示例#1
0
    poles are colored according using IPF coloring and resized proportionally 
    to each grain volume.
    """
    # create a microstructure with a random texture and 200 grains
    micro = Microstructure.random_texture(n=200)
    micro.autodelete = True

    # set random values for the grain volumes
    np.random.seed(22)
    for g in micro.grains:
        g['volume'] = 100 * np.random.random()**3
        g.update()
    micro.grains.flush()

    # first pole figure
    pf = PoleFigure(microstructure=micro)
    pf.resize_markers = True
    pf.set_hkl_poles('001')
    pf.axis = 'Z'
    pf.set_map_field('ipf')
    pf.plot_pole_figures(plot_sst=True, display=False, save_as='png')
    del pf
    del micro

    image_name = os.path.splitext(__file__)[0] + '.png'
    print('writing %s' % image_name)

    from matplotlib import image

    image.thumbnail(image_name, 'thumb_' + image_name, 0.2)
    A PoleFigure object is then created using this microstructure and the pole figures
    (both direct and inverse) are drawn by calling the plot_pole_figures() method.
    '''
    micro = Microstructure(name='Au_6grains', overwrite_hdf5=True)
    micro.autodelete = True
    gid_list = [1158, 1349, 1585, 1805, 1833, 2268]
    euler_list = [(344.776, 52.2589, 53.9933), 
                  (344.899, 125.961, 217.330),
                  (228.039, 57.4791, 143.171),
                  (186.741, 60.333, 43.311),
                  (151.709, 55.0406, 44.1051),
                  (237.262, 125.149, 225.615),
                  ]
    micro.add_grains(euler_list, grain_ids=gid_list)

    # create pole figure (both direct and inverse)
    pf = PoleFigure(hkl='111', axis='Z', proj='stereo', microstructure=micro)
    pf.mksize = 100
    pf.set_map_field('grain_id')
    pf.pflegend = True  # this works well for a few grains
    pf.plot_pole_figures(plot_sst=True, display=False, save_as='png')
    del pf
    del micro

    image_name = os.path.splitext(__file__)[0] + '.png'
    print('writing %s' % image_name)

    from matplotlib import image

    image.thumbnail(image_name, 'thumb_' + image_name, 0.2)
示例#3
0
from pymicro.crystal.microstructure import Microstructure, Grain, Orientation
from pymicro.crystal.texture import PoleFigure
from matplotlib import pyplot as plt, colors, cm

if __name__ == '__main__':
    '''
    111 Pole figure of a copper sample containing 10000 grains with a fibre
    texture.
    '''
    eulers = Orientation.read_euler_txt('../data/Cu_111.dat')
    micro = Microstructure(name='Cu_111')
    for index in eulers:
        micro.grains.append(Grain(index, eulers[index]))

    # create pole figure (both direct and inverse)
    pf = PoleFigure(hkl='111',
                    proj='stereo',
                    microstructure=micro,
                    verbose=False)
    pf.color_by_grain_id = False
    pf.mksize = 5
    pf.pflegend = False
    pf.plot_pole_figures(plot_sst=True, display=False, save_as='png')

    image_name = os.path.splitext(__file__)[0] + '.png'
    print('writting %s' % image_name)

    from matplotlib import image

    image.thumbnail(image_name, 'thumb_' + image_name, 0.2)
示例#4
0
import os, numpy as np
from pymicro.crystal.microstructure import Microstructure
from pymicro.crystal.texture import PoleFigure

if __name__ == '__main__':
    '''
    200 Pole figure of a copper sample containing 10000 grains with a fibre
    texture.
    '''
    euler_list = np.genfromtxt('../data/Cu_200.dat',
                               usecols=(0, 1, 2),
                               max_rows=1000)
    micro = Microstructure(name='Cu_200', autodelete=True)
    micro.add_grains(euler_list)

    # create pole figure (both direct and inverse)
    pf = PoleFigure(hkl='200', proj='stereo', microstructure=micro)
    pf.color_by_grain_id = False
    pf.mksize = 5
    pf.pflegend = False
    pf.plot_pole_figures(plot_sst=True, display=False, save_as='png')
    del pf
    del micro

    image_name = os.path.splitext(__file__)[0] + '.png'
    print('writing %s' % image_name)

    from matplotlib import image

    image.thumbnail(image_name, 'thumb_' + image_name, 0.2)
示例#5
0
from pymicro.crystal.microstructure import Microstructure, Grain, Orientation
from matplotlib import pyplot as plt, colors, colorbar, cm
'''
An inverse pole figure with symboled colored by the grain size.
'''
eulers = Orientation.read_orientations('../data/EBSD_20grains.txt',
                                       data_type='euler',
                                       usecols=[1, 2, 3])
grain_sizes = np.genfromtxt('../data/EBSD_20grains.txt', usecols=[9])
micro = Microstructure(name='test')
for i in range(20):
    micro.grains.append(Grain(i + 1, eulers[i + 1]))
    micro.get_grain(i + 1).volume = grain_sizes[i]

# build a custom pole figure
pf = PoleFigure(microstructure=micro, hkl='001')  #, lattice=Ti7Al)
#pf.resize_markers = True
pf.mksize = 100
pf.set_map_field('strain',
                 grain_sizes,
                 field_min_level=0.0,
                 field_max_level=1000.,
                 lut='jet')
fig = plt.figure(figsize=(8, 5))
ax1 = fig.add_axes([0.05, 0.05, 0.8, 0.9], aspect='equal')
pf.plot_sst(ax=ax1, mk='o')
ax1.set_title('%s-axis SST inverse %s projection' % (pf.axis, pf.proj))

# to add the color bar
ax2 = fig.add_axes([0.85, 0.05, 0.05, 0.9])
norm = colors.Normalize(vmin=0., vmax=1000.)
示例#6
0
from pymicro.crystal.microstructure import Orientation, Grain
from pymicro.crystal.texture import PoleFigure
from pymicro.view.scene3d import Scene3D
from pymicro.view.vtk_utils import pole_figure_3d, axes_actor, setup_camera

'''
Create a 3d scene with a cubic crystal lattice at the center.
Hkl planes are added to the lattice and their normal displayed.
A sphere is added to show how a pole figure can be constructed.
'''

base_name = os.path.splitext(__file__)[0]
s3d = Scene3D(display=False, ren_size=(800, 800), name=base_name)

orientation = Orientation.from_euler(numpy.array([142.8, 32.0, 214.4]))
pf = PoleFigure(hkl='111')
pf.microstructure.grains.append(Grain(1, orientation))
pole_figure = pole_figure_3d(pf, radius=1.0, show_lattice=True)

# add all actors to the 3d scene
s3d.add(pole_figure)
axes = axes_actor(1.0, fontSize=60)
s3d.add(axes)

# set up camera
cam = setup_camera(size=(1, 1, 1))
cam.SetViewUp(0, 0, 1)
cam.SetPosition(0, -4, 0)
cam.SetFocalPoint(0, 0, 0)
s3d.set_camera(cam)
s3d.render()
示例#7
0
from pymicro.crystal.microstructure import Microstructure, Orientation, Grain
from pymicro.crystal.texture import PoleFigure
from matplotlib import pyplot as plt

# read data from Z-set calculation (50% tension load)
data = np.genfromtxt('../data/R_1g.dat')
t, R11, R22, R33, R12, R23, R31, R21, R32, R13, _, _, _, _ = data.T
step = 1  # plot every step point
max_step = data.shape[0]

# create a microstructure with the initial grain orientation
micro = Microstructure(name='1g', autodelete=True)
g = Grain(50, Orientation.from_euler((12.293, 149.266, -167.068)))
micro.add_grains([(12.293, 149.266, -167.068)], grain_ids=[50])

ipf = PoleFigure(proj='stereo', microstructure=micro)
ipf.mksize = 100
ipf.set_map_field('grain_id')

fig = plt.figure(1, figsize=(6, 5))  # for IPF
ax1 = fig.add_subplot(111, aspect='equal')
print('** plotting the initial orientation (with label for legend) **')
ipf.plot_sst(ax=ax1, mk='.', col='k', ann=False)
ax1.set_title('grain rotation in tension')
axis = np.array([0, 0, 1])

grain = micro.get_grain(50)
cgid = Microstructure.rand_cmap().colors[grain.id]  # color by grain id
g = grain.orientation_matrix()
axis_rot_sst_prev = np.array(ipf.sst_symmetry_cubic(g.dot(axis)))
print('** plotting ipf loading axis trajectory **')