def __init__(self, theme): self._handlebars = OMeta.makeGrammar(handlebars_grammar, {}, 'handlebars') self._builder = CodeBuilder() self._compiler = OMeta.makeGrammar(compile_grammar, {'builder': self._builder}) self._helpers = {} self.template_counter = 1 _ghostpy_['theme'] = theme
def __init__(self, theme, domain='', lookup_dir='', lookup_url=''): self._handlebars = OMeta.makeGrammar(handlebars_grammar, {}, 'handlebars') self._builder = CodeBuilder() self._compiler = OMeta.makeGrammar(compile_grammar, {'builder': self._builder}) self._helpers = {} self.template_counter = 1 _ghostpy_['base'] = domain _ghostpy_['lookup_dir'] = lookup_dir _ghostpy_['lookup_url'] = lookup_url _ghostpy_['theme'] = theme
def rdfaProcessSLAXML(node): """ Given an SLA node that has been preprocessed, remove sep tags and freqStart tags, put in frequencies and spell wrappers. """ globs = globals().copy() tree = NodeTree() tree.useNode(node) globs.update({'t':tree, 'ww': lambda *x:None, # 'ww': debugWrite, }) RDFaParser = OMeta.makeGrammar(rdfaGrammar, globs, 'RDFaParser') seq = flattenSLATree(tree.node)[1:] try: parser = RDFaParser(seq) parser.apply('sla') except ParseError: def propify(x): if hasattr(x, 'nodeName') and x.nodeName == 'span': if x.hasAttribute('p:property'): return '<PROP {0}>'.format(x.getAttribute('p:property')) return x print map(propify, parser.input.data[:parser.input.position]) print map(propify, parser.input.data[parser.input.position:]) raise return tree.node
def test_subclassing(self): """ A subclass of an OMeta subclass should be able to call rules on its parent, and access variables in its scope. """ from pymeta.grammar import OMeta grammar1 = """ dig ::= :x ?(a <= x <= b) => int(x) """ TestGrammar1 = OMeta.makeGrammar(grammar1, {'a': '0', 'b': '9'}) grammar2 = """ num ::= (<num>:n <dig>:d => n * base + d | <dig>) """ TestGrammar2 = TestGrammar1.makeGrammar(grammar2, {'base': 10}) g = TestGrammar2("314159") self.assertEqual(g.apply("num")[0], 314159) grammar3 = """ dig ::= :x ?(a <= x <= b or c <= x <= d) => int(x, base) """ TestGrammar3 = TestGrammar2.makeGrammar(grammar3, { 'c': 'a', 'd': 'f', 'base': 16 }) g = TestGrammar3("abc123") self.assertEqual(g.apply("num")[0], 11256099)
def preprocessSLAXML(node): """ Given that node is a DOM element containing spell-like ability descriptions, insert additional DOM nodes into the text where interesting properties are found. """ node.ownerDocument.documentElement.setAttribute(u'xmlns:p', PROP) title = node.getElementsByTagName(u'b')[0] title.setAttribute(u'p:property', u'powerName') def addSpellNameRDFa(node): node.setAttribute(u'p:property', u'spellName') # spellNames = list( util.doNodes(node, lambda n: n.nodeName == 'i', addSpellNameRDFa) ) assert len(spellNames) > 0 globs = globals().copy() Preprocessor = OMeta.makeGrammar(preprocGrammar, globs, "Preprocessor") todo = node.childNodes[:] for n, cn in enumerate(todo): if cn.nodeName == 'p': todo[n+1:n+1] = cn.childNodes[:] continue if cn.nodeName == '#text': parsed = [] globs['A'] = lambda *x: parsed.extend(x) Preprocessor(cn.data).apply('slaText') nodes = joinRaw(parsed) substituteSLAText(cn, nodes) return node
def test_constant_bits(self): Grammar = OMeta.makeGrammar(r""" var = "var" spaces letter+:name ';' -> ['var', ''.join(name)] """, {}) g = Grammar("var myvar;") result,error = g.apply("var") assert result == ['var', 'myvar']
def run_tests(grammar_iter, tests_iter, expecting=False): """ Creates an OMeta grammar from the given grammar iterable, and tries to parse each test in the given test iterable """ grammar_string = "".join(grammar_iter) parser = OMeta.makeGrammar(grammar_string, {}) results = [] failures = [] for test in tests_iter: if expecting: to_parse, production, expected = [x.strip() for x in test.split("|||")] expected_value = eval(expected) else: to_parse, production = [x.strip() for x in test.split("|||")] application = parser(to_parse) try: result_value = application.apply(production) if not expecting or result_value == expected_value: results.append(".") else: results.append("F") fail = "Test %s, %s failed" % (to_parse, production) ex = "Expected '%s', got '%s'" % (expected, result_value) failures.append((fail, ex)) except Exception as e: results.append("F") fail = "Test %s, %s failed" % (to_parse, production) ex = "%s: %s" % (e.__class__.__name__, e) failures.append((fail, ex)) return results, failures
class IRIGrammar(OMeta.makeGrammar(iriGrammar, globals())): iprivateRanges = [(0x0000e000, 0x0000f8ff), (0x000f0000, 0x000ffffd), (0x00100000, 0x0010fffd)] ucscharRanges = [(0x000000a0, 0x0000d7ff), (0x0000f900, 0x0000fdcf), (0x0000fdf0, 0x0000ffef), (0x00010000, 0x0001fffd), (0x00020000, 0x0002fffd), (0x00030000, 0x0003fffd), (0x00040000, 0x0004fffd), (0x00050000, 0x0005fffd), (0x00060000, 0x0006fffd), (0x00070000, 0x0007fffd), (0x00080000, 0x0008fffd), (0x00090000, 0x0009fffd), (0x000a0000, 0x000afffd), (0x000b0000, 0x000bfffd), (0x000c0000, 0x000cfffd), (0x000d0000, 0x000dfffd), (0x000e0000, 0x000efffd)] def markURLStart(self): self.urlStart = self.input.position def markURLEnd(self): self.urlEnd = self.input.position
def test_subclassing(self): """ A subclass of an OMeta subclass should be able to call rules on its parent, and access variables in its scope. """ from pymeta.grammar import OMeta grammar1 = """ dig ::= :x ?(a <= x <= b) => int(x) """ TestGrammar1 = OMeta.makeGrammar(grammar1, {'a':'0', 'b':'9'}) grammar2 = """ num ::= (<num>:n <dig>:d => n * base + d | <dig>) """ TestGrammar2 = TestGrammar1.makeGrammar(grammar2, {'base':10}) g = TestGrammar2("314159") self.assertEqual(g.apply("num")[0], 314159) grammar3 = """ dig ::= :x ?(a <= x <= b or c <= x <= d) => int(x, base) """ TestGrammar3 = TestGrammar2.makeGrammar(grammar3, {'c':'a', 'd':'f', 'base':16}) g = TestGrammar3("abc123") self.assertEqual(g.apply("num")[0], 11256099)
def test_spaces(self): Grammar = OMeta.makeGrammar(r""" spaces_and_letters = spaces letter+:letters -> letters """, {}) result, error = Grammar(" a").apply("spaces_and_letters") assert result == ['a']
def no_test_begin(self): Grammar = OMeta.makeGrammar(r""" from_start = begin 'a' -> 'a' at_end = 'b' end -> 'b' any = (from_start | at_end)* """, {}) result, error = Grammar(" a").apply("any") assert result == []
def test_allow_comments(self): """ Full line comments before a rule is allowed Make sure that the boot.py version supports comments """ from pymeta.grammar import OMeta g = OMeta.makeGrammar(""" # comment for interp interp = "Foo" 1 2 -> 3 """,{}) self.assertEqual(g(['F', 'o', 'o', 1, 2]).apply("interp")[0], 3) g = OMeta.makeGrammar(""" // comment for interp interp = "Foo" 1 2 -> 3 """,{}) self.assertEqual(g(['F', 'o', 'o', 1, 2]).apply("interp")[0], 3)
class Compiler: """A handlebars template compiler. The compiler is not threadsafe: you need one per thread because of the state in CodeBuilder. """ _handlebars = OMeta.makeGrammar(handlebars_grammar, {}, 'handlebars') _builder = CodeBuilder() _compiler = OMeta.makeGrammar(compile_grammar, {'builder':_builder}) def __init__(self): self._helpers = {} def compile(self, source): """Compile source to a ready to run template. :param source: The template to compile - should be a unicode string. :return: A template ready to run. """ assert isinstance(source, unicode) tree = self._handlebars(source).apply('template')[0] # print source # print '-->' # print "T", tree code = self._compiler(tree).apply('compile')[0] # print code return code def register_helper(self, helper_name, helper_callback): """Register a block helper. :param helper_name: The name of the helper. :param helper_callback: A callback to call when the helper is used. This should accept two parameters - items (the context sub-value specified by the block rule in the template) and options (which has template logic in it such as the render callback to render the block content for a single item). :return: None """ _pybars_['helpers'][helper_name]= helper_callback global_helpers[helper_name] = helper_callback
def parse(s): """ Produce a sequence of UIState objects from a text representation of a seedo diagram """ globs = globals().copy() global Parser if Parser is None: Parser = OMeta.makeGrammar(seedoGrammar, globs, "Parser") return Parser(s).apply('uiTests')
def test_super(self): """ Rules can call the implementation in a superclass. """ from pymeta.grammar import OMeta grammar1 = "expr ::= <letter>" TestGrammar1 = OMeta.makeGrammar(grammar1, {}) grammar2 = "expr ::= <super> | <digit>" TestGrammar2 = TestGrammar1.makeGrammar(grammar2, {}) self.assertEqual(TestGrammar2("x").apply("expr")[0], "x") self.assertEqual(TestGrammar2("3").apply("expr")[0], "3")
def test_super(self): """ Rules can call the implementation in a superclass. """ from pymeta.grammar import OMeta grammar1 = "expr = letter" TestGrammar1 = OMeta.makeGrammar(grammar1, {}) grammar2 = "expr = super | digit" TestGrammar2 = TestGrammar1.makeGrammar(grammar2, {}) self.assertEqual(TestGrammar2("x").apply("expr")[0], "x") self.assertEqual(TestGrammar2("3").apply("expr")[0], "3")
def test_end(self): Grammar = OMeta.makeGrammar(r""" at_end = 'b' end -> 'b|' any = (at_end | anything)* """, {}) result, error = Grammar(" a").apply("any") assert result == [' ','a'] result, error = Grammar("b a").apply("any") assert result == ['b',' ','a'] result, error = Grammar(" ab").apply("any") assert result == [' ','a','b|']
def test_read_ahead(self): Grammar = OMeta.makeGrammar(r""" attribute = bool | valued bool = (letter+):name ~('=') -> (''.join(name),True) valued = (letter+):name '=' (letter+):value -> (''.join(name),''.join(value)) """, {}) g = Grammar("a") result,error = g.apply("attribute") assert result == ('a',True) g = Grammar("a=b") result,error = g.apply("attribute") assert result == ('a','b')
def test_makeGrammar(self): #imported here to prevent OMetaGrammar from being constructed before #tests are run from pymeta.grammar import OMeta results = [] grammar = """ digit ::= :x ?('0' <= x <= '9') => int(x) num ::= (<num>:n <digit>:d !(results.append(True)) => n * 10 + d | <digit>) """ TestGrammar = OMeta.makeGrammar(grammar, {'results': results}) g = TestGrammar("314159") self.assertEqual(g.apply("num"), 314159) self.assertNotEqual(len(results), 0)
def test_makeGrammar(self): #imported here to prevent OMetaGrammar from being constructed before #tests are run from pymeta.grammar import OMeta results = [] grammar = """ digit ::= :x ?('0' <= x <= '9') => int(x) num ::= (<num>:n <digit>:d !(results.append(True)) => n * 10 + d | <digit>) """ TestGrammar = OMeta.makeGrammar(grammar, {'results':results}) g = TestGrammar("314159") self.assertEqual(g.apply("num")[0], 314159) self.assertNotEqual(len(results), 0)
def test_makeGrammar(self): #imported here to prevent OMetaGrammar from being constructed before #tests are run from pymeta.grammar import OMeta results = [] grammar = dedent(""" digit = :x ?('0' <= x <= '9') -> int(x) num = (num:n digit:d !(results.append(True)) -> n * 10 + d | digit) """) TestGrammar = OMeta.makeGrammar(grammar, {'results': results}) g = TestGrammar("314159") self.assertEqual(g.apply("num")[0], 314159) self.assertNotEqual(len(results), 0)
def test_nested_productions(self): Grammar = OMeta.makeGrammar(r""" attributes = spaces (attribute:a spaces -> a)+:as -> as attribute = bool | valued bool = (letter+):name ~('=') -> (''.join(name),True) valued = (letter+):name '=' (letter+):value -> (''.join(name),''.join(value)) """, {}) g = Grammar("a=b") result,error = g.apply("attributes") assert result == [('a','b')] g = Grammar("a=b c d=e") result,error = g.apply("attributes") assert result == [('a','b'),('c',True),('d','e')]
def test_optional(self): Grammar = OMeta.makeGrammar(r""" word_comment = "/*" ' '? letter*:t ' '? "*/" -> ['comment', ''.join(t)] """, {}) result,error = Grammar("/* abc */").apply("word_comment") assert result == ['comment', 'abc'] result,error = Grammar("/*abc*/").apply("word_comment") assert result == ['comment', 'abc'] result,error = Grammar("/* */").apply("word_comment") assert result == ['comment', ''] result,error = Grammar("/**/").apply("word_comment") assert result == ['comment', '']
def fails_test_empty(self): # Grammar = OMeta.makeGrammar(r""" # stuff = letter+:letters -> ''.join(letters) | empty -> 'nao' # """, {}) # doesn't seem to work, try alternative Grammar = OMeta.makeGrammar(r""" stuff = letters | nothing letters = letter+:letters -> ''.join(letters) nothing = empty -> 'nao' """, {}) result,error = Grammar("").apply("stuff") assert result == "nao" result,error = Grammar("abc").apply("stuff") assert result == "abc"
def test_makeGrammar(self): # imported here to prevent OMetaGrammar from being constructed before # tests are run from pymeta.grammar import OMeta results = [] grammar = dedent( """ digit = :x ?('0' <= x <= '9') -> int(x) num = (num:n digit:d !(results.append(True)) -> n * 10 + d | digit) """ ) TestGrammar = OMeta.makeGrammar(grammar, {"results": results}) g = TestGrammar("314159") self.assertEqual(g.apply("num")[0], 314159) self.assertNotEqual(len(results), 0)
def test_tokens(self): Grammar = OMeta.makeGrammar(r""" a = token('a') -> ('t','a') b = token('b') -> ('t','b') t = a | b """,{}) result, error = Grammar(" a").apply("t") assert result == ('t','a') result, error = Grammar(" b").apply("t") assert result == ('t','b') # result, error = Grammar("\0xa0 a").apply("t") # assert result == ('t','a') result, error = Grammar("\t a").apply("t") assert result == ('t','a') result, error = Grammar("\n a").apply("t") assert result == ('t','a') result, error = Grammar("a\n").apply("t") assert result == ('t','a')
def test_subclassing(self): """ A subclass of an OMeta subclass should be able to call rules on its parent. """ from pymeta.grammar import OMeta grammar1 = """ dig ::= :x ?('0' <= x <= '9') => int(x) """ TestGrammar1 = OMeta.makeGrammar(grammar1, {}) grammar2 = """ num ::= (<num>:n <dig>:d => n * 10 + d | <dig>) """ TestGrammar2 = TestGrammar1.makeGrammar(grammar2, {}) g = TestGrammar2("314159") self.assertEqual(g.apply("num"), 314159)
def test_subclassing(self): """ A subclass of an OMeta subclass should be able to call rules on its parent. """ from pymeta.grammar import OMeta grammar1 = dedent(""" dig = :x ?('0' <= x <= '9') -> int(x) """) TestGrammar1 = OMeta.makeGrammar(grammar1, {}) grammar2 = dedent(""" num = (num:n dig:d -> n * 10 + d | dig) """) TestGrammar2 = TestGrammar1.makeGrammar(grammar2, {}) g = TestGrammar2("314159") self.assertEqual(g.apply("num")[0], 314159)
def no_test_uc(self): import sys # sys.setdefaultencoding('utf-8') import unicodedata assert unicodedata.category(u"a") == "Ll" Grammar = OMeta.makeGrammar(r""" letters = UnicodeLetter* number = UnicodeDigit* UnicodeLetter = uc('L') | uc('Nl') | uc('Ll') | uc('Lu') UnicodeCombiningMark = uc('Mn') | uc('Mc') UnicodeDigit = uc('Nd') UnicodeConnectorPunctuation = uc('Pc') """,{}) result, error = Grammar(u"a").apply("UnicodeLetter") assert result == u'a' result, error = Grammar(u"\u0393").apply("UnicodeLetter") assert result == u'\u0393' result, error = Grammar(u"\u03931").apply("letters") assert result == [u'\u0393'] result, error = Grammar(u"123a").apply("number") assert result == [u'1', u'2', u'3']
tag ::= ('<' <spaces> <name>:n <spaces> <attribute>*:attrs '>' <html>:c '<' '/' <token n> <spaces> '>' => [n.lower(), dict(attrs), c]) html ::= (<text> | <tag>)* text ::= (~('<') <anything>)+:t => ''.join(t) attribute ::= <spaces> <name>:k <token '='> <quotedString>:v => (k, v) quotedString ::= (('"' | '\''):q (~<exactly q> <anything>)*:xs <exactly q> => ''.join(xs)) """ TinyHTML = OMeta.makeGrammar(tinyHTMLGrammar, globals(), name="TinyHTML") def formatAttrs(attrs): """ Format a dictionary as HTML-ish attributes. """ return ''.join([" %s='%s'" % (k, v) for (k, v) in attrs.items()]) unparserGrammar = """ contents ::= [<tag>*:t] => ''.join(t) tag ::= ([:name :attrs <contents>:t] => "<%s%s>%s</%s>" % (name, formatAttrs(attrs), t, name) | <anything>) """
def makeHex(sign, hs): return int((sign or '') + ''.join(hs), 16) def makeOctal(sign, ds): return int((sign or '') + '0' + ''.join(ds), 8) def isDigit(x): return x in string.digits def isOctDigit(x): return x in string.octdigits def isHexDigit(x): return x in string.hexdigits def contains(container, value): return value in container def cons(first, rest): return [first] + rest CommonParser = OMeta.makeGrammar(baseGrammar, globals(), "CommonParser")
next ::= <token "NEXT:"> <address>:nextparticle ','* => {'NEXT':nextparticle} address ::= <integer>:memaddress => memaddress | <token "NULL"> => None integer ::= '-' <dig>+:ds => -1*int(''.join(ds)) | <dig>+:ds => int(''.join(ds)) dig ::= '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9' decimal ::= <integer>:whole '.' <dig>+:frac => float(str(whole)+'.'+''.join(frac)) | <integer> """ # Make a class which reads the dump grammar grammar = OMeta.makeGrammar(dump_grammar, globals()) # Exit if we've been given no file to check if len(sys.argv) < 2: print "Usage: memchecker.py DUMP_FILE" sys.exit() # Open the given file infile = open(sys.argv[1], 'r') inlines = ''.join(infile.readlines()) infile.close() # Instantiate the dump grammar with the input print "Making grammar"
class Compiler: """A handlebars template compiler. The compiler is not threadsafe: you need one per thread because of the state in CodeBuilder. """ _handlebars = OMeta.makeGrammar(handlebars_grammar, {}, 'handlebars') _builder = CodeBuilder() _compiler = OMeta.makeGrammar(compile_grammar, {'builder': _builder}) def __init__(self): self._helpers = {} self.template_counter = 1 def _extract_word(self, source, position): boundry = re.search('{{|{|\s|$', source[:position][::-1]) start_offset = boundry.end() if boundry.group(0).startswith( '{') else boundry.start() boundry = re.search('}}|}|\s|$', source[position:]) end_offset = boundry.end() if boundry.group(0).startswith( '}') else boundry.start() return source[position - start_offset:position + end_offset] def _generate_code(self, source): """ Common compilation code shared between precompile() and compile() :param source: The template source as a unicode string :return: A tuple of (function, source_code) """ if not isinstance(source, str_class): raise PybarsError("Template source must be a unicode string") tree, (position, _) = self._handlebars(source).apply('template') self.clean_whitespace(tree) if debug: print('\nAST') print('---') print(tree) print('') if position < len(source): line_num = source.count('\n') + 1 beginning_of_line = source.rfind('\n', 0, position) if beginning_of_line == -1: char_num = position else: char_num = position - beginning_of_line word = self._extract_word(source, position) raise PybarsError("Error at character %s of line %s near %s" % (char_num, line_num, word)) # Ensure the builder is in a clean state - kinda gross self._compiler.globals['builder']._reset() output = self._compiler(tree).apply('compile')[0] return output def precompile(self, source): """ Generates python source code that can be saved to a file for caching :param source: The template to generate source for - should be a unicode string :return: Python code as a unicode string """ return self._generate_code(source).full_code def compile(self, source, path=None): """Compile source to a ready to run template. :param source: The template to compile - should be a unicode string :return: A template function ready to execute """ container = self._generate_code(source) def make_module_name(name, suffix=None): output = 'pybars._templates.%s' % name if suffix: output += '_%s' % suffix return output if not path: path = '_template' generate_name = True else: path = path.replace('\\', '/') path = path.replace('/', '_') mod_name = make_module_name(path) if mod_name in sys.modules: generate_name = True if generate_name: mod_name = make_module_name(path, self.template_counter) while mod_name in sys.modules: self.template_counter += 1 mod_name = make_module_name(path, self.template_counter) mod = ModuleType(mod_name) filename = '%s.py' % mod_name.replace('pybars.', '').replace('.', '/') exec(compile(container.full_code, filename, 'exec', dont_inherit=True), mod.__dict__) sys.modules[mod_name] = mod linecache.getlines(filename, mod.__dict__) return mod.__dict__[container.name] def clean_whitespace(self, tree): """ Cleans up whitespace around block open and close tags if they are the only thing on the line :param tree: The AST - will be modified in place """ pointer = 0 end = len(tree) while pointer < end: piece = tree[pointer] if piece[0] == 'block': child_tree = piece[3] # Look at open tag, if the only other thing on the line is whitespace # then delete it so we don't introduce extra newlines to the output open_pre_whitespace = False open_pre_content = True if pointer > 1 and tree[pointer - 1][0] == 'whitespace' and ( tree[pointer - 2][0] == 'newline' or tree[pointer - 2] == 'template'): open_pre_whitespace = True open_pre_content = False elif pointer > 0 and (tree[pointer - 1][0] == 'newline' or tree[pointer - 1] == 'template'): open_pre_content = False open_post_whitespace = False open_post_content = True child_len = len(child_tree) if child_len > 2 and child_tree[1][ 0] == 'whitespace' and child_tree[2][0] == 'newline': open_post_whitespace = True open_post_content = False elif child_len > 1 and child_tree[1][0] == 'newline': open_post_content = False if not open_pre_content and not open_post_content: if open_pre_whitespace: tree.pop(pointer - 1) pointer -= 1 end -= 1 if open_post_whitespace: child_tree.pop(1) child_tree.pop(1) # trailing newline # Do the same thing, but for the close tag close_pre_whitespace = False close_pre_content = True child_len = len(child_tree) if child_len > 2 and child_tree[ child_len - 1][0] == 'whitespace' and child_tree[ child_len - 2][0] == 'newline': close_pre_whitespace = True close_pre_content = False elif child_len > 1 and child_tree[child_len - 1][0] == 'newline': close_pre_content = False close_post_whitespace = False close_post_content = True tree_len = len(tree) if tree_len > pointer + 2 and tree[ pointer + 1][0] == 'whitespace' and tree[pointer + 2][0] == 'newline': close_post_whitespace = True close_post_content = False elif tree_len == pointer + 2 and tree[pointer + 1][0] == 'whitespace': close_post_whitespace = True close_post_content = False elif tree_len > pointer + 1 and tree[pointer + 1][0] == 'newline': close_post_content = False elif tree_len == pointer + 1: close_post_content = False if not close_pre_content and not close_post_content: if close_pre_whitespace: child_tree.pop() child_tree.pop() # preceeding newline if close_post_whitespace: tree.pop(pointer + 1) end -= 1 self.clean_whitespace(child_tree) pointer += 1
// Set the current namespace current_namespace = (struct namespace *)vtable_toplevel_namespace; }}}END_EMBEDDED_C EMBEDDED_C{{{ return 0; } }}}END_EMBEDDED_C """ params = globals() for key in locals().keys(): params[key] = locals()[key] grammar = OMeta.makeGrammar(strip_comments(grammar_def), params) if __name__ == '__main__': if len(sys.argv) < 2: print "Usage: iddish_compiler.py input.id [output.c]" sys.exit() in_name = sys.argv[1] if len(sys.argv) > 2: out_name = sys.argv[2] else: out_name = in_name.rsplit('.', 1)[0]+'.c' in_file = open(in_name, 'r') in_lines = ''.join([l for l in in_file.readlines()]) in_file.close()
#prec18 :i ::= <compare i>:c => c ## Identity tests ##prec19 :i ::= <>:=> ## Membership tests ##prec20 :i ::= <>:=> ## Boolean NOT #prec21 :i ::= <not i>:n => n ## Boolean AND #prec22 :i ::= <and i>:a => a ## Boolean OR #prec23 :i ::= <or i>:o => o ## Lambda #prec24 :i ::= <lambda i>:l => l """ g = OMeta.makeGrammar(strip_comments(gram), {'match_args':match_args, 'from_flag':from_flag}) if __name__ == '__main__': try: mode = "none" if sys.argv[2].strip() == "list": mode = "list" elif sys.argv[2].strip() == "finderror": mode = "finderror" if not mode is "none": ins = open(sys.argv[1], 'r') parsefiles = [] for line in ins.readlines(): parsefiles.append(line.strip()) ins.close()
class CalcGrammar(OMeta.makeGrammar(calcGrammar, globals())): pass
def Tuple(args): return _Term(Tag(".tuple."), args) def Bag(args): return _Term(Tag(".bag."), args) def LabelledBag(f, arg): return _Term(f, [arg]) def Attr(k, v): return _Term(Tag(".attr."), [k, v]) BaseTermLParser = OMeta.makeGrammar(termLGrammar, globals(), "TermLParser") class TermLParser(BaseTermLParser, CommonParser): pass TermLParser.globals.update(CommonParser.globals) def _parseTerm(termString): """ Parser frontend for term strings. """ p = TermLParser(termString) result, error = p.apply("term") try: p.input.head() except EOFError: pass
from pymeta.grammar import OMeta from pymeta.runtime import ParseError from translate import convert_lines __all__ = ['validate'] # The file which will contain the bnf grammar for the game responses BNF_FILE = path.join(path.dirname(path.abspath(__file__)), "./bnf_10.txt") # The file which contains some base grammar definitions for JSON JSON_GRAMMAR_FILE = path.join(path.dirname(path.abspath(__file__)), "./json_base.grm") # The name of the production which all messages extend from in the grammar TOP_PRODUCTION = "msg" # Convert the BNF into pymeta, then add the JSON base to it _grammar = "\n\n".join(convert_lines(open(BNF_FILE))) _grammar += "\n\n" + "".join(open(JSON_GRAMMAR_FILE)) # Make the parser from it _parser = OMeta.makeGrammar(_grammar, {}) def validate(response, production=TOP_PRODUCTION): ''' Trys to validate the given response with the loaded grammar. Returns true if the response is valid in the grammar ''' application = _parser(response) application.apply(production) return True
# If we've reached a '}meta' then stop matching, otherwise keep going annotation_contents ::= <token '}meta'> => '' | <anything> <annotation_contents> => '' # A statement is a series of annotations or anything else statement ::= <annotation>+ => '' | <anything>+:a => ''.join(a) # A program is a series of statements program ::= <statement>+:a => ''.join(a) """ # Now we embed the transformations in every AST node, so that they can # apply them recursively to their children finder = OMeta.makeGrammar(strip_comments(annotation_finder), globals()) def strip_annotations(path_or_text): """This performs the translation from annotated Python to normal Python. It takes in annotated Python code (assuming the string to be a file path, falling back to treating it as raw code if it is not a valid path) and emits Python code.""" # See if the given string is a valid path if os.path.exists(path_or_text): # If so then open it and read the file contents into in_text infile = open(path_or_text, 'r') in_text = '\n'.join([line for line in infile.readlines()]) infile.close() # Otherwise take the string contents to be in_text else:
class Grammar(OMeta.makeGrammar(pyva_grammar, {'p': p})): keywords = set(( 'and', 'as', 'break', 'case', 'catch', 'class', 'continue', 'def', 'default', 'del', 'delete', 'do', 'elif', 'else', 'except', 'finally', 'for', 'function', 'if', 'in', 'instanceof', 'new', 'not', 'or', 'pass', 'raise', 'return', 'switch', 'throw', 'til', 'to', 'try', 'var', 'void', 'while', 'with', 'yield', )) hex_digits = '0123456789abcdef' def __init__(self, *args, **kwargs): super(Grammar, self).__init__(*args, **kwargs) self.parenthesis = 0 self.parenthesis_stack = [] self.indent_stack = [0] def enter_paren(self): self.parenthesis += 1 def leave_paren(self): self.parenthesis -= 1 def enter_deflambda(self, indent): self.indent_stack.append(indent) self.parenthesis_stack.append(self.parenthesis) self.parenthesis = 0 def leave_deflambda(self): self.indent_stack.pop() self.parenthesis = self.parenthesis_stack.pop() def get_indent(self): start = self.input.position for index in reversed(range(self.input.position)): char = self.input.data[index] if char == '\n': return start - (index + 1) elif char != ' ': start = index return 0 def dedent(self): # A dedent comes after a '\n'. Put it back, so the outer line # rule can handle the '\n' self.indent_stack.pop() input = self.input.prev() if input.head()[0] == '\n': self.input = input def is_keyword(self, keyword): return keyword in self.keywords
""" A grammar for parsing a tiny CSS-like language, plus a transformer for it. """ from pymeta.grammar import OMeta from itertools import chain tinyCSSGrammar = """ name ::= <letterOrDigit>+:ls => ''.join(ls) tag ::= ('<' <spaces> <name>:n <spaces> <attribute>*:attrs '>' <html>:c '<' '/' <token n> <spaces> '>' => [n.lower(), dict(attrs), c]) html ::= (<text> | <tag>)* text ::= (~('<') <anything>)+:t => ''.join(t) attribute ::= <spaces> <name>:k <token '='> <quotedString>:v => (k, v) quotedString ::= (('"' | '\''):q (~<exactly q> <anything>)*:xs <exactly q> => ''.join(xs)) """ TinyCSS = OMeta.makeGrammar(tinyCSSGrammar, globals(), name="TinyCSS") def compile(source): pass #return Translator.parse_source(TinyCSS.parse_source(source))
none_list :a ::= => make_list(a) """ # These are the objects which will be available to the matcher import sys args = globals() args['constants'] = [str, int, float, complex] args['import_match'] = import_match args['tuple_args'] = tuple_args args['is_del'] = is_del args['pick_quotes'] = pick_quotes args['make_list'] = make_list args['sys'] = sys # grammar is the class, instances of which can match using grammar_def grammar = OM.makeGrammar(grammar_def, args) # Patch the grammar for recursion def ins(self, val): """This is a very dangerous function! We monkey-patch PyMeta grammars with this so that we can insert an arbitrary value as the next input. This allows us to recurse without having to instantiate another matcher (we effectively use the existing input as a stack). Beware of leaving cruft behind on the input!""" # Insert the value self.input.data.insert(self.input.position, val) # Throw away any cached input self.input.tl = None self.input.memo = {} # Ensure success, if needed return True
# Recurse through boundless loops while ::= <anything>:a ?(a.__class__ == While) => While(apply(a.test), apply(a.body), apply(a.else_)) # Recurse through with? with ::= <anything>:a ?(a.__class__ == With) => With(apply(a.expr), apply(a.vars), apply(a.body)) # Recurse through Yields yield ::= <anything>:a ?(a.__class__ == Yield) => Yield(apply(a.value)) """ # Now we embed the transformations in every AST node, so that they can # apply them recursively to their children #from python_rewriter.base import grammar import sys transforms = OMeta.makeGrammar(strip_comments(tree_transform), globals()) # Patch the grammar for recursion def ins(self, val): """This is a very dangerous function! We monkey-patch PyMeta grammars with this so that we can insert an arbitrary value as the next input. This allows us to recurse without having to instantiate another matcher (we effectively use the existing input as a stack). Beware of leaving cruft behind on the input!""" # Insert the value self.input.data.insert(self.input.position, val) # Throw away any cached input self.input.tl = None self.input.memo = {} # Ensure success, if needed
class Translator(OMeta.makeGrammar(pyva_translator, {'p': p, 'json': json})): op_map = { 'not': '!', } binop_map = { 'or': '||', 'and': '&&', 'is': '===', 'is not': '!==', } name_map = { 'None': 'null', 'True': 'true', 'False': 'false', 'self': 'this', 'int': 'parseInt', 'float': 'parseFloat', 'bool': '!!', 'tuple': 'list', 'unicode': 'str', } #class variable indicating whether comments are allowed or not allowcomments = False def __init__(self, *args, **kwargs): super(Translator, self).__init__(*args, **kwargs) self.indentation = 0 self.local_vars = set() self.nonlocal_vars = set() self.global_vars = set() self.var_stack = [] self.temp_var_id = 0 @classmethod def parse(cls, *args, **kwargs): if 'debug_flag' in kwargs: #Set allowcomments to the debug flag cls.allowcomments = bool(kwargs['debug_flag']) #Remove the debug flag keyword del kwargs['debug_flag'] else: cls.allowcomments = False return super(Translator, cls).parse(*args, **kwargs) def get_name(self, name): if name == 'self' and name not in self.global_vars: return name return self.name_map.get(name, name) def make_temp_var(self, name, prefix='_$tmp'): self.temp_var_id += 1 return '%s%s_%s' % (prefix, self.temp_var_id, name) def indent(self): self.indentation += 1 return self.indentation def dedent(self): self.indentation -= 1 def is_pure_var_name(self, var): return '.' not in var and '[' not in var def is_list_var_name(self, var): return var[0] == '[' and var[-1] == ']' def __register_var(self, var): if self.is_pure_var_name(var) and \ var not in self.global_vars and \ var not in self.nonlocal_vars: self.local_vars.add(var) def __get_var_list(self, var_list_str): var_names = var_list_str[1:-1].split(',') var_names = [var_name.strip() for var_name in var_names] return var_names def make_comment(self, c): if self.allowcomments: return '//%s' % c else: return None def make_stmts(self, ss): """ Filter out None statements - these are currently filtered out comments """ return [s for s in ss if s is not None] def make_eq(self, var, val): indent = ' ' * self.indentation if self.is_list_var_name(var): var_names = self.__get_var_list(var) var_str = '_$rapyd_tuple$_ = %s' % val for i in xrange(len(var_names)): var_str += ';\n%s%s = %s' % (indent, var_names[i], '_$rapyd_tuple$_[' + str(i) + ']') else: var_str = '%s = %s' % (var, val) return var_str def register_var(self, var): if self.is_list_var_name(var): var_names = self.__get_var_list(var) self.__register_var('_$rapyd_tuple$_') for i in xrange(len(var_names)): self.__register_var(var_names[i]) else: self.__register_var(var) def register_nonlocals(self, vars): for var in vars: if self.is_pure_var_name(var) and var not in self.global_vars: self.nonlocal_vars.add(var) self.local_vars -= set([var]) def register_globals(self, vars): self.global_vars.update( [var for var in vars if self.is_pure_var_name(var)]) self.local_vars -= self.global_vars self.nonlocal_vars -= self.global_vars def push_vars(self): self.var_stack.append( (self.local_vars, self.nonlocal_vars, self.global_vars)) self.local_vars = set() self.nonlocal_vars = set() self.global_vars = set() def translate_cmp(self, x, op, y): if op == 'not in': #special case return '!(%s in %s)' % (x, y) else: return '(%s %s %s)' % (x, self.binop_map.get(op, op), y) def make_chained_cmp(self, l, r): """ build a chained comparison - this is not intended to handle single comparions because it adds unnecessary extra variables """ comps = iter(r) comp = comps.next() final_comp = self.translate_cmp(l, comp[0], comp[1]) prev_var = comp[1] for comp in comps: final_comp = '%s && %s' % \ (final_comp, self.translate_cmp(prev_var, comp[0], comp[1])) prev_var = comp[1] return '(%s)' % final_comp def pop_vars(self): self.local_vars, self.nonlocal_vars, self.global_vars = self.var_stack.pop( ) def make_block(self, stmts, indentation): indentstr = ' ' * indentation line_list = [] for stmt in stmts: if stmt.startswith('//'): line_list.append(stmt) else: line_list.append('%s%s' % (indentstr, stmt)) return '{\n%s\n%s}' % ('\n'.join(line_list), ' ' * (indentation - 1)) def make_func_block(self, stmts, indentation): if self.local_vars: vars_str = ', '.join(sorted(self.local_vars)) var_stmt = ['var %s;' % vars_str] else: var_stmt = [] return self.make_block(var_stmt + stmts, indentation) def make_dict(self, items, indentation): indentstr = ' ' * indentation sep = ',\n%s' % indentstr return '{\n%s%s\n%s}' % (indentstr, sep.join(items), ' ' * (indentation - 1)) def comments_str(self, raw_comments): comments = [] if self.allowcomments: for comment in raw_comments: if comment and comment[0] == 'comment': comments.append('//%s' % comment[1]) if comments: return '\n%s\n%s' % ('\n'.join(comments), ' ' * self.indentation) else: return '' def make_if(self, cond, block, elifexprs, elseblock): expr = ['if (%s) %s' % (cond, block)] for elifexpr in elifexprs: comments = self.comments_str(elifexpr[0]) expr.append('%selse if (%s) %s' % (comments, elifexpr[1], elifexpr[2])) if elseblock and elseblock[1]: comments = self.comments_str(elseblock[0]) expr.append('%selse %s' % (comments, elseblock[1])) return ' '.join(expr) def make_try(self, body, catch, fin): expr = ['try %s' % body] if catch is not None: expr.append('catch(%s) %s' % (catch[1], catch[2])) if fin is not None: expr.append('finally %s' % fin[1]) return ' '.join(expr) def make_for(self, var, data, body): indentstr = ' ' * self.indentation datavar = self.make_temp_var('data') lenvar = self.make_temp_var('len') index = self.make_temp_var('index') unpack_str = '' if self.is_list_var_name(var): RAPYD_PACKED_TUPLE = '_$rapyd$_tuple' var_list = self.__get_var_list(var) unpack_str = '' for i in xrange(len(var_list)): unpack_str += '%s%s = %s[%d];\n' % \ (indentstr + ' ', var_list[i], RAPYD_PACKED_TUPLE, i) var = RAPYD_PACKED_TUPLE init = 'var %s = _$rapyd$_iter(%s);\n%svar %s = %s.length;\n%s' % ( datavar, data, indentstr, lenvar, datavar, indentstr) body = body.replace( '{', '{\n%s%s = %s[%s];\n%s' % (indentstr + ' ', var, datavar, index, unpack_str), 1) return '%sfor (var %s = 0; %s < %s; %s++) %s' % (init, index, index, lenvar, index, body) def temp_var_or_literal(self, name, var, init): """ Returns either the literal if it's a literal or a temporary variable storing the non-literal in addition to regitering the temporary with init. """ if var[0]: # Literal return var[1] temp = self.make_temp_var(name) init.append('%s = %s' % (temp, var[1])) return temp def make_for_range(self, var, for_range, body): # for_range is a list of tuples (bool:literal, str:js_code) indentstr = ' ' * self.indentation stepstr = '%s++' % var init = [] if len(for_range) == 1: start = 0 end = self.temp_var_or_literal('end', for_range[0], init) else: start = for_range[0][1] end = self.temp_var_or_literal('end', for_range[1], init) if len(for_range) == 3: step = self.temp_var_or_literal('step', for_range[2], init) stepstr = '%s += %s' % (var, step) initstr = '' if init: initstr = 'var %s;\n%s' % (', '.join(init), indentstr) return '%sfor (%s = %s; %s < %s; %s) %s' % (initstr, var, start, var, end, stepstr, body) def make_for_reversed_range(self, var, for_range, body): indentstr = ' ' * self.indentation if len(for_range) == 1: return '%s = %s;\n%swhile (%s--) %s' % (var, for_range[0][1], indentstr, var, body) init = [] start = for_range[1][1] end = self.temp_var_or_literal('end', for_range[0], init) if len(for_range) == 3: step = self.temp_var_or_literal('step', for_range[2], init) stepstr = '%s -= %s' % (var, step) else: stepstr = '%s--' % var initstr = '' if init: initstr = 'var %s;\n%s' % (', '.join(init), indentstr) return '%sfor (%s = (%s) - 1; %s >= %s; %s) %s' % ( initstr, var, start, var, end, stepstr, body) def make_func(self, name, args, body): if name: name = self.get_name(name[1]) self.register_var(name) func = '%s = function' % name body += ';' else: func = 'function' if args and args[0] == self.get_name('self'): args = args[1:] return '%s(%s) %s' % (func, ', '.join(args), body)
class Compiler: """A handlebars template compiler. The compiler is not threadsafe: you need one per thread because of the state in CodeBuilder. """ _handlebars = OMeta.makeGrammar(handlebars_grammar, {}, 'handlebars') _builder = CodeBuilder() _compiler = OMeta.makeGrammar(compile_grammar, {'builder': _builder}) def __init__(self): self._helpers = {} self.template_counter = 1 def _extract_word(self, source, position): """ Extracts the word that falls at or around a specific position :param source: The template source as a unicode string :param position: The position where the word falls :return: The word """ boundry = re.search(r'{{|{|\s|$', source[:position][::-1]) start_offset = boundry.end() if boundry.group(0).startswith( '{') else boundry.start() boundry = re.search(r'}}|}|\s|$', source[position:]) end_offset = boundry.end() if boundry.group(0).startswith( '}') else boundry.start() return source[position - start_offset:position + end_offset] def _generate_code(self, source): """ Common compilation code shared between precompile() and compile() :param source: The template source as a unicode string :return: A tuple of (function, source_code) """ if not isinstance(source, str_class): raise PybarsError("Template source must be a unicode string") source = self.whitespace_control(source) tree, (position, _) = self._handlebars(source).apply('template') if debug: print('\nAST') print('---') print(tree) print('') if position < len(source): line_num = source.count('\n') + 1 beginning_of_line = source.rfind('\n', 0, position) if beginning_of_line == -1: char_num = position else: char_num = position - beginning_of_line word = self._extract_word(source, position) raise PybarsError("Error at character %s of line %s near %s" % (char_num, line_num, word)) # Ensure the builder is in a clean state - kinda gross self._compiler.globals['builder']._reset() output = self._compiler(tree).apply('compile')[0] return output def whitespace_control(self, source): """ Preprocess source to handle whitespace control and remove extra block whitespaces. :param source: The template source as a unicode string :return: The processed template source as a unicode string """ cleanup_sub = re.compile( # Clean-up whitespace control marks and spaces between blocks tags r'(?<={{)~|~(?=}})|(?<=}})[ \t]+(?={{)').sub return re.sub( # Whitespace control using "~" mark r'~}}\s*|\s*{{~|' # Whitespace around alone blocks tags that in a line r'(?<=\n)([ \t]*{{(#[^{}]+|/[^{}]+|![^{}]+|else|else if [^{}]+)}}[ \t]*)+\r?\n|' # Whitespace aroud alone blocks tag on the first line r'^([ \t]*{{(#[^{}]+|![^{}]+)}}[ \t]*)+\r?\n|' # Whitespace aroud alone blocks tag on the last line r'\r?\n([ \t]*{{(/[^{}]+|![^{}]+)}}[ \t]*)+$', lambda match: cleanup_sub('', match.group(0).strip()), source) def precompile(self, source): """ Generates python source code that can be saved to a file for caching :param source: The template to generate source for - should be a unicode string :return: Python code as a unicode string """ return self._generate_code(source).full_code def compile(self, source, path=None): """Compile source to a ready to run template. :param source: The template to compile - should be a unicode string :return: A template function ready to execute """ container = self._generate_code(source) def make_module_name(name, suffix=None): output = 'pybars._templates.%s' % name if suffix: output += '_%s' % suffix return output if not path: path = '_template' generate_name = True else: path = path.replace('\\', '/') path = path.replace('/', '_') mod_name = make_module_name(path) generate_name = mod_name in sys.modules if generate_name: mod_name = make_module_name(path, self.template_counter) while mod_name in sys.modules: self.template_counter += 1 mod_name = make_module_name(path, self.template_counter) mod = ModuleType(mod_name) filename = '%s.py' % mod_name.replace('pybars.', '').replace('.', '/') exec(compile(container.full_code, filename, 'exec', dont_inherit=True), mod.__dict__) sys.modules[mod_name] = mod linecache.getlines(filename, mod.__dict__) return mod.__dict__[container.name] def template(self, code): def _render(context, helpers=None, partials=None, root=None): ns = { 'context': context, 'helpers': helpers, 'partials': partials, 'root': root } exec( code + '\nresult = render(context, helpers=helpers, partials=partials, root=root)', ns) return ns['result'] return _render
class RegexGrammar(OMeta.makeGrammar(regexGrammar, globals())): pass
class Py2GPUGrammar(OMeta.makeGrammar(py2gpu_grammar, vars, name="Py2CGrammar")): def raise_parse_error(self, node, error, message=''): lineno = getattr(node, 'lineno', 1) col_offset = getattr(node, 'col_offset', 1) if message: message = ': ' + message raise ParseError(lineno, error, 'Parse error at line %d, col %d (node %s)%s' % ( lineno, col_offset, node.__class__.__name__, message)) @property def func_name(self): return getattr(self, '_func_name', None) def parse(self, data, rule='grammar', *args): # print data, rule, [(getattr(item, 'lineno', 0), getattr(item, 'col_offset', 0)) for item in (data if isinstance(data, (tuple, list)) else [data])] if not isinstance(data, (tuple, list)): data = (data,) try: grammar = self.__class__(data) grammar._func_name = self.func_name result, error = grammar.apply(rule, *args) except ParseError: self.raise_parse_error(data, None, 'Unsupported node type') try: head = grammar.input.head() except EOFError: pass else: self.raise_parse_error(head[0], error) return result def gen_subscript(self, name, indices, assigning): dims = len(indices) if '->' in name: assert dims == 1, 'Attribute values can only be one-dimensional.' name, attr = name.rsplit('->', 1) if attr == 'offset': info = _gpu_funcs[self.func_name] blockshapes = info['blockshapes'] overlapping = info['overlapping'] threadmemory = info['threadmemory'] center_on_origin = info['center_on_origin'] if name in threadmemory: return '0' shape = blockshapes.get(name) if shape: try: dim = int(indices[0]) except: raise ValueError('Offset must be an integer') return self.get_block_init(name, dim, shape[dim], name in overlapping, center_on_origin)[2] else: raise ValueError('%s is not an array' % name) elif attr == 'shape': shape = '__%s_shape2' % name for dim in reversed(range(2)): shape = '(%s == %d ? __%s_shape%d : %s)' % (indices[0], dim, name, dim, shape) return shape else: return '%s->%s[%s]' % (name, attr, indices[0]) access = [] shifted_indices = [] for dim, index in enumerate(indices): shifted_indices.append(index) access.append(' * '.join(['__%s_shape%d' % (name, subdim) for subdim in range(dim+1, dims)] + [index])) subscript = '%s[%s]' % (name, ' + '.join(access)) return subscript def gen_func(self, func, level): name = func.name info = _gpu_funcs[name] # Store function name, so it can be reused in other parser rules self._func_name = name info['funcnode'] = func types = info['types'] threadmemory = info['threadmemory'] args = set(arg.id for arg in func.args.args) vars = set(types.keys()).symmetric_difference( args).symmetric_difference(threadmemory.keys()) vars = '\n'.join('%s %s;' % (types[var][3], var) for var in vars if var != 'return') # Calculate register requirements before parsing the function body maxthreads = None # TODO: actually calculate the real number of unused registers unused_registers = 8192 - 600 needed_registers = 0 for var, shape in threadmemory.items(): size = numpy.array(shape).prod() needed_registers += size vars += '\n%s %s[%d];' % (types[var][3], var, size) if needed_registers: threads = unused_registers / needed_registers # If there aren't enough registers we fall back to local memory # and use a relatively high number of threads to compensate for # the slower memory access if threads < 96: threads = 64 x_threads = int(sqrt(threads)) maxthreads = (threads // x_threads, x_threads, 1) info['maxthreads'] = maxthreads if vars: vars += '\n\n' data = { 'func': make_prototype(func, '__device__', name, info), 'body': indent_source(level+1, vars) + self.parse(func.body, 'body', level+1), } source = _func_template % data # Functions with return values can't be called from the CPU if types.get('return'): self._func_name = None return source # Generate kernel that shifts block by offset and calls device function blockinit = [] blockshapes = info['blockshapes'] overlapping = info['overlapping'] center_on_origin = info['center_on_origin'] args = [] for arg in func.args.args: origarg = arg = arg.id kind = types[arg][1] if kind.endswith('Array') and arg in blockshapes: arg = '__array_' + arg shape = blockshapes.get(origarg) if shape: offsetinit = [] blockinit.append('%s *%s;' % (types[origarg][3], arg)) blockinit.append('if (%s != NULL) {' % origarg) for dim, dimlength in enumerate(shape): block, limit, shift = self.get_block_init(origarg, dim, dimlength, origarg in overlapping, center_on_origin) blockinit.append(' if (%s >= %s)\n return;' % (block, limit)) if dim == len(shape) - 1: offsetinit.append(shift) else: offsetinit.append('%s * %s' % (' * '.join('__%s_shape%d' % (origarg, subdim) for subdim in range(dim+1, len(shape))), shift)) blockinit.append(' %s = %s + %s;' % ( arg, origarg, ' + '.join(offsetinit))) blockinit.append('} else {') blockinit.append(' %s = %s;' % (arg, origarg)) blockinit.append('}') args.append(arg) if kind.endswith('Array'): args.extend('__%s_shape%d' % (origarg, dim) for dim in range(3)) bodydata = { 'declarations': '%s' % '\n'.join(blockinit), 'call': '%s(%s);' % (func.name, ', '.join(args)), } data['func'] = make_prototype(func, '__global__', '__kernel_' + name, info) data['body'] = indent_source(level+1, _kernel_body % bodydata) source += _func_template % data # Reset function context self._func_name = None return source def get_block_init(self, name, dim, dimlength, overlapping, center_on_origin): block = 'BLOCK(%d)' % dim if overlapping: if center_on_origin: limit = '__%s_shape%d' % (name, dim) shift = '(%s - %s/2)' % (block, dimlength) else: limit = '__%s_shape%d - (%s - 1)' % (name, dim, dimlength) shift = block else: limit = '__%s_shape%d/%s' % (name, dim, dimlength) shift = '%s * %s' % (block, dimlength) return block, limit, shift def gen_call(self, call): assert call.starargs is None assert call.kwargs is None info = _gpu_funcs[self.func_name] types = info['types'] name = self.parse(call.func, 'varaccess') args = [] for arg in [self.parse(arg, 'op') for arg in call.args]: args.append(arg) typeinfo = types.get(arg) if typeinfo and typeinfo[1].endswith('Array'): args.extend(self._get_dim_args(arg)) elif arg == 'NULL': args.extend(3 * ('0',)) if '->' in name: arg, name = name.split('->', 1) if info['types'][arg][2].name == 'float32': name = 'f' + name shape = info['blockshapes'].get(arg) or info['threadmemory'].get(arg) name += '%dd' % len(shape) dimargs = ', '.join(self._get_dim_args(arg)) args.insert(0, '%s, %s' % (arg, dimargs)) args.extend(str(arg) for arg in shape) name = '__array_' + name elif name in ('int', 'float', 'min', 'max', 'sqrt', 'log', 'abs'): # These functions are specialized via templates name = '__py_' + name return '%s(%s)' % (name, ', '.join(args)) def _get_dim_args(self, arg): info = _gpu_funcs[self.func_name] threadmemory = info['threadmemory'] shape = threadmemory.get(arg) if shape: shape += (3 - len(shape)) * (1,) return ('%d' % dim for dim in shape) return ('__%s_shape%d' % (arg, dim) for dim in range(3)) def gen_for(self, node, level): assert not node.orelse, 'else clause not supported in for loops' rangespec = tuple(self.parse(node.iter, 'range')) length = len(rangespec) assert length in range(1, 4), 'range() must get 1-3 parameters' if length == 3: start, stop, step = rangespec elif length == 2: start, stop = rangespec step = 1 else: start, step = 0, 1 stop = rangespec[0] return _for_loop % { 'name': self.parse(node.target, 'name'), 'body': self.parse(node.body, 'body', level+1), 'indent': indent(level), 'start': start, 'stop': stop, 'step': step, } def gen_while(self, node, level): assert not node.orelse, 'else clause not supported in for loops' return _while_loop % { 'test': self.parse(node.test, 'op'), 'body': self.parse(node.body, 'body', level+1), 'indent': indent(level), }
return _Term(Tag(".tuple."), args) def Bag(args): return _Term(Tag(".bag."), args) def LabelledBag(f, arg): return _Term(f, [arg]) def Attr(k, v): return _Term(Tag(".attr."), [k, v]) BaseTermLParser = OMeta.makeGrammar(termLGrammar, globals(), "TermLParser") class TermLParser(BaseTermLParser, CommonParser): pass TermLParser.globals.update(CommonParser.globals) def _parseTerm(termString): """ Parser frontend for term strings. """ p = TermLParser(termString) result, error = p.apply("term")