示例#1
0
class  PDAnalyzerTest(unittest.TestCase):

    def setUp(self):
        module_dir = os.path.dirname(os.path.abspath(__file__))
        (elements, entries) = PDEntryIO.from_csv(os.path.join(module_dir,
                                                              "pdentries_test.csv"))
        self.pd = PhaseDiagram(entries)
        self.analyzer = PDAnalyzer(self.pd)

    def test_get_e_above_hull(self):
        for entry in self.pd.stable_entries:
            self.assertLess(self.analyzer.get_e_above_hull(entry), 1e-11,
                            "Stable entries should have e above hull of zero!")
        for entry in self.pd.all_entries:
            if entry not in self.pd.stable_entries:
                e_ah = self.analyzer.get_e_above_hull(entry)
                self.assertGreaterEqual(e_ah, 0)
                self.assertTrue(isinstance(e_ah, Number))

    def test_get_equilibrium_reaction_energy(self):
        for entry in self.pd.stable_entries:
            self.assertLessEqual(
                self.analyzer.get_equilibrium_reaction_energy(entry), 0,
                "Stable entries should have negative equilibrium reaction energy!")

    def test_get_decomposition(self):
        for entry in self.pd.stable_entries:
            self.assertEquals(len(self.analyzer.get_decomposition(entry.composition)), 1,
                              "Stable composition should have only 1 decomposition!")
        dim = len(self.pd.elements)
        for entry in self.pd.all_entries:
            ndecomp = len(self.analyzer.get_decomposition(entry.composition))
            self.assertTrue(ndecomp > 0 and ndecomp <= dim,
                            "The number of decomposition phases can at most be equal to the number of components.")

        #Just to test decomp for a ficitious composition
        ansdict = {entry.composition.formula: amt
                   for entry, amt in
                   self.analyzer.get_decomposition(Composition("Li3Fe7O11")).items()}
        expected_ans = {"Fe2 O2": 0.0952380952380949,
                        "Li1 Fe1 O2": 0.5714285714285714,
                        "Fe6 O8": 0.33333333333333393}
        for k, v in expected_ans.items():
            self.assertAlmostEqual(ansdict[k], v)

    def test_get_transition_chempots(self):
        for el in self.pd.elements:
            self.assertLessEqual(len(self.analyzer.get_transition_chempots(el)),
                                 len(self.pd.facets))

    def test_get_element_profile(self):
        for el in self.pd.elements:
            for entry in self.pd.stable_entries:
                if not (entry.composition.is_element):
                    self.assertLessEqual(len(self.analyzer.get_element_profile(el, entry.composition)),
                                         len(self.pd.facets))

    def test_get_get_chempot_range_map(self):
        elements = [el for el in self.pd.elements if el.symbol != "Fe"]
        self.assertEqual(len(self.analyzer.get_chempot_range_map(elements)), 10)
示例#2
0
def get_decomp(o_chem_pot, mycomp, verbose=1):
    """Get decomposition from open phase diagram
        Args:
            o_chem_pot <float>: Oxygen chemical potential
            mycomp <pymatgen Composition>: Composition
            verbose <int>: 1 - verbose (default)
                           0 - silent
        Returns:
            decomposition string
    """
    a = MPRester("<YOUR_MPREST_API_KEY_HERE>")
    elements = mycomp.elements
    ellist = map(str, elements)
    entries = a.get_entries_in_chemsys(ellist)
    #entries = a.get_entries_in_chemsys(['La', 'Mn', 'O', 'Fe'])
    pd = PhaseDiagram(entries)
    gppd = GrandPotentialPhaseDiagram(entries,
                                      {Element('O'): float(o_chem_pot)})
    print gppd
    #plotter = PDPlotter(gppd)
    #plotter.show()

    gppda = PDAnalyzer(gppd)
    #mychempots = gppda.get_composition_chempots(mycomp)
    #print "My chem pots:"
    #print mychempots
    mydecompgppd = gppda.get_decomposition(mycomp)
    #pdentry = PDEntry(mycomp, 0)
    #print "Decomp and energy:"
    #decompandenergy = gppda.get_decomp_and_e_above_hull(pdentry)
    #print decompandenergy
    #mydecomppd = pda.get_decomposition(mycomp)
    #print "Mn profile:"
    #mnprof= gppda.get_element_profile(Element('Mn'),mycomp)
    #print mnprof

    if verbose:
        for (entry, amount) in mydecompgppd.iteritems():
            print "%s: %3.3f" % (entry.name, amount)
            #mymurangegppd = gppda.getmu_range_stability_phase(Composition(entry.name),Element('O'))
            #print mymurangegppd
        #for (entry,amount) in mydecomppd.iteritems():
        #    print "%s: %3.3f" % (entry.name, amount)
        print ""
    return mydecompgppd
示例#3
0
def get_decomp(o_chem_pot, mycomp, verbose=1):
    """Get decomposition from open phase diagram
        Args:
            o_chem_pot <float>: Oxygen chemical potential
            mycomp <pymatgen Composition>: Composition
            verbose <int>: 1 - verbose (default)
                           0 - silent
        Returns:
            decomposition string
    """        
    a = MPRester("<YOUR_MPREST_API_KEY_HERE>")
    elements = mycomp.elements
    ellist = map(str, elements)
    entries = a.get_entries_in_chemsys(ellist)
    #entries = a.get_entries_in_chemsys(['La', 'Mn', 'O', 'Fe'])
    pd = PhaseDiagram(entries)
    gppd = GrandPotentialPhaseDiagram(entries,{Element('O'): float(o_chem_pot)})
    print gppd
    #plotter = PDPlotter(gppd)
    #plotter.show()

    gppda = PDAnalyzer(gppd)
    #mychempots = gppda.get_composition_chempots(mycomp)
    #print "My chem pots:"
    #print mychempots
    mydecompgppd = gppda.get_decomposition(mycomp)
    #pdentry = PDEntry(mycomp, 0)
    #print "Decomp and energy:"
    #decompandenergy = gppda.get_decomp_and_e_above_hull(pdentry)
    #print decompandenergy
    #mydecomppd = pda.get_decomposition(mycomp)
    #print "Mn profile:"
    #mnprof= gppda.get_element_profile(Element('Mn'),mycomp)
    #print mnprof

    if verbose:
        for (entry,amount) in mydecompgppd.iteritems():
            print "%s: %3.3f" % (entry.name, amount)
            #mymurangegppd = gppda.getmu_range_stability_phase(Composition(entry.name),Element('O'))
            #print mymurangegppd
        #for (entry,amount) in mydecomppd.iteritems():
        #    print "%s: %3.3f" % (entry.name, amount)
        print ""
    return mydecompgppd
示例#4
0
class PDAnalyzerTest(unittest.TestCase):

    def setUp(self):
        module_dir = os.path.dirname(os.path.abspath(__file__))
        (elements, entries) = PDEntryIO.from_csv(os.path.join(module_dir,
                                                              "pdentries_test.csv"))
        self.pd = PhaseDiagram(entries)
        self.analyzer = PDAnalyzer(self.pd)

    def test_get_e_above_hull(self):
        for entry in self.pd.stable_entries:
            self.assertLess(self.analyzer.get_e_above_hull(entry), 1e-11,
                            "Stable entries should have e above hull of zero!")
        for entry in self.pd.all_entries:
            if entry not in self.pd.stable_entries:
                e_ah = self.analyzer.get_e_above_hull(entry)
                self.assertGreaterEqual(e_ah, 0)
                self.assertTrue(isinstance(e_ah, Number))

    def test_get_equilibrium_reaction_energy(self):
        for entry in self.pd.stable_entries:
            self.assertLessEqual(
                self.analyzer.get_equilibrium_reaction_energy(entry), 0,
                "Stable entries should have negative equilibrium reaction energy!")

    def test_get_decomposition(self):
        for entry in self.pd.stable_entries:
            self.assertEquals(len(self.analyzer.get_decomposition(entry.composition)), 1,
                              "Stable composition should have only 1 decomposition!")
        dim = len(self.pd.elements)
        for entry in self.pd.all_entries:
            ndecomp = len(self.analyzer.get_decomposition(entry.composition))
            self.assertTrue(ndecomp > 0 and ndecomp <= dim,
                            "The number of decomposition phases can at most be equal to the number of components.")

        #Just to test decomp for a ficitious composition
        ansdict = {entry.composition.formula: amt
                   for entry, amt in
                   self.analyzer.get_decomposition(Composition("Li3Fe7O11")).items()}
        expected_ans = {"Fe2 O2": 0.0952380952380949,
                        "Li1 Fe1 O2": 0.5714285714285714,
                        "Fe6 O8": 0.33333333333333393}
        for k, v in expected_ans.items():
            self.assertAlmostEqual(ansdict[k], v)

    def test_get_transition_chempots(self):
        for el in self.pd.elements:
            self.assertLessEqual(len(self.analyzer.get_transition_chempots(el)),
                                 len(self.pd.facets))

    def test_get_element_profile(self):
        for el in self.pd.elements:
            for entry in self.pd.stable_entries:
                if not (entry.composition.is_element):
                    self.assertLessEqual(len(self.analyzer.get_element_profile(el, entry.composition)),
                                         len(self.pd.facets))

    def test_get_get_chempot_range_map(self):
        elements = [el for el in self.pd.elements if el.symbol != "Fe"]
        self.assertEqual(len(self.analyzer.get_chempot_range_map(elements)), 10)

    def test_getmu_vertices_stability_phase(self):
        results = self.analyzer.getmu_vertices_stability_phase(Composition.from_formula("LiFeO2"), Element("O"))
        self.assertAlmostEqual(len(results), 6)
        test_equality = False
        for c in results:
            if abs(c[Element("O")]+7.115) < 1e-2 and abs(c[Element("Fe")]+6.596) < 1e-2 and \
                    abs(c[Element("Li")]+3.931) < 1e-2:
                test_equality = True
        self.assertTrue(test_equality,"there is an expected vertex missing in the list")


    def test_getmu_range_stability_phase(self):
        results = self.analyzer.get_chempot_range_stability_phase(
            Composition("LiFeO2"), Element("O"))
        self.assertAlmostEqual(results[Element("O")][1], -4.4501812249999997)
        self.assertAlmostEqual(results[Element("Fe")][0], -6.5961470999999996)
        self.assertAlmostEqual(results[Element("Li")][0], -3.6250022625000007)
示例#5
0
class PDAnalyzerTest(unittest.TestCase):
    def setUp(self):
        module_dir = os.path.dirname(os.path.abspath(__file__))
        (elements, entries) = PDEntryIO.from_csv(
            os.path.join(module_dir, "pdentries_test.csv"))
        self.pd = PhaseDiagram(entries)
        self.analyzer = PDAnalyzer(self.pd)

    def test_get_e_above_hull(self):
        for entry in self.pd.stable_entries:
            self.assertLess(
                self.analyzer.get_e_above_hull(entry), 1e-11,
                "Stable entries should have e above hull of zero!")
        for entry in self.pd.all_entries:
            if entry not in self.pd.stable_entries:
                e_ah = self.analyzer.get_e_above_hull(entry)
                self.assertGreaterEqual(e_ah, 0)
                self.assertTrue(isinstance(e_ah, Number))

    def test_get_equilibrium_reaction_energy(self):
        for entry in self.pd.stable_entries:
            self.assertLessEqual(
                self.analyzer.get_equilibrium_reaction_energy(entry), 0,
                "Stable entries should have negative equilibrium reaction energy!"
            )

    def test_get_decomposition(self):
        for entry in self.pd.stable_entries:
            self.assertEqual(
                len(self.analyzer.get_decomposition(entry.composition)), 1,
                "Stable composition should have only 1 decomposition!")
        dim = len(self.pd.elements)
        for entry in self.pd.all_entries:
            ndecomp = len(self.analyzer.get_decomposition(entry.composition))
            self.assertTrue(
                ndecomp > 0 and ndecomp <= dim,
                "The number of decomposition phases can at most be equal to the number of components."
            )

        #Just to test decomp for a ficitious composition
        ansdict = {
            entry.composition.formula: amt
            for entry, amt in self.analyzer.get_decomposition(
                Composition("Li3Fe7O11")).items()
        }
        expected_ans = {
            "Fe2 O2": 0.0952380952380949,
            "Li1 Fe1 O2": 0.5714285714285714,
            "Fe6 O8": 0.33333333333333393
        }
        for k, v in expected_ans.items():
            self.assertAlmostEqual(ansdict[k], v)

    def test_get_transition_chempots(self):
        for el in self.pd.elements:
            self.assertLessEqual(
                len(self.analyzer.get_transition_chempots(el)),
                len(self.pd.facets))

    def test_get_element_profile(self):
        for el in self.pd.elements:
            for entry in self.pd.stable_entries:
                if not (entry.composition.is_element):
                    self.assertLessEqual(
                        len(
                            self.analyzer.get_element_profile(
                                el, entry.composition)), len(self.pd.facets))

    def test_get_get_chempot_range_map(self):
        elements = [el for el in self.pd.elements if el.symbol != "Fe"]
        self.assertEqual(len(self.analyzer.get_chempot_range_map(elements)),
                         10)

    def test_getmu_vertices_stability_phase(self):
        results = self.analyzer.getmu_vertices_stability_phase(
            Composition("LiFeO2"), Element("O"))
        self.assertAlmostEqual(len(results), 6)
        test_equality = False
        for c in results:
            if abs(c[Element("O")]+7.115) < 1e-2 and abs(c[Element("Fe")]+6.596) < 1e-2 and \
                    abs(c[Element("Li")]+3.931) < 1e-2:
                test_equality = True
        self.assertTrue(test_equality,
                        "there is an expected vertex missing in the list")

    def test_getmu_range_stability_phase(self):
        results = self.analyzer.get_chempot_range_stability_phase(
            Composition("LiFeO2"), Element("O"))
        self.assertAlmostEqual(results[Element("O")][1], -4.4501812249999997)
        self.assertAlmostEqual(results[Element("Fe")][0], -6.5961470999999996)
        self.assertAlmostEqual(results[Element("Li")][0], -3.6250022625000007)

    def test_get_hull_energy(self):
        for entry in self.pd.stable_entries:
            h_e = self.analyzer.get_hull_energy(entry.composition)
            self.assertAlmostEqual(h_e, entry.energy)
            n_h_e = self.analyzer.get_hull_energy(
                entry.composition.fractional_composition)
            self.assertAlmostEqual(n_h_e, entry.energy_per_atom)

    def test_1d_pd(self):
        entry = PDEntry('H', 0)
        pd = PhaseDiagram([entry])
        pda = PDAnalyzer(pd)
        decomp, e = pda.get_decomp_and_e_above_hull(PDEntry('H', 1))
        self.assertAlmostEqual(e, 1)
        self.assertAlmostEqual(decomp[entry], 1.0)
示例#6
0
    print "Run contains formula {} with corrected energy {:.3f} eV.".format(
        entry.composition, entry.energy
    )
    print "Energy above convex hull = {:.1f} meV".format(ehull)
    if ehull < 1:
        print "Entry is stable."
    elif ehull < 30:
        print "Entry is metastable and could be stable at finite temperatures."
    elif ehull < 50:
        print "Entry has a low probability of being stable."
    else:
        print "Entry is very unlikely to be stable."

    if ehull > 0:
        decomp = analyzer.get_decomposition(entry.composition)
        print {e.composition.formula: k for e, k in decomp.items()}

if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="""
    This is a simple phase stability estimation script which utilizes the
    Materials API and pymatgen to calculate the phase stability of a single
    material.""",
    epilog="""
    Author: Shyue Ping Ong
    Version: {}
    Last updated: {}""".format(__version__, __date__))

    parser.add_argument("directory", metavar="dir", type=str,
                        help="directory containing vasp run to process")
    parser.add_argument("-k", "--key", dest="api_key", type=str, required=True,
示例#7
0
class PDAnalyzerTest(unittest.TestCase):
    def setUp(self):
        module_dir = os.path.dirname(os.path.abspath(__file__))
        (elements, entries) = PDEntryIO.from_csv(
            os.path.join(module_dir, "pdentries_test.csv"))
        self.pd = PhaseDiagram(entries)
        self.analyzer = PDAnalyzer(self.pd)

    def test_get_e_above_hull(self):
        for entry in self.pd.stable_entries:
            self.assertLess(
                self.analyzer.get_e_above_hull(entry), 1e-11,
                "Stable entries should have e above hull of zero!")
        for entry in self.pd.all_entries:
            if entry not in self.pd.stable_entries:
                self.assertGreaterEqual(self.analyzer.get_e_above_hull(entry),
                                        0)

    def test_get_equilibrium_reaction_energy(self):
        for entry in self.pd.stable_entries:
            self.assertLessEqual(
                self.analyzer.get_equilibrium_reaction_energy(entry), 0,
                "Stable entries should have negative equilibrium reaction energy!"
            )

    def test_get_decomposition(self):
        for entry in self.pd.stable_entries:
            self.assertEquals(
                len(self.analyzer.get_decomposition(entry.composition)), 1,
                "Stable composition should have only 1 decomposition!")
        dim = len(self.pd.elements)
        for entry in self.pd.all_entries:
            ndecomp = len(self.analyzer.get_decomposition(entry.composition))
            self.assertTrue(
                ndecomp > 0 and ndecomp <= dim,
                "The number of decomposition phases can at most be equal to the number of components."
            )

        #Just to test decomp for a ficitious composition
        ansdict = {
            entry.composition.formula: amt
            for entry, amt in self.analyzer.get_decomposition(
                Composition("Li3Fe7O11")).items()
        }
        expected_ans = {
            "Fe2 O2": 0.0952380952380949,
            "Li1 Fe1 O2": 0.5714285714285714,
            "Fe6 O8": 0.33333333333333393
        }
        for k, v in expected_ans.items():
            self.assertAlmostEqual(ansdict[k], v)

    def test_get_transition_chempots(self):
        for el in self.pd.elements:
            self.assertLessEqual(
                len(self.analyzer.get_transition_chempots(el)),
                len(self.pd.facets))

    def test_get_element_profile(self):
        for el in self.pd.elements:
            for entry in self.pd.stable_entries:
                if not (entry.composition.is_element):
                    self.assertLessEqual(
                        len(
                            self.analyzer.get_element_profile(
                                el, entry.composition)), len(self.pd.facets))

    def test_get_get_chempot_range_map(self):
        elements = [el for el in self.pd.elements if el.symbol != "Fe"]
        self.assertEqual(len(self.analyzer.get_chempot_range_map(elements)),
                         10)