示例#1
0
def range_invert(arrayin):
    max_val = np.amax(arrayin)
    arrayout = arrayin / max_val
    min_val = np.amin(arrayout)
    arrayout = arrayout - min_val
    arrayout = 1 - arrayout  # inverting the range
    arrayout = arrayout * max_val

    return arrayout
示例#2
0
def read_dicom3D(direc, i_option):
    # item = 0
    for subdir, dirs, files in os.walk(direc):  # pylint: disable = unused-variable
        k = 0
        for file in tqdm(sorted(files)):
            # print('filename=', file)
            if os.path.splitext(file)[1] == ".dcm":
                dataset = pydicom.dcmread(direc + file)
                if k == 0:
                    ArrayDicom = np.zeros(
                        (dataset.Rows, dataset.Columns, 0),
                        dtype=dataset.pixel_array.dtype,
                    )
                    tmp_array = dataset.pixel_array
                    if i_option.startswith(("y", "yeah", "yes")):
                        max_val = np.amax(tmp_array)
                        tmp_array = tmp_array / max_val
                        min_val = np.amin(tmp_array)
                        tmp_array = tmp_array - min_val
                        tmp_array = 1 - tmp_array  # inverting the range

                        # min_val = np.amin(tmp_array)  # normalizing
                        # tmp_array = tmp_array - min_val
                        # tmp_array = tmp_array / (np.amax(tmp_array))
                        tmp_array = u.norm01(tmp_array)
                    else:
                        # min_val = np.amin(tmp_array)
                        # tmp_array = tmp_array - min_val
                        # tmp_array = tmp_array / (np.amax(tmp_array))
                        tmp_array = u.norm01(tmp_array)  # just normalize
                    ArrayDicom = np.dstack((ArrayDicom, tmp_array))
                    # print("item thickness [mm]=", dataset.SliceThickness)
                    SID = dataset.RTImageSID
                    dx = 1 / (SID * (1 / dataset.ImagePlanePixelSpacing[0]) / 1000)
                    dy = 1 / (SID * (1 / dataset.ImagePlanePixelSpacing[1]) / 1000)
                    print("pixel spacing row [mm]=", dx)
                    print("pixel spacing col [mm]=", dy)
                else:
                    tmp_array = dataset.pixel_array
                    if i_option.startswith(("y", "yeah", "yes")):
                        max_val = np.amax(tmp_array)
                        tmp_array = tmp_array / max_val
                        min_val = np.amin(tmp_array)
                        tmp_array = tmp_array - min_val
                        tmp_array = 1 - tmp_array  # inverting the range

                        # min_val = np.amin(tmp_array)  # normalizing
                        # tmp_array = tmp_array - min_val
                        # tmp_array = tmp_array / (np.amax(tmp_array))
                        tmp_array = u.norm01(tmp_array)
                    else:
                        # min_val = np.amin(tmp_array)
                        # tmp_array = tmp_array - min_val
                        # tmp_array = tmp_array / (np.amax(tmp_array))  # just normalize
                        tmp_array = u.norm01(tmp_array)
                    ArrayDicom = np.dstack((ArrayDicom, tmp_array))
            k = k + 1

    xfield, yfield, rotfield = image_analyze(ArrayDicom, i_option)

    multi_slice_viewer(ArrayDicom, dx, dy)

    if np.shape(xfield)[2] == 2:
        fig, peak_figs, junctions_figs = merge_view_vert(xfield, dx, dy)
        with PdfPages(direc + "jaws_X_report.pdf") as pdf:
            pdf.savefig(fig)
            # for i in range(0, len(peak_figs)):
            for _, f in enumerate(peak_figs):
                pdf.savefig(f)

            # for i in range(0, len(junctions_figs)):
            for _, f in enumerate(junctions_figs):
                pdf.savefig(f)

            plt.close()

    else:
        print(
            "X jaws data analysis not completed please verify that you have two X jaws images. For more information see manual."
        )

    if np.shape(yfield)[2] == 4:
        fig, peak_figs, junctions_figs = merge_view_horz(yfield, dx, dy)
        # print('peak_figs********************************************************=', len(peak_figs),peak_figs)
        with PdfPages(direc + "jaws_Y_report.pdf") as pdf:
            pdf.savefig(fig)
            # for i in range(0, len(peak_figs)):
            for _, f in enumerate(peak_figs):
                pdf.savefig(f)

            for _, f in enumerate(junctions_figs):
                pdf.savefig(f)

            plt.close()

    else:
        print(
            "Y jaws data analysis not completed please verify that you have four Y jaws images. For more information see manual."
        )

    if np.shape(rotfield)[2] == 4:
        fig, peak_figs, junctions_figs = merge_view_filtrot(rotfield, dx, dy)

        with PdfPages(direc + "jaws_FR_report.pdf") as pdf:
            pdf.savefig(fig)
            for _, f in enumerate(peak_figs):
                pdf.savefig(f)

            for _, f in enumerate(junctions_figs):
                pdf.savefig(f)

            plt.close()

    else:
        print(
            "Field rotation data analysis not completed please verify that you have four field rotation images. For more information see manual."
        )
示例#3
0
def norm01(arrayin):
    min_val = np.amin(arrayin)  # normalizing
    arrayout = arrayin - min_val
    arrayout = arrayout / (np.amax(arrayout))  # normalizing the data

    return arrayout
示例#4
0
def image_analyze(volume, i_opt):
    xfield = []
    yfield = []
    rotfield = []

    if i_opt.startswith(("y", "yeah", "yes")):
        kx = 0
        ky = 0
        krot = 0
        for item in range(0, volume.shape[2]):
            stack1 = np.sum(
                volume[
                    int(
                        np.shape(volume)[0] / 2
                        - np.amin([np.shape(volume)[0], np.shape(volume)[1]]) / 2
                    ) : int(
                        np.shape(volume)[0] / 2
                        + np.amin([np.shape(volume)[0], np.shape(volume)[1]]) / 2
                    ),
                    int(
                        np.shape(volume)[1] / 2
                        - np.amin([np.shape(volume)[0], np.shape(volume)[1]]) / 2
                    ) : int(
                        np.shape(volume)[1] / 2
                        + np.amin([np.shape(volume)[0], np.shape(volume)[1]]) / 2
                    ),
                    item,
                ],
                axis=0,
            )
            maxstack1 = np.amax(stack1)

            # stack2 = np.sum(volume[:, :, item], axis=1)
            stack2 = np.sum(
                volume[
                    int(
                        np.shape(volume)[0] / 2
                        - np.amin([np.shape(volume)[0], np.shape(volume)[1]]) / 2
                    ) : int(
                        np.shape(volume)[0] / 2
                        + np.amin([np.shape(volume)[0], np.shape(volume)[1]]) / 2
                    ),
                    int(
                        np.shape(volume)[1] / 2
                        - np.amin([np.shape(volume)[0], np.shape(volume)[1]]) / 2
                    ) : int(
                        np.shape(volume)[1] / 2
                        + np.amin([np.shape(volume)[0], np.shape(volume)[1]]) / 2
                    ),
                    item,
                ],
                axis=1,
            )
            maxstack2 = np.amax(stack2)

            if maxstack2 / maxstack1 > 1.1:  # It is a Y field folder
                if ky == 0:
                    yfield = volume[:, :, item]
                    yfield = yfield[:, :, np.newaxis]
                else:
                    volappend = volume[:, :, item]
                    yfield = np.append(yfield, volappend[:, :, np.newaxis], axis=2)
                ky = ky + 1
            elif maxstack2 / maxstack1 < 0.9:  # It is a X field folder
                if kx == 0:
                    xfield = volume[:, :, item]
                    xfield = xfield[:, :, np.newaxis]
                else:
                    # xfield=xfield[:,:,np.newaxis]
                    volappend = volume[:, :, item]
                    xfield = np.append(xfield, volappend[:, :, np.newaxis], axis=2)
                kx = kx + 1
            else:  # It is a field rotation folder
                if krot == 0:
                    rotfield = volume[:, :, item]
                    rotfield = rotfield[:, :, np.newaxis]
                else:
                    # rotfield = rotfield[:, :, np.newaxis]
                    volappend = volume[:, :, item]
                    rotfield = np.append(rotfield, volappend[:, :, np.newaxis], axis=2)
                krot = krot + 1

    else:
        kx = 0
        ky = 0
        krot = 0
        for item in range(0, volume.shape[2]):
            stack1 = np.sum(
                volume[
                    int(
                        np.shape(volume)[0] / 2
                        - np.amin([np.shape(volume)[0], np.shape(volume)[1]]) / 2
                    ) : int(
                        np.shape(volume)[0] / 2
                        + np.amin([np.shape(volume)[0], np.shape(volume)[1]]) / 2
                    ),
                    int(
                        np.shape(volume)[1] / 2
                        - np.amin([np.shape(volume)[0], np.shape(volume)[1]]) / 2
                    ) : int(
                        np.shape(volume)[1] / 2
                        + np.amin([np.shape(volume)[0], np.shape(volume)[1]]) / 2
                    ),
                    item,
                ],
                axis=0,
            )
            maxstack1 = np.amax(stack1)

            # stack2 = np.sum(volume[:, :, item], axis=1)
            stack2 = np.sum(
                volume[
                    int(
                        np.shape(volume)[0] / 2
                        - np.amin([np.shape(volume)[0], np.shape(volume)[1]]) / 2
                    ) : int(
                        np.shape(volume)[0] / 2
                        + np.amin([np.shape(volume)[0], np.shape(volume)[1]]) / 2
                    ),
                    int(
                        np.shape(volume)[1] / 2
                        - np.amin([np.shape(volume)[0], np.shape(volume)[1]]) / 2
                    ) : int(
                        np.shape(volume)[1] / 2
                        + np.amin([np.shape(volume)[0], np.shape(volume)[1]]) / 2
                    ),
                    item,
                ],
                axis=1,
            )
            maxstack2 = np.amax(stack2)

            if maxstack2 / maxstack1 > 1.5:  # It is a Y field folder
                if ky == 0:
                    yfield = volume[:, :, item]
                    yfield = yfield[:, :, np.newaxis]
                else:
                    volappend = volume[:, :, item]
                    yfield = np.append(yfield, volappend[:, :, np.newaxis], axis=2)
                ky = ky + 1
            elif maxstack2 / maxstack1 < 0.5:  # It is a X field folder
                if kx == 0:
                    xfield = volume[:, :, item]
                    xfield = xfield[:, :, np.newaxis]
                else:
                    # xfield=xfield[:,:,np.newaxis]
                    volappend = volume[:, :, item]
                    xfield = np.append(xfield, volappend[:, :, np.newaxis], axis=2)
                kx = kx + 1
            else:  # It is a field rotation folder
                if krot == 0:
                    rotfield = volume[:, :, item]
                    rotfield = rotfield[:, :, np.newaxis]
                else:
                    # rotfield = rotfield[:, :, np.newaxis]
                    volappend = volume[:, :, item]
                    rotfield = np.append(rotfield, volappend[:, :, np.newaxis], axis=2)
                krot = krot + 1

    return xfield, yfield, rotfield