示例#1
0
def marginal_mixture_logcdf(op, value, rng, weights, *components, **kwargs):

    # single component
    if len(components) == 1:
        # Need to broadcast value across mixture axis
        mix_axis = -components[0].owner.op.ndim_supp - 1
        components_logcdf = logcdf(components[0],
                                   at.expand_dims(value, mix_axis))
    else:
        components_logcdf = at.stack(
            [logcdf(component, value) for component in components],
            axis=-1,
        )

    mix_logcdf = at.logsumexp(at.log(weights) + components_logcdf, axis=-1)

    mix_logcdf = check_parameters(
        mix_logcdf,
        0 <= weights,
        weights <= 1,
        at.isclose(at.sum(weights, axis=-1), 1),
        msg="0 <= weights <= 1, sum(weights) == 1",
    )

    return mix_logcdf
示例#2
0
def marginal_mixture_logcdf(op, value, rng, weights, *components, **kwargs):

    # single component
    if len(components) == 1:
        # Need to broadcast value across mixture axis
        mix_axis = -components[0].owner.op.ndim_supp - 1
        components_logcdf = logcdf(components[0],
                                   at.expand_dims(value, mix_axis))
    else:
        components_logcdf = at.stack(
            [logcdf(component, value) for component in components],
            axis=-1,
        )

    mix_logcdf = at.logsumexp(at.log(weights) + components_logcdf, axis=-1)

    # Squeeze stack dimension
    # There is a Aesara bug in squeeze with negative axis
    # https://github.com/aesara-devs/aesara/issues/830
    # mix_logp = at.squeeze(mix_logp, axis=-1)
    mix_logcdf = at.squeeze(mix_logcdf, axis=mix_logcdf.ndim - 1)

    mix_logcdf = check_parameters(
        mix_logcdf,
        0 <= weights,
        weights <= 1,
        at.isclose(at.sum(weights, axis=-1), 1),
        msg="0 <= weights <= 1, sum(weights) == 1",
    )

    return mix_logcdf
示例#3
0
def test_logcdf_helper():
    value = at.vector("value")
    x = Normal.dist(0, 1)

    x_logcdf = logcdf(x, value)
    np.testing.assert_almost_equal(x_logcdf.eval({value: [0, 1]}), sp.norm(0, 1).logcdf([0, 1]))

    x_logcdf = logcdf(x, [0, 1])
    np.testing.assert_almost_equal(x_logcdf.eval(), sp.norm(0, 1).logcdf([0, 1]))
示例#4
0
def test_logcdf_helper():
    value = at.vector("value")
    x = Normal.dist(0, 1, size=2)

    x_logp = logcdf(x, value, sum=False)
    np.testing.assert_almost_equal(x_logp.eval({value: [0, 1]}), sp.norm(0, 1).logcdf([0, 1]))

    x_logp = logcdf(x, [0, 1], sum=False)
    np.testing.assert_almost_equal(x_logp.eval(), sp.norm(0, 1).logcdf([0, 1]))
示例#5
0
def test_logcdf_transformed_argument():
    with Model() as m:
        sigma = HalfFlat("sigma")
        x = Normal("x", 0, sigma)
        Potential("norm_term", -logcdf(x, 1.0))

    sigma_value_log = -1.0
    sigma_value = np.exp(sigma_value_log)
    x_value = 0.5

    observed = m.logp_nojac({"sigma_log__": sigma_value_log, "x": x_value})
    expected = logp(TruncatedNormal.dist(0, sigma_value, lower=None, upper=1.0), x_value).eval()
    assert np.isclose(observed, expected)