def test_FFBSStep(): np.random.seed(2032) poiszero_sim, _ = simulate_poiszero_hmm(30, 150) y_test = poiszero_sim["Y_t"] with pm.Model() as test_model: p_0_rv = pm.Dirichlet("p_0", np.r_[1, 1]) p_1_rv = pm.Dirichlet("p_1", np.r_[1, 1]) P_tt = tt.stack([p_0_rv, p_1_rv]) P_rv = pm.Deterministic("P_tt", tt.shape_padleft(P_tt)) pi_0_tt = compute_steady_state(P_rv) S_rv = HMMStateSeq("S_t", P_rv, pi_0_tt, shape=y_test.shape[0]) Y_rv = PoissonZeroProcess("Y_t", 9.0, S_rv, observed=y_test) with test_model: ffbs = FFBSStep([S_rv]) test_point = test_model.test_point.copy() test_point["p_0_stickbreaking__"] = poiszero_sim["p_0_stickbreaking__"] test_point["p_1_stickbreaking__"] = poiszero_sim["p_1_stickbreaking__"] res = ffbs.step(test_point) assert np.array_equal(res["S_t"], poiszero_sim["S_t"])
def test_FFBSStep_extreme(): """Test a long series with extremely large mixture separation (and, thus, very small likelihoods).""" # noqa: E501 np.random.seed(2032) mu_true = 5000 poiszero_sim, _ = simulate_poiszero_hmm(9000, mu_true) y_test = poiszero_sim["Y_t"] with pm.Model() as test_model: p_0_rv = poiszero_sim["p_0"] p_1_rv = poiszero_sim["p_1"] P_tt = at.stack([p_0_rv, p_1_rv]) P_rv = pm.Deterministic("P_tt", at.shape_padleft(P_tt)) pi_0_tt = poiszero_sim["pi_0"] S_rv = DiscreteMarkovChain("S_t", P_rv, pi_0_tt, shape=y_test.shape[0]) S_rv.tag.test_value = (y_test > 0).astype(int) # This prior is very far from the true value... E_mu, Var_mu = 100.0, 10000.0 mu_rv = pm.Gamma("mu", E_mu**2 / Var_mu, E_mu / Var_mu) PoissonZeroProcess("Y_t", mu_rv, S_rv, observed=y_test) with test_model: ffbs = FFBSStep([S_rv]) test_point = test_model.test_point.copy() test_point["p_0_stickbreaking__"] = poiszero_sim["p_0_stickbreaking__"] test_point["p_1_stickbreaking__"] = poiszero_sim["p_1_stickbreaking__"] with np.errstate(over="ignore", under="ignore"): res = ffbs.step(test_point) assert np.array_equal(res["S_t"], poiszero_sim["S_t"]) with test_model, np.errstate(over="ignore", under="ignore"), warnings.catch_warnings(): warnings.filterwarnings("ignore", category=UserWarning) warnings.filterwarnings("ignore", category=DeprecationWarning) warnings.filterwarnings("ignore", category=FutureWarning) mu_step = pm.NUTS([mu_rv]) ffbs = FFBSStep([S_rv]) steps = [ffbs, mu_step] trace = pm.sample( 20, step=steps, cores=1, chains=1, tune=100, n_init=100, progressbar=False, ) assert not trace.get_sampler_stats("diverging").all() assert trace["mu"].mean() > 1000.0
def test_FFBSStep(): with pm.Model(), pytest.raises(ValueError): P_rv = np.eye(2)[None, ...] S_rv = DiscreteMarkovChain("S_t", P_rv, np.r_[1.0, 0.0], shape=10) S_2_rv = DiscreteMarkovChain("S_2_t", P_rv, np.r_[0.0, 1.0], shape=10) PoissonZeroProcess("Y_t", 9.0, S_rv + S_2_rv, observed=np.random.poisson(9.0, size=10)) # Only one variable can be sampled by this step method ffbs = FFBSStep([S_rv, S_2_rv]) with pm.Model(), pytest.raises(TypeError): S_rv = pm.Categorical("S_t", np.r_[1.0, 0.0], shape=10) PoissonZeroProcess("Y_t", 9.0, S_rv, observed=np.random.poisson(9.0, size=10)) # Only `DiscreteMarkovChains` can be sampled with this step method ffbs = FFBSStep([S_rv]) with pm.Model(), pytest.raises(TypeError): P_rv = np.eye(2)[None, ...] S_rv = DiscreteMarkovChain("S_t", P_rv, np.r_[1.0, 0.0], shape=10) pm.Poisson("Y_t", S_rv, observed=np.random.poisson(9.0, size=10)) # Only `SwitchingProcess`es can used as dependent variables ffbs = FFBSStep([S_rv]) np.random.seed(2032) poiszero_sim, _ = simulate_poiszero_hmm(30, 150) y_test = poiszero_sim["Y_t"] with pm.Model() as test_model: p_0_rv = pm.Dirichlet("p_0", np.r_[1, 1], shape=2) p_1_rv = pm.Dirichlet("p_1", np.r_[1, 1], shape=2) P_tt = at.stack([p_0_rv, p_1_rv]) P_rv = pm.Deterministic("P_tt", at.shape_padleft(P_tt)) pi_0_tt = compute_steady_state(P_rv) S_rv = DiscreteMarkovChain("S_t", P_rv, pi_0_tt, shape=y_test.shape[0]) PoissonZeroProcess("Y_t", 9.0, S_rv, observed=y_test) with test_model: ffbs = FFBSStep([S_rv]) test_point = test_model.test_point.copy() test_point["p_0_stickbreaking__"] = poiszero_sim["p_0_stickbreaking__"] test_point["p_1_stickbreaking__"] = poiszero_sim["p_1_stickbreaking__"] res = ffbs.step(test_point) assert np.array_equal(res["S_t"], poiszero_sim["S_t"])