示例#1
0
    def create_shared_params(self,
                             trace=None,
                             size=None,
                             jitter=1,
                             start=None):
        if trace is None:
            if size is None:
                raise opvi.ParametrizationError(
                    "Need `trace` or `size` to initialize")
            else:
                ipfn = make_initial_point_fn(
                    model=self.model,
                    overrides=start,
                    jitter_rvs={},
                    return_transformed=True,
                )
                start = ipfn(
                    self.model.rng_seeder.randint(2**30, dtype=np.int64))
                start = pm.floatX(DictToArrayBijection.map(start))
                # Initialize particles
                histogram = np.tile(start, (size, 1))
                histogram += pm.floatX(
                    np.random.normal(0, jitter, histogram.shape))

        else:
            histogram = np.empty((len(trace) * len(trace.chains), self.ddim))
            i = 0
            for t in trace.chains:
                for j in range(len(trace)):
                    histogram[i] = DictToArrayBijection.map(trace.point(j, t))
                    i += 1
        return dict(histogram=aesara.shared(pm.floatX(histogram), "histogram"))
示例#2
0
 def create_shared_params(self, start=None):
     start = self._prepare_start(start)
     rho = np.zeros((self.ddim,))
     return {
         "mu": aesara.shared(pm.floatX(start), "mu"),
         "rho": aesara.shared(pm.floatX(rho), "rho"),
     }
示例#3
0
    def __call__(self, x):
        neg_value = np.float64(self.logp_func(pm.floatX(x)))
        value = -1.0 * nan_to_high(neg_value)
        if self.use_gradient:
            neg_grad = self.dlogp_func(pm.floatX(x))
            if np.all(np.isfinite(neg_grad)):
                self.previous_x = x
            grad = nan_to_num(-1.0 * neg_grad)
            grad = grad.astype(np.float64)
        else:
            self.previous_x = x
            grad = None

        if self.n_eval % 10 == 0:
            self.update_progress_desc(neg_value, grad)

        if self.n_eval > self.maxeval:
            self.update_progress_desc(neg_value, grad)
            raise StopIteration

        self.n_eval += 1
        if self.progressbar:
            assert isinstance(self.progress, ProgressBar)
            self.progress.update_bar(self.n_eval)

        if self.use_gradient:
            return value, grad
        else:
            return value
def test_vae():
    minibatch_size = 10
    data = pm.floatX(np.random.rand(100))
    x_mini = pm.Minibatch(data, minibatch_size)
    x_inp = at.vector()
    x_inp.tag.test_value = data[:minibatch_size]

    ae = aesara.shared(pm.floatX([0.1, 0.1]))
    be = aesara.shared(pm.floatX(1.0))

    ad = aesara.shared(pm.floatX(1.0))
    bd = aesara.shared(pm.floatX(1.0))

    enc = x_inp.dimshuffle(0, "x") * ae.dimshuffle("x", 0) + be
    mu, rho = enc[:, 0], enc[:, 1]

    with pm.Model():
        # Hidden variables
        zs = pm.Normal("zs", mu=0, sigma=1, size=minibatch_size)
        dec = zs * ad + bd
        # Observation model
        pm.Normal("xs_", mu=dec, sigma=0.1, observed=x_inp)

        pm.fit(
            1,
            local_rv={zs: dict(mu=mu, rho=rho)},
            more_replacements={x_inp: x_mini},
            more_obj_params=[ae, be, ad, bd],
        )
示例#5
0
    def create_shared_params(self,
                             trace=None,
                             size=None,
                             jitter=1,
                             start=None):
        if trace is None:
            if size is None:
                raise opvi.ParametrizationError(
                    "Need `trace` or `size` to initialize")
            else:
                start = self._prepare_start(start)
                # Initialize particles
                histogram = np.tile(start, (size, 1))
                histogram += pm.floatX(
                    np.random.normal(0, jitter, histogram.shape))

        else:
            histogram = np.empty((len(trace) * len(trace.chains), self.ddim))
            i = 0
            for t in trace.chains:
                for j in range(len(trace)):
                    histogram[i] = DictToArrayBijection.map(trace.point(
                        j, t)).data
                    i += 1
        return dict(histogram=aesara.shared(pm.floatX(histogram), "histogram"))
示例#6
0
    def test_observed_type(self):
        X_ = pm.floatX(np.random.randn(100, 5))
        X = pm.floatX(aesara.shared(X_))
        with pm.Model():
            x1 = pm.Normal("x1", observed=X_)
            x2 = pm.Normal("x2", observed=X)

        assert x1.type == X.type
        assert x2.type == X.type
示例#7
0
    def test_free_rv(self):
        with pm.Model() as model4:
            Normal("n", observed=[[1, 1], [1, 1]], total_size=[2, 2])
            p4 = aesara.function([], model4.logp())

        with pm.Model() as model5:
            n = Normal("n", total_size=[2, Ellipsis, 2], size=(2, 2))
            p5 = aesara.function([n.tag.value_var], model5.logp())
        assert p4() == p5(pm.floatX([[1]]))
        assert p4() == p5(pm.floatX([[1, 1], [1, 1]]))
def test_fit_with_nans(score):
    X_mean = pm.floatX(np.linspace(0, 10, 10))
    y = pm.floatX(np.random.normal(X_mean * 4, 0.05))
    with pm.Model():
        inp = pm.Normal("X", X_mean, size=X_mean.shape)
        coef = pm.Normal("b", 4.0)
        mean = inp * coef
        pm.Normal("y", mean, 0.1, observed=y)
        with pytest.raises(FloatingPointError) as e:
            advi = pm.fit(100, score=score, obj_optimizer=pm.adam(learning_rate=float("nan")))
def test_var_replacement():
    X_mean = pm.floatX(np.linspace(0, 10, 10))
    y = pm.floatX(np.random.normal(X_mean * 4, 0.05))
    with pm.Model():
        inp = pm.Normal("X", X_mean, size=X_mean.shape)
        coef = pm.Normal("b", 4.0)
        mean = inp * coef
        pm.Normal("y", mean, 0.1, observed=y)
        advi = pm.fit(100)
        assert advi.sample_node(mean).eval().shape == (10,)
        x_new = pm.floatX(np.linspace(0, 10, 11))
        assert advi.sample_node(mean, more_replacements={inp: x_new}).eval().shape == (11,)
示例#10
0
 def randidx(self, size=None):
     if size is None:
         size = (1,)
     elif isinstance(size, TensorVariable):
         if size.ndim < 1:
             size = size[None]
         elif size.ndim > 1:
             raise ValueError("size ndim should be no more than 1d")
         else:
             pass
     else:
         size = tuple(np.atleast_1d(size))
     return self._rng.uniform(
         size=size, low=pm.floatX(0), high=pm.floatX(self.histogram.shape[0]) - pm.floatX(1e-16)
     ).astype("int32")
示例#11
0
    def test_aesara_switch_broadcast_edge_cases_1(self):
        # Tests against two subtle issues related to a previous bug in Theano
        # where `tt.switch` would not always broadcast tensors with single
        # values https://github.com/pymc-devs/aesara/issues/270

        # Known issue 1: https://github.com/pymc-devs/pymc/issues/4389
        data = pm.floatX(np.zeros(10))
        with pm.Model() as m:
            p = pm.Beta("p", 1, 1)
            obs = pm.Bernoulli("obs", p=p, observed=data)

        npt.assert_allclose(
            logpt_sum(obs).eval({p.tag.value_var: pm.floatX(np.array(0.0))}),
            np.log(0.5) * 10,
        )
示例#12
0
 def test_cloning_available(self):
     gop = generator(integers())
     res = gop**2
     shared = aesara.shared(floatX(10))
     res1 = aesara.clone_replace(res, {gop: shared})
     f = aesara.function([], res1)
     assert f() == np.float32(100)
示例#13
0
 def apply(self, f):
     # f: kernel function for KSD f(histogram) -> (k(x,.), \nabla_x k(x,.))
     stein = Stein(
         approx=self.approx,
         kernel=f,
         use_histogram=self.approx.all_histograms,
         temperature=self.temperature,
     )
     return pm.floatX(-1) * stein.grad
示例#14
0
 def rslice(self, total, size, seed):
     if size is None:
         return slice(None)
     elif isinstance(size, int):
         rng = pm.at_rng(seed)
         Minibatch.RNG[id(self)].append(rng)
         return rng.uniform(size=(size,), low=0.0, high=pm.floatX(total) - 1e-16).astype("int64")
     else:
         raise TypeError("Unrecognized size type, %r" % size)
示例#15
0
 def build_model(self, distfam, params, size, transform, initval=None):
     if initval is not None:
         initval = pm.floatX(initval)
     with pm.Model() as m:
         distfam("x",
                 size=size,
                 transform=transform,
                 initval=initval,
                 **params)
     return m
示例#16
0
 def create_shared_params(self, start=None):
     ipfn = make_initial_point_fn(
         model=self.model,
         overrides=start,
         jitter_rvs={},
         return_transformed=True,
     )
     start = ipfn(self.model.rng_seeder.randint(2**30, dtype=np.int64))
     if self.batched:
         start = start[self.group[0].name][0]
     else:
         start = DictToArrayBijection.map(start)
     rho = np.zeros((self.ddim, ))
     if self.batched:
         start = np.tile(start, (self.bdim, 1))
         rho = np.tile(rho, (self.bdim, 1))
     return {
         "mu": aesara.shared(pm.floatX(start), "mu"),
         "rho": aesara.shared(pm.floatX(rho), "rho"),
     }
示例#17
0
文件: updates.py 项目: bwengals/pymc3
def adagrad_window(loss_or_grads=None,
                   params=None,
                   learning_rate=0.001,
                   epsilon=0.1,
                   n_win=10):
    """Returns a function that returns parameter updates.
    Instead of accumulated estimate, uses running window

    Parameters
    ----------
    loss_or_grads: symbolic expression or list of expressions
        A scalar loss expression, or a list of gradient expressions
    params: list of shared variables
        The variables to generate update expressions for
    learning_rate: float
        Learning rate.
    epsilon: float
        Offset to avoid zero-division in the normalizer of adagrad.
    n_win: int
        Number of past steps to calculate scales of parameter gradients.

    Returns
    -------
    OrderedDict
        A dictionary mapping each parameter to its update expression
    """
    if loss_or_grads is None and params is None:
        return partial(adagrad_window, **_get_call_kwargs(locals()))
    elif loss_or_grads is None or params is None:
        raise ValueError(
            "Please provide both `loss_or_grads` and `params` to get updates")
    grads = get_or_compute_grads(loss_or_grads, params)
    updates = OrderedDict()
    for param, grad in zip(params, grads):
        i = aesara.shared(pm.floatX(0))
        i_int = i.astype("int32")
        value = param.get_value(borrow=True)
        accu = aesara.shared(
            np.zeros(value.shape + (n_win, ), dtype=value.dtype))

        # Append squared gradient vector to accu_new
        accu_new = at.set_subtensor(accu[..., i_int], grad**2)
        i_new = at.switch((i + 1) < n_win, i + 1, 0)
        updates[accu] = accu_new
        updates[i] = i_new

        accu_sum = accu_new.sum(axis=-1)
        updates[param] = param - (learning_rate * grad /
                                  at.sqrt(accu_sum + epsilon))
    return updates
示例#18
0
def test_scale_cost_to_minibatch_works(aux_total_size):
    mu0 = 1.5
    sigma = 1.0
    y_obs = np.array([1.6, 1.4])
    beta = len(y_obs) / float(aux_total_size)

    # TODO: aesara_config
    # with pm.Model(aesara_config=dict(floatX='float64')):
    # did not not work as expected
    # there were some numeric problems, so float64 is forced
    with aesara.config.change_flags(floatX="float64", warn_float64="ignore"):

        assert aesara.config.floatX == "float64"
        assert aesara.config.warn_float64 == "ignore"

        post_mu = np.array([1.88], dtype=aesara.config.floatX)
        post_sigma = np.array([1], dtype=aesara.config.floatX)

        with pm.Model():
            mu = pm.Normal("mu", mu=mu0, sigma=sigma)
            pm.Normal("y", mu=mu, sigma=1, observed=y_obs, total_size=aux_total_size)
            # Create variational gradient tensor
            mean_field_1 = MeanField()
            assert mean_field_1.scale_cost_to_minibatch
            mean_field_1.shared_params["mu"].set_value(post_mu)
            mean_field_1.shared_params["rho"].set_value(np.log(np.exp(post_sigma) - 1))

            with aesara.config.change_flags(compute_test_value="off"):
                elbo_via_total_size_scaled = -pm.operators.KL(mean_field_1)()(10000)

        with pm.Model():
            mu = pm.Normal("mu", mu=mu0, sigma=sigma)
            pm.Normal("y", mu=mu, sigma=1, observed=y_obs, total_size=aux_total_size)
            # Create variational gradient tensor
            mean_field_2 = MeanField()
            assert mean_field_1.scale_cost_to_minibatch
            mean_field_2.scale_cost_to_minibatch = False
            assert not mean_field_2.scale_cost_to_minibatch
            mean_field_2.shared_params["mu"].set_value(post_mu)
            mean_field_2.shared_params["rho"].set_value(np.log(np.exp(post_sigma) - 1))

        with aesara.config.change_flags(compute_test_value="off"):
            elbo_via_total_size_unscaled = -pm.operators.KL(mean_field_2)()(10000)

        np.testing.assert_allclose(
            elbo_via_total_size_unscaled.eval(),
            elbo_via_total_size_scaled.eval() * pm.floatX(1 / beta),
            rtol=0.02,
            atol=1e-1,
        )
示例#19
0
 def __call__(self, nmc, **kwargs):
     op = self.op  # type: KSD
     grad = op.apply(self.tf)
     if self.approx.all_histograms:
         z = self.approx.joint_histogram
     else:
         z = self.approx.symbolic_random
     if "more_obj_params" in kwargs:
         params = self.obj_params + kwargs["more_obj_params"]
     else:
         params = self.test_params + kwargs["more_tf_params"]
         grad *= pm.floatX(-1)
     grads = at.grad(None, params, known_grads={z: grad})
     return self.approx.set_size_and_deterministic(
         grads, nmc, 0, kwargs.get("more_replacements"))
示例#20
0
class TestElementWiseLogp(SeededTest):
    def build_model(self, distfam, params, size, transform, initval=None):
        if initval is not None:
            initval = pm.floatX(initval)
        with pm.Model() as m:
            distfam("x",
                    size=size,
                    transform=transform,
                    initval=initval,
                    **params)
        return m

    def check_transform_elementwise_logp(self, model):
        x = model.free_RVs[0]
        x_val_transf = x.tag.value_var

        pt = model.initial_point(0)
        test_array_transf = floatX(
            np.random.randn(*pt[x_val_transf.name].shape))
        transform = x_val_transf.tag.transform
        test_array_untransf = transform.backward(test_array_transf,
                                                 *x.owner.inputs).eval()

        # Create input variable with same dimensionality as untransformed test_array
        x_val_untransf = at.constant(test_array_untransf).type()

        jacob_det = transform.log_jac_det(test_array_transf, *x.owner.inputs)
        assert joint_logpt(x, sum=False)[0].ndim == x.ndim == jacob_det.ndim

        v1 = joint_logpt(x, x_val_transf, jacobian=False).eval(
            {x_val_transf: test_array_transf})
        v2 = joint_logpt(x, x_val_untransf, transformed=False).eval(
            {x_val_untransf: test_array_untransf})
        close_to(v1, v2, tol)

    def check_vectortransform_elementwise_logp(self, model):
        x = model.free_RVs[0]
        x_val_transf = x.tag.value_var

        pt = model.initial_point(0)
        test_array_transf = floatX(
            np.random.randn(*pt[x_val_transf.name].shape))
        transform = x_val_transf.tag.transform
        test_array_untransf = transform.backward(test_array_transf,
                                                 *x.owner.inputs).eval()

        # Create input variable with same dimensionality as untransformed test_array
        x_val_untransf = at.constant(test_array_untransf).type()

        jacob_det = transform.log_jac_det(test_array_transf, *x.owner.inputs)
        # Original distribution is univariate
        if x.owner.op.ndim_supp == 0:
            assert joint_logpt(
                x, sum=False)[0].ndim == x.ndim == (jacob_det.ndim + 1)
        # Original distribution is multivariate
        else:
            assert joint_logpt(
                x, sum=False)[0].ndim == (x.ndim - 1) == jacob_det.ndim

        a = joint_logpt(x, x_val_transf,
                        jacobian=False).eval({x_val_transf: test_array_transf})
        b = joint_logpt(x, x_val_untransf, transformed=False).eval(
            {x_val_untransf: test_array_untransf})
        # Hack to get relative tolerance
        close_to(a, b, np.abs(0.5 * (a + b) * tol))

    @pytest.mark.parametrize(
        "sigma,size",
        [
            (2.5, 2),
            (5.0, (2, 3)),
            (np.ones(3) * 10.0, (4, 3)),
        ],
    )
    def test_half_normal(self, sigma, size):
        model = self.build_model(pm.HalfNormal, {"sigma": sigma},
                                 size=size,
                                 transform=tr.log)
        self.check_transform_elementwise_logp(model)

    @pytest.mark.parametrize("lam,size", [(2.5, 2), (5.0, (2, 3)),
                                          (np.ones(3), (4, 3))])
    def test_exponential(self, lam, size):
        model = self.build_model(pm.Exponential, {"lam": lam},
                                 size=size,
                                 transform=tr.log)
        self.check_transform_elementwise_logp(model)

    @pytest.mark.parametrize(
        "a,b,size",
        [
            (1.0, 1.0, 2),
            (0.5, 0.5, (2, 3)),
            (np.ones(3), np.ones(3), (4, 3)),
        ],
    )
    def test_beta(self, a, b, size):
        model = self.build_model(pm.Beta, {
            "alpha": a,
            "beta": b
        },
                                 size=size,
                                 transform=tr.logodds)
        self.check_transform_elementwise_logp(model)

    @pytest.mark.parametrize(
        "lower,upper,size",
        [
            (0.0, 1.0, 2),
            (0.5, 5.5, (2, 3)),
            (pm.floatX(np.zeros(3)), pm.floatX(np.ones(3)), (4, 3)),
        ],
    )
    def test_uniform(self, lower, upper, size):
        def transform_params(*inputs):
            _, _, _, lower, upper = inputs
            lower = at.as_tensor_variable(lower) if lower is not None else None
            upper = at.as_tensor_variable(upper) if upper is not None else None
            return lower, upper

        interval = tr.Interval(bounds_fn=transform_params)
        model = self.build_model(pm.Uniform, {
            "lower": lower,
            "upper": upper
        },
                                 size=size,
                                 transform=interval)
        self.check_transform_elementwise_logp(model)

    @pytest.mark.parametrize(
        "lower, c, upper, size",
        [
            (0.0, 1.0, 2.0, 2),
            (-10, 0, 200, (2, 3)),
            (np.zeros(3), np.ones(3), np.ones(3), (4, 3)),
        ],
    )
    def test_triangular(self, lower, c, upper, size):
        def transform_params(*inputs):
            _, _, _, lower, _, upper = inputs
            lower = at.as_tensor_variable(lower) if lower is not None else None
            upper = at.as_tensor_variable(upper) if upper is not None else None
            return lower, upper

        interval = tr.Interval(bounds_fn=transform_params)
        model = self.build_model(pm.Triangular, {
            "lower": lower,
            "c": c,
            "upper": upper
        },
                                 size=size,
                                 transform=interval)
        self.check_transform_elementwise_logp(model)

    @pytest.mark.parametrize("mu,kappa,size",
                             [(0.0, 1.0, 2), (-0.5, 5.5, (2, 3)),
                              (np.zeros(3), np.ones(3), (4, 3))])
    def test_vonmises(self, mu, kappa, size):
        model = self.build_model(pm.VonMises, {
            "mu": mu,
            "kappa": kappa
        },
                                 size=size,
                                 transform=tr.circular)
        self.check_transform_elementwise_logp(model)

    @pytest.mark.parametrize("a,size", [(np.ones(2), None),
                                        (np.ones((2, 3)) * 0.5, None),
                                        (np.ones(3), (4, ))])
    def test_dirichlet(self, a, size):
        model = self.build_model(pm.Dirichlet, {"a": a},
                                 size=size,
                                 transform=tr.simplex)
        self.check_vectortransform_elementwise_logp(model)

    def test_normal_ordered(self):
        model = self.build_model(
            pm.Normal,
            {
                "mu": 0.0,
                "sigma": 1.0
            },
            size=3,
            initval=np.asarray([-1.0, 1.0, 4.0]),
            transform=tr.ordered,
        )
        self.check_vectortransform_elementwise_logp(model)

    @pytest.mark.parametrize(
        "sigma,size",
        [
            (2.5, (2, )),
            (np.ones(3), (4, 3)),
        ],
    )
    def test_half_normal_ordered(self, sigma, size):
        initval = np.sort(np.abs(np.random.randn(*size)))
        model = self.build_model(
            pm.HalfNormal,
            {"sigma": sigma},
            size=size,
            initval=initval,
            transform=tr.Chain([tr.log, tr.ordered]),
        )
        self.check_vectortransform_elementwise_logp(model)

    @pytest.mark.parametrize("lam,size", [(2.5, (2, )), (np.ones(3), (4, 3))])
    def test_exponential_ordered(self, lam, size):
        initval = np.sort(np.abs(np.random.randn(*size)))
        model = self.build_model(
            pm.Exponential,
            {"lam": lam},
            size=size,
            initval=initval,
            transform=tr.Chain([tr.log, tr.ordered]),
        )
        self.check_vectortransform_elementwise_logp(model)

    @pytest.mark.parametrize(
        "a,b,size",
        [
            (
                1.0,
                1.0,
                (2, ),
            ),
            (np.ones(3), np.ones(3), (4, 3)),
        ],
    )
    def test_beta_ordered(self, a, b, size):
        initval = np.sort(np.abs(np.random.rand(*size)))
        model = self.build_model(
            pm.Beta,
            {
                "alpha": a,
                "beta": b
            },
            size=size,
            initval=initval,
            transform=tr.Chain([tr.logodds, tr.ordered]),
        )
        self.check_vectortransform_elementwise_logp(model)

    @pytest.mark.parametrize(
        "lower,upper,size",
        [(0.0, 1.0, (2, )),
         (pm.floatX(np.zeros(3)), pm.floatX(np.ones(3)), (4, 3))],
    )
    def test_uniform_ordered(self, lower, upper, size):
        def transform_params(*inputs):
            _, _, _, lower, upper = inputs
            lower = at.as_tensor_variable(lower) if lower is not None else None
            upper = at.as_tensor_variable(upper) if upper is not None else None
            return lower, upper

        interval = tr.Interval(bounds_fn=transform_params)

        initval = np.sort(np.abs(np.random.rand(*size)))
        model = self.build_model(
            pm.Uniform,
            {
                "lower": lower,
                "upper": upper
            },
            size=size,
            initval=initval,
            transform=tr.Chain([interval, tr.ordered]),
        )
        self.check_vectortransform_elementwise_logp(model)

    @pytest.mark.parametrize("mu,kappa,size",
                             [(0.0, 1.0, (2, )),
                              (np.zeros(3), np.ones(3), (4, 3))])
    def test_vonmises_ordered(self, mu, kappa, size):
        initval = np.sort(np.abs(np.random.rand(*size)))
        model = self.build_model(
            pm.VonMises,
            {
                "mu": mu,
                "kappa": kappa
            },
            size=size,
            initval=initval,
            transform=tr.Chain([tr.circular, tr.ordered]),
        )
        self.check_vectortransform_elementwise_logp(model)

    @pytest.mark.parametrize(
        "lower,upper,size,transform",
        [
            (0.0, 1.0, (2, ), tr.simplex),
            (0.5, 5.5, (2, 3), tr.simplex),
            (np.zeros(3), np.ones(3),
             (4, 3), tr.Chain([tr.sum_to_1, tr.logodds])),
        ],
    )
    def test_uniform_other(self, lower, upper, size, transform):
        initval = np.ones(size) / size[-1]
        model = self.build_model(
            pm.Uniform,
            {
                "lower": lower,
                "upper": upper
            },
            size=size,
            initval=initval,
            transform=transform,
        )
        self.check_vectortransform_elementwise_logp(model)

    @pytest.mark.parametrize(
        "mu,cov,size,shape",
        [
            (np.zeros(2), np.diag(np.ones(2)), None, (2, )),
            (np.zeros(3), np.diag(np.ones(3)), (4, ), (4, 3)),
        ],
    )
    def test_mvnormal_ordered(self, mu, cov, size, shape):
        initval = np.sort(np.random.randn(*shape))
        model = self.build_model(pm.MvNormal, {
            "mu": mu,
            "cov": cov
        },
                                 size=size,
                                 initval=initval,
                                 transform=tr.ordered)
        self.check_vectortransform_elementwise_logp(model)
示例#21
0
 def __init__(self, approx, beta=1.0):
     super().__init__(approx)
     self.beta = pm.floatX(beta)
示例#22
0
def integers():
    i = 0
    while True:
        yield pm.floatX(i)
        i += 1
示例#23
0
 def gen():
     for i in range(2):
         yield floatX(np.ones((10, 10)) * i)
示例#24
0
 def cov(self):
     x = self.histogram - self.mean
     return x.T.dot(x) / pm.floatX(self.histogram.shape[0])
示例#25
0
class TestElementWiseLogp(SeededTest):
    def build_model(self, distfam, params, size, transform, initval=None):
        if initval is not None:
            initval = pm.floatX(initval)
        with pm.Model() as m:
            distfam("x",
                    size=size,
                    transform=transform,
                    initval=initval,
                    **params)
        return m

    def check_transform_elementwise_logp(self, model):
        x = model.free_RVs[0]
        x0 = x.tag.value_var
        assert x.ndim == logpt(x, sum=False).ndim

        pt = model.initial_point
        array = np.random.randn(*pt[x0.name].shape)
        transform = x0.tag.transform
        logp_notrans = logpt(x,
                             transform.backward(array, *x.owner.inputs),
                             transformed=False)

        jacob_det = transform.log_jac_det(aesara.shared(array),
                                          *x.owner.inputs)
        assert logpt(x, sum=False).ndim == jacob_det.ndim

        v1 = logpt(x, array, jacobian=False).eval()
        v2 = logp_notrans.eval()
        close_to(v1, v2, tol)

    def check_vectortransform_elementwise_logp(self, model, vect_opt=0):
        x = model.free_RVs[0]
        x0 = x.tag.value_var
        # TODO: For some reason the ndim relations
        # dont hold up here. But final log-probablity
        # values are what we expected.
        # assert (x.ndim - 1) == logpt(x, sum=False).ndim

        pt = model.initial_point
        array = np.random.randn(*pt[x0.name].shape)
        transform = x0.tag.transform
        logp_nojac = logpt(x,
                           transform.backward(array, *x.owner.inputs),
                           transformed=False)

        jacob_det = transform.log_jac_det(aesara.shared(array),
                                          *x.owner.inputs)
        # assert logpt(x).ndim == jacob_det.ndim

        # Hack to get relative tolerance
        a = logpt(x, array.astype(aesara.config.floatX), jacobian=False).eval()
        b = logp_nojac.eval()
        close_to(a, b, np.abs(0.5 * (a + b) * tol))

    @pytest.mark.parametrize(
        "sd,size",
        [
            (2.5, 2),
            (5.0, (2, 3)),
            (np.ones(3) * 10.0, (4, 3)),
        ],
    )
    def test_half_normal(self, sd, size):
        model = self.build_model(pm.HalfNormal, {"sd": sd},
                                 size=size,
                                 transform=tr.log)
        self.check_transform_elementwise_logp(model)

    @pytest.mark.parametrize("lam,size", [(2.5, 2), (5.0, (2, 3)),
                                          (np.ones(3), (4, 3))])
    def test_exponential(self, lam, size):
        model = self.build_model(pm.Exponential, {"lam": lam},
                                 size=size,
                                 transform=tr.log)
        self.check_transform_elementwise_logp(model)

    @pytest.mark.parametrize(
        "a,b,size",
        [
            (1.0, 1.0, 2),
            (0.5, 0.5, (2, 3)),
            (np.ones(3), np.ones(3), (4, 3)),
        ],
    )
    def test_beta(self, a, b, size):
        model = self.build_model(pm.Beta, {
            "alpha": a,
            "beta": b
        },
                                 size=size,
                                 transform=tr.logodds)
        self.check_transform_elementwise_logp(model)

    @pytest.mark.parametrize(
        "lower,upper,size",
        [
            (0.0, 1.0, 2),
            (0.5, 5.5, (2, 3)),
            (pm.floatX(np.zeros(3)), pm.floatX(np.ones(3)), (4, 3)),
        ],
    )
    def test_uniform(self, lower, upper, size):
        def transform_params(*inputs):
            _, _, _, lower, upper = inputs
            lower = at.as_tensor_variable(lower) if lower is not None else None
            upper = at.as_tensor_variable(upper) if upper is not None else None
            return lower, upper

        interval = tr.interval(transform_params)
        model = self.build_model(pm.Uniform, {
            "lower": lower,
            "upper": upper
        },
                                 size=size,
                                 transform=interval)
        self.check_transform_elementwise_logp(model)

    @pytest.mark.parametrize(
        "lower, c, upper, size",
        [
            (0.0, 1.0, 2.0, 2),
            (-10, 0, 200, (2, 3)),
            (np.zeros(3), np.ones(3), np.ones(3), (4, 3)),
        ],
    )
    def test_triangular(self, lower, c, upper, size):
        def transform_params(*inputs):
            _, _, _, lower, _, upper = inputs
            lower = at.as_tensor_variable(lower) if lower is not None else None
            upper = at.as_tensor_variable(upper) if upper is not None else None
            return lower, upper

        interval = tr.interval(transform_params)
        model = self.build_model(pm.Triangular, {
            "lower": lower,
            "c": c,
            "upper": upper
        },
                                 size=size,
                                 transform=interval)
        self.check_transform_elementwise_logp(model)

    @pytest.mark.parametrize("mu,kappa,size",
                             [(0.0, 1.0, 2), (-0.5, 5.5, (2, 3)),
                              (np.zeros(3), np.ones(3), (4, 3))])
    def test_vonmises(self, mu, kappa, size):
        model = self.build_model(pm.VonMises, {
            "mu": mu,
            "kappa": kappa
        },
                                 size=size,
                                 transform=tr.circular)
        self.check_transform_elementwise_logp(model)

    @pytest.mark.parametrize("a,size", [(np.ones(2), None),
                                        (np.ones((2, 3)) * 0.5, None),
                                        (np.ones(3), (4, ))])
    def test_dirichlet(self, a, size):
        model = self.build_model(pm.Dirichlet, {"a": a},
                                 size=size,
                                 transform=tr.simplex)
        self.check_vectortransform_elementwise_logp(model, vect_opt=1)

    def test_normal_ordered(self):
        model = self.build_model(
            pm.Normal,
            {
                "mu": 0.0,
                "sd": 1.0
            },
            size=3,
            initval=np.asarray([-1.0, 1.0, 4.0]),
            transform=tr.ordered,
        )
        self.check_vectortransform_elementwise_logp(model, vect_opt=0)

    @pytest.mark.parametrize(
        "sd,size",
        [
            (2.5, (2, )),
            (np.ones(3), (4, 3)),
        ],
    )
    def test_half_normal_ordered(self, sd, size):
        initval = np.sort(np.abs(np.random.randn(*size)))
        model = self.build_model(
            pm.HalfNormal,
            {"sd": sd},
            size=size,
            initval=initval,
            transform=tr.Chain([tr.log, tr.ordered]),
        )
        self.check_vectortransform_elementwise_logp(model, vect_opt=0)

    @pytest.mark.parametrize("lam,size", [(2.5, (2, )), (np.ones(3), (4, 3))])
    def test_exponential_ordered(self, lam, size):
        initval = np.sort(np.abs(np.random.randn(*size)))
        model = self.build_model(
            pm.Exponential,
            {"lam": lam},
            size=size,
            initval=initval,
            transform=tr.Chain([tr.log, tr.ordered]),
        )
        self.check_vectortransform_elementwise_logp(model, vect_opt=0)

    @pytest.mark.parametrize(
        "a,b,size",
        [
            (
                1.0,
                1.0,
                (2, ),
            ),
            (np.ones(3), np.ones(3), (4, 3)),
        ],
    )
    def test_beta_ordered(self, a, b, size):
        initval = np.sort(np.abs(np.random.rand(*size)))
        model = self.build_model(
            pm.Beta,
            {
                "alpha": a,
                "beta": b
            },
            size=size,
            initval=initval,
            transform=tr.Chain([tr.logodds, tr.ordered]),
        )
        self.check_vectortransform_elementwise_logp(model, vect_opt=0)

    @pytest.mark.parametrize(
        "lower,upper,size",
        [(0.0, 1.0, (2, )),
         (pm.floatX(np.zeros(3)), pm.floatX(np.ones(3)), (4, 3))],
    )
    def test_uniform_ordered(self, lower, upper, size):
        def transform_params(*inputs):
            _, _, _, lower, upper = inputs
            lower = at.as_tensor_variable(lower) if lower is not None else None
            upper = at.as_tensor_variable(upper) if upper is not None else None
            return lower, upper

        interval = tr.interval(transform_params)

        initval = np.sort(np.abs(np.random.rand(*size)))
        model = self.build_model(
            pm.Uniform,
            {
                "lower": lower,
                "upper": upper
            },
            size=size,
            initval=initval,
            transform=tr.Chain([interval, tr.ordered]),
        )
        self.check_vectortransform_elementwise_logp(model, vect_opt=1)

    @pytest.mark.parametrize("mu,kappa,size",
                             [(0.0, 1.0, (2, )),
                              (np.zeros(3), np.ones(3), (4, 3))])
    def test_vonmises_ordered(self, mu, kappa, size):
        initval = np.sort(np.abs(np.random.rand(*size)))
        model = self.build_model(
            pm.VonMises,
            {
                "mu": mu,
                "kappa": kappa
            },
            size=size,
            initval=initval,
            transform=tr.Chain([tr.circular, tr.ordered]),
        )
        self.check_vectortransform_elementwise_logp(model, vect_opt=0)

    @pytest.mark.parametrize(
        "lower,upper,size,transform",
        [
            (0.0, 1.0, (2, ), tr.simplex),
            (0.5, 5.5, (2, 3), tr.simplex),
            (np.zeros(3), np.ones(3),
             (4, 3), tr.Chain([tr.sum_to_1, tr.logodds])),
        ],
    )
    def test_uniform_other(self, lower, upper, size, transform):
        initval = np.ones(size) / size[-1]
        model = self.build_model(
            pm.Uniform,
            {
                "lower": lower,
                "upper": upper
            },
            size=size,
            initval=initval,
            transform=transform,
        )
        self.check_vectortransform_elementwise_logp(model, vect_opt=1)

    @pytest.mark.parametrize(
        "mu,cov,size,shape",
        [
            (np.zeros(2), np.diag(np.ones(2)), None, (2, )),
            (np.zeros(3), np.diag(np.ones(3)), (4, ), (4, 3)),
        ],
    )
    def test_mvnormal_ordered(self, mu, cov, size, shape):
        initval = np.sort(np.random.randn(*shape))
        model = self.build_model(pm.MvNormal, {
            "mu": mu,
            "cov": cov
        },
                                 size=size,
                                 initval=initval,
                                 transform=tr.ordered)
        self.check_vectortransform_elementwise_logp(model, vect_opt=1)
示例#26
0
def find_constrained_prior(
    distribution: pm.Distribution,
    lower: float,
    upper: float,
    init_guess: Dict[str, float],
    mass: float = 0.95,
    fixed_params: Optional[Dict[str, float]] = None,
) -> Dict[str, float]:
    """
    Find optimal parameters to get `mass` % of probability
    of `pm_dist` between `lower` and `upper`.
    Note: only works for one- and two-parameter distributions, as there
    are exactly two constraints. Fix some combination of parameters
    if you want to use it on >=3-parameter distributions.

    Parameters
    ----------
    distribution : pm.Distribution
        PyMC distribution you want to set a prior on.
        Needs to have a ``logcdf`` method implemented in PyMC.
    lower : float
        Lower bound to get `mass` % of probability of `pm_dist`.
    upper : float
        Upper bound to get `mass` % of probability of `pm_dist`.
    init_guess: Dict[str, float]
        Initial guess for ``scipy.optimize.least_squares`` to find the
        optimal parameters of `pm_dist` fitting the interval constraint.
        Must be a dictionary with the name of the PyMC distribution's
        parameter as keys and the initial guess as values.
    mass: float, default to 0.95
        Share of the probability mass we want between ``lower`` and ``upper``.
        Defaults to 95%.
    fixed_params: Dict[str, float], Optional, default None
        Only used when `pm_dist` has at least three parameters.
        Dictionary of fixed parameters, so that there are only 2 to optimize.
        For instance, for a StudenT, you fix nu to a constant and get the optimized
        mu and sigma.

    Returns
    -------
    The optimized distribution parameters as a dictionary with the parameters'
    name as key and the optimized value as value.

    Examples
    --------
    .. code-block:: python

        # get parameters obeying constraints
        opt_params = pm.find_constrained_prior(
            pm.Gamma, lower=0.1, upper=0.4, mass=0.75, init_guess={"alpha": 1, "beta": 10}
        )

        # use these parameters to draw random samples
        samples = pm.Gamma.dist(**opt_params, size=100).eval()

        # use these parameters in a model
        with pm.Model():
            x = pm.Gamma('x', **opt_params)

        # specify fixed values before optimization
        opt_params = pm.find_constrained_prior(
            pm.StudentT,
            lower=0,
            upper=1,
            init_guess={"mu": 5, "sigma": 2},
            fixed_params={"nu": 7},
        )
    """
    assert 0.01 <= mass <= 0.99, (
        "This function optimizes the mass of the given distribution +/- "
        f"1%, so `mass` has to be between 0.01 and 0.99. You provided {mass}.")

    # exit when any parameter is not scalar:
    if np.any(np.asarray(distribution.rv_op.ndims_params) != 0):
        raise NotImplementedError(
            "`pm.find_constrained_prior` does not work with non-scalar parameters yet.\n"
            "Feel free to open a pull request on PyMC repo if you really need this feature."
        )

    dist_params = aet.vector("dist_params")
    params_to_optim = {
        arg_name: dist_params[i]
        for arg_name, i in zip(init_guess.keys(), range(len(init_guess)))
    }

    if fixed_params is not None:
        params_to_optim.update(fixed_params)

    dist = distribution.dist(**params_to_optim)

    try:
        logcdf_lower = pm.logcdf(dist, pm.floatX(lower))
        logcdf_upper = pm.logcdf(dist, pm.floatX(upper))
    except AttributeError:
        raise AttributeError(
            f"You cannot use `find_constrained_prior` with {distribution} -- it doesn't have a logcdf "
            "method yet.\nOpen an issue or, even better, a pull request on PyMC repo if you really "
            "need it.")

    cdf_error = (pm.math.exp(logcdf_upper) - pm.math.exp(logcdf_lower)) - mass
    cdf_error_fn = pm.aesaraf.compile_pymc([dist_params],
                                           cdf_error,
                                           allow_input_downcast=True)

    try:
        aesara_jac = pm.gradient(cdf_error, [dist_params])
        jac = pm.aesaraf.compile_pymc([dist_params],
                                      aesara_jac,
                                      allow_input_downcast=True)
    # when PyMC cannot compute the gradient
    except (NotImplementedError, NullTypeGradError):
        jac = "2-point"

    opt = optimize.least_squares(cdf_error_fn,
                                 x0=list(init_guess.values()),
                                 jac=jac)
    if not opt.success:
        raise ValueError("Optimization of parameters failed.")

    # save optimal parameters
    opt_params = {
        param_name: param_value
        for param_name, param_value in zip(init_guess.keys(), opt.x)
    }
    if fixed_params is not None:
        opt_params.update(fixed_params)

    # check mass in interval is not too far from `mass`
    opt_dist = distribution.dist(**opt_params)
    mass_in_interval = (pm.math.exp(pm.logcdf(opt_dist, upper)) -
                        pm.math.exp(pm.logcdf(opt_dist, lower))).eval()
    if (np.abs(mass_in_interval - mass)) > 0.01:
        warnings.warn(
            f"Final optimization has {(mass_in_interval if mass_in_interval.ndim < 1 else mass_in_interval[0])* 100:.0f}% of probability mass between "
            f"{lower} and {upper} instead of the requested {mass * 100:.0f}%.\n"
            "You may need to use a more flexible distribution, change the fixed parameters in the "
            "`fixed_params` dictionary, or provide better initial guesses.")

    return opt_params