation the data is read and parameters that provide
        converged results are determined
        for the 'full' part of a convergence calculation the data is read and it is tested if the slopes are in
        agreement with the scanning part
        """
        data = GWConvergenceData(spec=self, structure=structure)
        if self.data["converge"]:
            done = False
            try:
                data.read_full_res_from_file()
                if data.full_res["all_done"]:
                    done = True
                    print("| no action needed al is done already")
            except (IOError, OSError, SyntaxError):
                pass

            data.set_type()
            while not done:
                if data.type["parm_scr"]:
                    data.read()

                    if len(data.data) == 0:
                        print("| parm_scr type calculation but no data found.")
                        break

                    if len(data.data) < 9:  # todo this should be calculated
                        print(
                            "| parm_scr type calculation but no complete data found,"
                            " check if all calculations are done."
                        )
                        break

                    if data.find_conv_pars_scf("ecut", "full_width", self["tol"])[0]:
                        print("| parm_scr type calculation, converged scf values found")
                    else:
                        print("| parm_scr type calculation, no converged scf values found")
                        data.full_res.update({"remark": "No converged SCf parameter found. Continue anyway."})
                        data.conv_res["values"].update({"ecut": 40 * eV_to_Ha})
                        data.conv_res["control"].update({"ecut": True})

                    # if ecut is provided in extra_abivars overwrite in any case ..
                    if "ecut" in read_extra_abivars().keys():
                        data.conv_res["values"].update({"ecut": read_extra_abivars()["ecut"] * eV_to_Ha})

                    # if converged ok, if not increase the grid parameter of the next set of calculations
                    extrapolated = data.find_conv_pars(self["tol"])
                    if data.conv_res["control"]["nbands"]:
                        print(
                            "| parm_scr type calculation, converged values found, extrapolated value: %s"
                            % extrapolated[4]
                        )
                    else:
                        print("| parm_scr type calculation, no converged values found, increasing grid")
                        data.full_res["grid"] += 1

                    data.print_full_res()
                    data.print_conv_res()

                    # plot data:
                    print_gnuplot_header("plots", s_name(structure) + " tol = " + str(self["tol"]), filetype=None)
                    data.print_gnuplot_line("plots")
                    data.print_plot_data()
                    done = True

                elif data.type["full"]:
                    if not data.read_conv_res_from_file(s_name(structure) + ".conv_res"):
                        print("| Full type calculation but the conv_res file is not available, trying to reconstruct")
                        data.read()
                        data.find_conv_pars(self["tol"])
                        data.print_conv_res()
                    data.read(subset=".conv")
                    if len(data.data) == 0:
                        print("| Full type calculation but no data found.")
                        break

                    if len(data.data) < 4:
                        print("| Full type calculation but no complete data found.")
                        for item in data.data:
                            print(item)
                        break

                    if data.test_full_kp_results(tol_rel=1, tol_abs=0.0015):
                        print(
                            "| Full type calculation and the full results agree with the parm_scr."
                            " All_done for this compound."
                        )
                        data.full_res.update({"all_done": True})
                        data.print_full_res()
                        done = True
                        # data.print_plot_data()
                        self.code_interface.store_results(name=s_name(structure))
                    else:
                        print("| Full type calculation but the full results do not agree with the parm_scr.")
                        print("|   Increase the tol to find better converged parameters and test the full grid again.")
                        print("|   TODO")
                        data.full_res.update({"remark": "no agreement at high dens kp mesh,", "all_done": True})

                        # read the system specific tol for System.conv_res
                        # if it's not there create it from the global tol
                        # reduce tol
                        # set data.type to convergence
                        # loop
                        done = True

        elif self.data["test"]:
            data.read()
            data.set_type()
            data.print_plot_data()
        else:
            data.read()
            data.set_type()
            data.print_plot_data()
示例#6
0
    def create(self):
        """
        create single abinit G0W0 flow
        """
        # manager = 'slurm' if 'ceci' in self.spec['mode'] else 'shell'
        # an AbiStructure object has an overwritten version of get_sorted_structure that sorts according to Z
        # this could also be pulled into the constructor of Abistructure
        # abi_structure = self.structure.get_sorted_structure()
        from abipy import abilab
        item = copy.copy(self.structure.item)
        self.structure.__class__ = abilab.Structure
        self.structure = self.structure.get_sorted_structure_z()
        self.structure.item = item
        abi_structure = self.structure
        manager = TaskManager.from_user_config()
        # Initialize the flow.
        flow = Flow(self.work_dir, manager, pickle_protocol=0)
        # flow = Flow(self.work_dir, manager)
        # kpoint grid defined over density 40 > ~ 3 3 3
        if self.spec['converge'] and not self.all_converged:
            # (2x2x2) gamma centered mesh for the convergence test on nbands and ecuteps
            # if kp_in is present in the specs a kp_in X kp_in x kp_in mesh is used for the convergence study
            if 'kp_in' in self.spec.data.keys():
                if self.spec['kp_in'] > 9:
                    print(
                        'WARNING:\nkp_in should be < 13 to generate an n x n x n mesh\nfor larger values a grid with '
                        'density kp_in will be generated')
                kppa = self.spec['kp_in']
            else:
                kppa = 2
        else:
            # use the specified density for the final calculation with the converged nbands and ecuteps of other
            # stand alone calculations
            kppa = self.spec['kp_grid_dens']
        gamma = True

        # 'standard' parameters for stand alone calculation
        scf_nband = self.get_bands(self.structure) + 20
        # additional bands to accommodate for nbdbuf and a bit extra
        nscf_nband = [10 * self.get_bands(self.structure)]

        nksmall = None
        ecuteps = [8]

        extra_abivars = dict()

        # read user defined extra abivars from file  'extra_abivars' should be dictionary
        extra_abivars.update(read_extra_abivars())
        # self.bands_fac = 0.5 if 'gwcomp' in extra_abivars.keys() else 1
        # self.convs['nscf_nbands']['test_range'] =
        # tuple([self.bands_fac*x for x in self.convs['nscf_nbands']['test_range']])

        ecut = extra_abivars.pop('ecut', 44)
        ecutsigx = extra_abivars.pop('ecutsigx', 44)

        if ecutsigx > ecut:
            raise RuntimeError('ecutsigx can not be largen than ecut')
        if ecutsigx < max(ecuteps):
            raise RuntimeError('ecutsigx < ecuteps this is not realistic')

        response_models = ['godby']
        if 'ppmodel' in extra_abivars.keys():
            response_models = [extra_abivars.pop('ppmodel')]

        if self.option is not None:
            for k in self.option.keys():
                if k == 'ecut':
                    ecut = self.option[k]
                if k in ['ecuteps', 'nscf_nbands']:
                    pass
                else:
                    extra_abivars.update({k: self.option[k]})

        try:
            grid = read_grid_from_file(s_name(self.structure) +
                                       ".full_res")['grid']
            all_done = read_grid_from_file(
                s_name(self.structure) + ".full_res")['all_done']
            workdir = os.path.join(s_name(self.structure), 'w' + str(grid))
        except (IOError, OSError):
            grid = 0
            all_done = False
            workdir = None

        if not all_done:
            if (self.spec['test']
                    or self.spec['converge']) and not self.all_converged:
                if self.spec['test']:
                    print('| setting test calculation')
                    tests = SingleAbinitGWWork(self.structure, self.spec).tests
                    response_models = []
                else:
                    if grid == 0:
                        print('| setting convergence calculations for grid 0')
                        # tests = SingleAbinitGWWorkFlow(self.structure, self.spec).convs
                        tests = self.convs
                    else:
                        print('| extending grid')
                        # tests = expand(SingleAbinitGWWorkFlow(self.structure, self.spec).convs, grid)
                        tests = expand(self.convs, grid)
                ecuteps = []
                nscf_nband = []
                for test in tests:
                    if tests[test]['level'] == 'scf':
                        if self.option is None:
                            extra_abivars.update(
                                {test + '_s': tests[test]['test_range']})
                        elif test in self.option:
                            extra_abivars.update({test: self.option[test]})
                        else:
                            extra_abivars.update(
                                {test + '_s': tests[test]['test_range']})
                    else:
                        for value in tests[test]['test_range']:
                            if test == 'nscf_nbands':
                                nscf_nband.append(
                                    value * self.get_bands(self.structure))
                                # scr_nband takes nscf_nbands if not specified
                                # sigma_nband takes scr_nbands if not specified
                            if test == 'ecuteps':
                                ecuteps.append(value)
                            if test == 'response_model':
                                response_models.append(value)
            elif self.all_converged:
                print(
                    '| setting up for testing the converged values at the high kp grid '
                )
                # add a bandstructure and dos calculation
                if os.path.isfile('bands'):
                    nksmall = -30
                    # negative value > only bandstructure
                else:
                    nksmall = 30
                # in this case a convergence study has already been performed.
                # The resulting parameters are passed as option
                ecuteps = [
                    self.option['ecuteps'], self.option['ecuteps'] +
                    self.convs['ecuteps']['test_range'][1] -
                    self.convs['ecuteps']['test_range'][0]
                ]
                nscf_nband = [
                    self.option['nscf_nbands'], self.option['nscf_nbands'] +
                    self.convs['nscf_nbands']['test_range'][1] -
                    self.convs['nscf_nbands']['test_range'][0]
                ]
                # for option in self.option:
                #    if option not in ['ecuteps', 'nscf_nband']:
                #        extra_abivars.update({option + '_s': self.option[option]})
        else:
            print('| all is done for this material')
            return

        logger.info('ecuteps : %s ' % str(ecuteps))
        logger.info('extra   : %s ' % str(extra_abivars))
        logger.info('nscf_nb : %s ' % str(nscf_nband))
        inputs = g0w0_convergence_inputs(abi_structure,
                                         self.pseudo_table,
                                         kppa,
                                         nscf_nband,
                                         ecuteps,
                                         ecutsigx,
                                         scf_nband,
                                         ecut,
                                         accuracy="normal",
                                         spin_mode="unpolarized",
                                         smearing=None,
                                         response_models=response_models,
                                         charge=0.0,
                                         sigma_nband=None,
                                         scr_nband=None,
                                         gamma=gamma,
                                         nksmall=nksmall,
                                         extra_abivars=extra_abivars)

        work = G0W0Work(scf_inputs=inputs[0],
                        nscf_inputs=inputs[1],
                        scr_inputs=inputs[2],
                        sigma_inputs=inputs[3])

        # work = g0w0_extended_work(abi_structure, self.pseudo_table, kppa, nscf_nband, ecuteps, ecutsigx, scf_nband,
        # accuracy="normal", spin_mode="unpolarized", smearing=None, response_models=response_models,
        # charge=0.0, sigma_nband=None, scr_nband=None, gamma=gamma, nksmall=nksmall, **extra_abivars)

        print(workdir)
        flow.register_work(work, workdir=workdir)
        return flow.allocate()