def estimate_alpha_lbdm(image, trimap, preconditioner=None, laplacian_kwargs={}, cg_kwargs={}): """ Estimate alpha from an input image and an input trimap using Learning Based Digital Matting as proposed by :cite:`zheng2009learning`. Parameters ---------- image: numpy.ndarray Image with shape :math:`h \\times w \\times d` for which the alpha matte should be estimated trimap: numpy.ndarray Trimap with shape :math:`h \\times w` of the image preconditioner: function or scipy.sparse.linalg.LinearOperator Function or sparse matrix that applies the preconditioner to a vector (default: ichol) laplacian_kwargs: dictionary Arguments passed to the :code:`lbdm_laplacian` function cg_kwargs: dictionary Arguments passed to the :code:`cg` solver Returns ------- alpha: numpy.ndarray Estimated alpha matte Example ------- >>> from pymatting import * >>> image = load_image("data/lemur/lemur.png", "RGB") >>> trimap = load_image("data/lemur/lemur_trimap.png", "GRAY") >>> alpha = estimate_alpha_lbdm( ... image, ... trimap, ... laplacian_kwargs={"epsilon": 1e-6}, ... cg_kwargs={"maxiter":2000}) """ if preconditioner is None: preconditioner = ichol sanity_check_image(image) A, b = make_linear_system(lbdm_laplacian(image, **laplacian_kwargs), trimap) x = cg(A, b, M=preconditioner(A), **cg_kwargs) alpha = np.clip(x, 0, 1).reshape(trimap.shape) return alpha
def estimate_alpha_lbdm(image, trimap, preconditioner=None, laplacian_kwargs={}, cg_kwargs={}): """ Estimate alpha from an input image and an input trimap using Learning Based Digital Matting as proposed by :cite:`zheng2009learning`. Parameters ----------------- image: numpy.ndarray Image with shape :math:`h \\times w \\times d` for which the foreground should be estimated trimap: numpy.ndarray Trimap with shape :math:`h \\times w \\times 1` of the image preconditioner: function or scipy.sparse.linalg.LinearOperator Function or sparse matrix that applies the preconditioner to a vector (default: ichol) laplacian_kwargs: dictionary Arguments passed to the :code:`lbdm_laplacian` function cg_kwargs: dictionary Arguments passed to the :code:`cg` Returns ---------------- alpha: numpy.ndarray Estimated alpha matte """ if preconditioner is None: preconditioner = ichol A, b = make_linear_system(lbdm_laplacian(image, **laplacian_kwargs), trimap) x = cg(A, b, M=preconditioner(A), **cg_kwargs) alpha = np.clip(x, 0, 1).reshape(trimap.shape) return alpha