mc_lognormal_traces = save_traces( mc_lognormal, trace_data_path + "mc_lognormal_withmach_traces%s_opr%s.fits" % (abundance, opr), clobber=True) print "\nlognormal (freemach) sampling 1 million" mc_lognormal_freemach.sample(1e6) mc_lognormal_freemach_traces = save_traces( mc_lognormal_freemach, trace_data_path + "mc_lognormal_freemach_traces%s_opr%s.fits" % (abundance, opr), clobber=True) docontours_all(mc_lognormal, mc_simple, mc_lognormal_freemach) lognormal_statstable = pymc_tools.stats_table(mc_lognormal) lognormal_statstable.write( trace_data_path + 'lognormal_statstable_abundance%s_opr%s.fits' % (abundance, opr), overwrite=True) lognormal_simple_statstable = pymc_tools.stats_table(mc_simple) lognormal_simple_statstable.write( trace_data_path + 'lognormal_simple_statstable_abundance%s_opr%s.fits' % (abundance, opr), overwrite=True) lognormal_freemach_statstable = pymc_tools.stats_table(mc_lognormal_freemach) lognormal_freemach_statstable.write( trace_data_path + 'lognormal_freemach_statstable_abundance%s_opr%s.fits' % (abundance, opr), overwrite=True)
# pymc_plotting.hist2d(mc_hopkins_simple, p1, p2, bins=30, clear=True, fignum=fignum+fignum2+1, varslice=varslice, colorbar=True) # pl.title("Hopkins - just $\\tau$ fits") # pl.savefig(savepath+"HopkinsJustTau_%s_v_%s_mcmc.png" % (p1,p2)) print "Some statistics used in the paper: " print "mc_hopkins_simple sigma: ", mc_hopkins_simple.stats()["sigma"]["quantiles"] print "mc_hopkins sigma: ", mc_hopkins.stats()["sigma"]["quantiles"] print "mc_hopkins Tval: ", mc_hopkins.stats()["Tval"]["quantiles"] print "mc_hopkins b: ", mc_hopkins.stats(quantiles=(0.1, 1, 2.5, 5, 50))["b"]["quantiles"] print "mc_hopkins m: ", mc_hopkins.stats()["mach_mu"]["quantiles"] print "mc_hopkins_freemach sigma: ", mc_hopkins_freemach.stats()["sigma"]["quantiles"] print "mc_hopkins_freemach Tval: ", mc_hopkins_freemach.stats()["Tval"]["quantiles"] print "mc_hopkins_freemach b: ", mc_hopkins_freemach.stats(quantiles=(0.1, 1, 2.5, 5, 50))["b"]["quantiles"] print "mc_hopkins_freemach m: ", mc_hopkins_freemach.stats()["mach"]["quantiles"] hopkins_statstable = pymc_tools.stats_table(mc_hopkins) hopkins_statstable.write( trace_data_path + "hopkins_statstable_abundance%s_opr%s.fits" % (abundance, opr), overwrite=True ) hopkins_simple_statstable = pymc_tools.stats_table(mc_hopkins_simple) hopkins_simple_statstable.write( trace_data_path + "hopkins_simple_statstable_abundance%s_opr%s.fits" % (abundance, opr), overwrite=True ) hopkins_freemach_statstable = pymc_tools.stats_table(mc_hopkins_freemach) hopkins_freemach_statstable.write( trace_data_path + "hopkins_freemach_statstable_abundance%s_opr%s.fits" % (abundance, opr), overwrite=True ) pl.figure(32) pl.clf()