def solve_pos_ricc_lrcf(A, E, B, C, R=None, S=None, trans=False, options=None): """Compute an approximate low-rank solution of a positive Riccati equation. See :func:`pymor.algorithms.riccati.solve_pos_ricc_lrcf` for a general description. This function uses `slycot.sb02md` (if E and S are `None`), `slycot.sb02od` (if E is `None` and S is not `None`) and `slycot.sg03ad` (if E is not `None`), which are dense solvers. Therefore, we assume all |Operators| and |VectorArrays| can be converted to |NumPy arrays| using :func:`~pymor.algorithms.to_matrix.to_matrix` and :func:`~pymor.vectorarrays.interfaces.VectorArrayInterface.to_numpy`. Parameters ---------- A The |Operator| A. E The |Operator| E or `None`. B The operator B as a |VectorArray| from `A.source`. C The operator C as a |VectorArray| from `A.source`. R The operator R as a 2D |NumPy array| or `None`. S The operator S as a |VectorArray| from `A.source` or `None`. trans Whether the first |Operator| in the positive Riccati equation is transposed. options The solver options to use (see :func:`pos_ricc_lrcf_solver_options`). Returns ------- Z Low-rank Cholesky factor of the positive Riccati equation solution, |VectorArray| from `A.source`. """ _solve_ricc_check_args(A, E, B, C, R, S, trans) options = _parse_options(options, pos_ricc_lrcf_solver_options(), 'slycot', None, False) if options['type'] != 'slycot': raise ValueError( f"Unexpected positive Riccati equation solver ({options['type']})." ) if R is None: R = np.eye(len(C) if not trans else len(B)) return solve_ricc_lrcf(A, E, B, C, -R, S, trans, options)
def solve_ricc_lrcf(A, E, B, C, R=None, trans=False, options=None): """Compute an approximate low-rank solution of a Riccati equation. See :func:`pymor.algorithms.riccati.solve_ricc_lrcf` for a general description. This function uses `scipy.linalg.solve_continuous_are`, which is a dense solver. Therefore, we assume all |Operators| and |VectorArrays| can be converted to |NumPy arrays| using :func:`~pymor.algorithms.to_matrix.to_matrix` and :func:`~pymor.vectorarrays.interface.VectorArray.to_numpy`. Parameters ---------- A The non-parametric |Operator| A. E The non-parametric |Operator| E or `None`. B The operator B as a |VectorArray| from `A.source`. C The operator C as a |VectorArray| from `A.source`. R The operator R as a 2D |NumPy array| or `None`. trans Whether the first |Operator| in the Riccati equation is transposed. options The solver options to use (see :func:`ricc_lrcf_solver_options`). Returns ------- Z Low-rank Cholesky factor of the Riccati equation solution, |VectorArray| from `A.source`. """ _solve_ricc_check_args(A, E, B, C, R, trans) options = _parse_options(options, ricc_lrcf_solver_options(), 'scipy', None, False) if options['type'] != 'scipy': raise ValueError( f"Unexpected Riccati equation solver ({options['type']}).") A_source = A.source A = to_matrix(A, format='dense') E = to_matrix(E, format='dense') if E else None B = B.to_numpy().T C = C.to_numpy() if R is None: R = np.eye(C.shape[0] if not trans else B.shape[1]) if not trans: if E is not None: E = E.T X = solve_continuous_are(A.T, C.T, B.dot(B.T), R, E) else: X = solve_continuous_are(A, B, C.T.dot(C), R, E) return A_source.from_numpy(_chol(X).T)
def solve_lyap_dense(A, E, B, trans=False, options=None): """Compute the solution of a Lyapunov equation. See :func:`pymor.algorithms.lyapunov.solve_lyap_dense` for a general description. This function uses `slycot.sb03md` (if `E is None`) and `slycot.sg03ad` (if `E is not None`), which are based on the Bartels-Stewart algorithm. Parameters ---------- A The operator A as a 2D |NumPy array|. E The operator E as a 2D |NumPy array| or `None`. B The operator B as a 2D |NumPy array|. trans Whether the first operator in the Lyapunov equation is transposed. options The solver options to use (see :func:`lyap_dense_solver_options`). Returns ------- X Lyapunov equation solution as a |NumPy array|. """ _solve_lyap_dense_check_args(A, E, B, trans) options = _parse_options(options, lyap_dense_solver_options(), 'slycot_bartels-stewart', None, False) if options['type'] == 'slycot_bartels-stewart': n = A.shape[0] C = -B.dot(B.T) if not trans else -B.T.dot(B) trana = 'T' if not trans else 'N' dico = 'C' job = 'B' if E is None: U = np.zeros((n, n)) X, scale, sep, ferr, _ = slycot.sb03md(n, C, A, U, dico, job=job, trana=trana) _solve_check(A.dtype, 'slycot.sb03md', sep, ferr) else: fact = 'N' uplo = 'L' Q = np.zeros((n, n)) Z = np.zeros((n, n)) _, _, _, _, X, scale, sep, ferr, _, _, _ = slycot.sg03ad(dico, job, fact, trana, uplo, n, A, E, Q, Z, C) _solve_check(A.dtype, 'slycot.sg03ad', sep, ferr) X /= scale else: raise ValueError(f"Unexpected Lyapunov equation solver ({options['type']}).") return X
def solve_pos_ricc_lrcf(A, E, B, C, R=None, trans=False, options=None): """Compute an approximate low-rank solution of a positive Riccati equation. See :func:`pymor.algorithms.riccati.solve_pos_ricc_lrcf` for a general description. This function uses `pymess.dense_nm_gmpcare`. Parameters ---------- A The non-parametric |Operator| A. E The non-parametric |Operator| E or `None`. B The operator B as a |VectorArray| from `A.source`. C The operator C as a |VectorArray| from `A.source`. R The operator R as a 2D |NumPy array| or `None`. trans Whether the first |Operator| in the Riccati equation is transposed. options The solver options to use (see :func:`pos_ricc_lrcf_solver_options`). Returns ------- Z Low-rank Cholesky factor of the Riccati equation solution, |VectorArray| from `A.source`. """ _solve_ricc_check_args(A, E, B, C, R, trans) options = _parse_options(options, pos_ricc_lrcf_solver_options(), 'pymess_dense_nm_gmpcare', None, False) if options['type'] == 'pymess_dense_nm_gmpcare': X = _call_pymess_dense_nm_gmpare(A, E, B, C, R, trans=trans, options=options['opts'], plus=True, method_name='solve_pos_ricc_lrcf') Z = _chol(X) else: raise ValueError( f'Unexpected positive Riccati equation solver ({options["type"]}).' ) return A.source.from_numpy(Z.T)
def solve_lyap_dense(A, E, B, trans=False, options=None): """Compute the solution of a Lyapunov equation. See :func:`pymor.algorithms.lyapunov.solve_lyap_dense` for a general description. This function uses `scipy.linalg.solve_continuous_lyapunov`, which is a dense solver for Lyapunov equations with E=I. .. note:: If E is not `None`, the problem will be reduced to a standard continuous-time algebraic Lyapunov equation by inverting E. Parameters ---------- A The operator A as a 2D |NumPy array|. E The operator E as a 2D |NumPy array| or `None`. B The operator B as a 2D |NumPy array|. trans Whether the first operator in the Lyapunov equation is transposed. options The solver options to use (see :func:`lyap_dense_solver_options`). Returns ------- X Lyapunov equation solution as a |NumPy array|. """ _solve_lyap_dense_check_args(A, E, B, trans) options = _parse_options(options, lyap_dense_solver_options(), 'scipy', None, False) if options['type'] == 'scipy': if E is not None: A = solve(E, A) if not trans else solve(E.T, A.T).T B = solve(E, B) if not trans else solve(E.T, B.T).T if trans: A = A.T B = B.T X = solve_continuous_lyapunov(A, -B.dot(B.T)) else: raise ValueError( f"Unexpected Lyapunov equation solver ({options['type']}).") return X
def solve_lyap_lrcf(A, E, B, trans=False, options=None): """Compute an approximate low-rank solution of a Lyapunov equation. See :func:`pymor.algorithms.lyapunov.solve_lyap_lrcf` for a general description. This function uses `slycot.sb03md` (if `E is None`) and `slycot.sg03ad` (if `E is not None`), which are dense solvers based on the Bartels-Stewart algorithm. Therefore, we assume A and E can be converted to |NumPy arrays| using :func:`~pymor.algorithms.to_matrix.to_matrix` and that `B.to_numpy` is implemented. Parameters ---------- A The |Operator| A. E The |Operator| E or `None`. B The operator B as a |VectorArray| from `A.source`. trans Whether the first |Operator| in the Lyapunov equation is transposed. options The solver options to use (see :func:`lyap_lrcf_solver_options`). Returns ------- Z Low-rank Cholesky factor of the Lyapunov equation solution, |VectorArray| from `A.source`. """ _solve_lyap_lrcf_check_args(A, E, B, trans) options = _parse_options(options, lyap_lrcf_solver_options(), 'slycot_bartels-stewart', None, False) if options['type'] == 'slycot_bartels-stewart': X = solve_lyap_dense(to_matrix(A, format='dense'), to_matrix(E, format='dense') if E else None, B.to_numpy().T if not trans else B.to_numpy(), trans=trans, options=options) Z = _chol(X) else: raise ValueError( f"Unexpected Lyapunov equation solver ({options['type']}).") return A.source.from_numpy(Z.T)
def solve_pos_ricc_lrcf(A, E, B, C, R=None, S=None, trans=False, options=None): """Compute an approximate low-rank solution of a positive Riccati equation. See :func:`pymor.algorithms.riccati.solve_pos_ricc_lrcf` for a general description. This function uses `slycot.sb02md` (if E and S are `None`), `slycot.sb02od` (if E is `None` and S is not `None`) and `slycot.sg03ad` (if E is not `None`), which are dense solvers. Therefore, we assume all |Operators| and |VectorArrays| can be converted to |NumPy arrays| using :func:`~pymor.algorithms.to_matrix.to_matrix` and :func:`~pymor.vectorarrays.interfaces.VectorArrayInterface.to_numpy`. Parameters ---------- A The |Operator| A. E The |Operator| E or `None`. B The operator B as a |VectorArray| from `A.source`. C The operator C as a |VectorArray| from `A.source`. R The operator R as a 2D |NumPy array| or `None`. S The operator S as a |VectorArray| from `A.source` or `None`. trans Whether the first |Operator| in the positive Riccati equation is transposed. options The solver options to use (see :func:`pos_ricc_lrcf_solver_options`). Returns ------- Z Low-rank Cholesky factor of the positive Riccati equation solution, |VectorArray| from `A.source`. """ _solve_ricc_check_args(A, E, B, C, R, S, trans) options = _parse_options(options, pos_ricc_lrcf_solver_options(), 'slycot', None, False) if options['type'] != 'slycot': raise ValueError(f"Unexpected positive Riccati equation solver ({options['type']}).") if R is None: R = np.eye(len(C) if not trans else len(B)) return solve_ricc_lrcf(A, E, B, C, -R, S, trans, options)
def solve_lyap_dense(A, E, B, trans=False, options=None): """Compute the solution of a Lyapunov equation. See :func:`pymor.algorithms.lyapunov.solve_lyap_dense` for a general description. This function uses `scipy.linalg.solve_continuous_lyapunov`, which is a dense solver for Lyapunov equations with E=I. .. note:: If E is not `None`, the problem will be reduced to a standard continuous-time algebraic Lyapunov equation by inverting E. Parameters ---------- A The operator A as a 2D |NumPy array|. E The operator E as a 2D |NumPy array| or `None`. B The operator B as a 2D |NumPy array|. trans Whether the first operator in the Lyapunov equation is transposed. options The solver options to use (see :func:`lyap_dense_solver_options`). Returns ------- X Lyapunov equation solution as a |NumPy array|. """ _solve_lyap_dense_check_args(A, E, B, trans) options = _parse_options(options, lyap_dense_solver_options(), 'scipy', None, False) if options['type'] == 'scipy': if E is not None: A = solve(E, A) if not trans else solve(E.T, A.T).T B = solve(E, B) if not trans else solve(E.T, B.T).T if trans: A = A.T B = B.T X = solve_continuous_lyapunov(A, -B.dot(B.T)) else: raise ValueError(f"Unexpected Lyapunov equation solver ({options['type']}).") return X
def solve_lyap(A, E, B, trans=False, options=None): """Find a factor of the solution of a Lyapunov equation. Returns factor :math:`Z` such that :math:`Z Z^T` is approximately the solution :math:`X` of a Lyapunov equation (if E is `None`). .. math:: A X + X A^T + B B^T = 0 or generalized Lyapunov equation .. math:: A X E^T + E X A^T + B B^T = 0. If trans is `True`, then solve (if E is `None`) .. math:: A^T X + X A + B^T B = 0 or .. math:: A^T X E + E^T X A + B^T B = 0. Parameters ---------- A The |Operator| A. E The |Operator| E or `None`. B The |Operator| B. trans If the dual equation needs to be solved. options The |solver_options| to use (see :func:`lyap_solver_options`). Returns ------- Z Low-rank factor of the Lyapunov equation solution, |VectorArray| from `A.source`. """ _solve_lyap_check_args(A, E, B, trans) options = _parse_options(options, lyap_solver_options(), 'lradi', None, False) if options['type'] == 'lradi': return lradi(A, E, B, trans, options) else: raise ValueError('Unknown solver type')
def solve_lyap_lrcf(A, E, B, trans=False, options=None): """Compute an approximate low-rank solution of a Lyapunov equation. See :func:`pymor.algorithms.lyapunov.solve_lyap_lrcf` for a general description. This function uses `scipy.linalg.solve_continuous_lyapunov`, which is a dense solver for Lyapunov equations with E=I. Therefore, we assume A and E can be converted to |NumPy arrays| using :func:`~pymor.algorithms.to_matrix.to_matrix` and that `B.to_numpy` is implemented. .. note:: If E is not `None`, the problem will be reduced to a standard continuous-time algebraic Lyapunov equation by inverting E. Parameters ---------- A The non-parametric |Operator| A. E The non-parametric |Operator| E or `None`. B The operator B as a |VectorArray| from `A.source`. trans Whether the first |Operator| in the Lyapunov equation is transposed. options The solver options to use (see :func:`lyap_lrcf_solver_options`). Returns ------- Z Low-rank Cholesky factor of the Lyapunov equation solution, |VectorArray| from `A.source`. """ _solve_lyap_lrcf_check_args(A, E, B, trans) options = _parse_options(options, lyap_lrcf_solver_options(), 'scipy', None, False) X = solve_lyap_dense(to_matrix(A, format='dense'), to_matrix(E, format='dense') if E else None, B.to_numpy().T if not trans else B.to_numpy(), trans=trans, options=options) return A.source.from_numpy(_chol(X).T)
def solve_lyap_lrcf(A, E, B, trans=False, options=None): """Compute an approximate low-rank solution of a Lyapunov equation. See :func:`pymor.algorithms.lyapunov.solve_lyap_lrcf` for a general description. This function uses `slycot.sb03md` (if `E is None`) and `slycot.sg03ad` (if `E is not None`), which are dense solvers based on the Bartels-Stewart algorithm. Therefore, we assume A and E can be converted to |NumPy arrays| using :func:`~pymor.algorithms.to_matrix.to_matrix` and that `B.to_numpy` is implemented. Parameters ---------- A The |Operator| A. E The |Operator| E or `None`. B The operator B as a |VectorArray| from `A.source`. trans Whether the first |Operator| in the Lyapunov equation is transposed. options The solver options to use (see :func:`lyap_lrcf_solver_options`). Returns ------- Z Low-rank Cholesky factor of the Lyapunov equation solution, |VectorArray| from `A.source`. """ _solve_lyap_lrcf_check_args(A, E, B, trans) options = _parse_options(options, lyap_lrcf_solver_options(), 'slycot_bartels-stewart', None, False) if options['type'] == 'slycot_bartels-stewart': X = solve_lyap_dense(to_matrix(A, format='dense'), to_matrix(E, format='dense') if E else None, B.to_numpy().T if not trans else B.to_numpy(), trans=trans, options=options) Z = _chol(X) else: raise ValueError(f"Unexpected Lyapunov equation solver ({options['type']}).") return A.source.from_numpy(Z.T)
def solve_pos_ricc_lrcf(A, E, B, C, R=None, S=None, trans=False, options=None): """Compute an approximate low-rank solution of a positive Riccati equation. See :func:`pymor.algorithms.riccati.solve_pos_ricc_lrcf` for a general description. This function uses `pymess.dense_nm_gmpcare`. Parameters ---------- A The |Operator| A. E The |Operator| E or `None`. B The operator B as a |VectorArray| from `A.source`. C The operator C as a |VectorArray| from `A.source`. R The operator R as a 2D |NumPy array| or `None`. S The operator S as a |VectorArray| from `A.source` or `None`. trans Whether the first |Operator| in the Riccati equation is transposed. options The solver options to use (see :func:`pos_ricc_lrcf_solver_options`). Returns ------- Z Low-rank Cholesky factor of the Riccati equation solution, |VectorArray| from `A.source`. """ _solve_ricc_check_args(A, E, B, C, R, S, trans) options = _parse_options(options, pos_ricc_lrcf_solver_options(), 'pymess_dense_nm_gmpcare', None, False) if options['type'] == 'pymess_dense_nm_gmpcare': X = _call_pymess_dense_nm_gmpare(A, E, B, C, R, S, trans=trans, options=options['opts'], plus=True) Z = _chol(X) else: raise ValueError(f'Unexpected positive Riccati equation solver ({options["type"]}).') return A.source.from_numpy(Z.T)
def solve_lyap_lrcf(A, E, B, trans=False, options=None): """Compute an approximate low-rank solution of a Lyapunov equation. See :func:`pymor.algorithms.lyapunov.solve_lyap_lrcf` for a general description. This function uses `scipy.linalg.solve_continuous_lyapunov`, which is a dense solver for Lyapunov equations with E=I. Therefore, we assume A and E can be converted to |NumPy arrays| using :func:`~pymor.algorithms.to_matrix.to_matrix` and that `B.to_numpy` is implemented. .. note:: If E is not `None`, the problem will be reduced to a standard continuous-time algebraic Lyapunov equation by inverting E. Parameters ---------- A The |Operator| A. E The |Operator| E or `None`. B The operator B as a |VectorArray| from `A.source`. trans Whether the first |Operator| in the Lyapunov equation is transposed. options The solver options to use (see :func:`lyap_lrcf_solver_options`). Returns ------- Z Low-rank Cholesky factor of the Lyapunov equation solution, |VectorArray| from `A.source`. """ _solve_lyap_lrcf_check_args(A, E, B, trans) options = _parse_options(options, lyap_lrcf_solver_options(), 'scipy', None, False) X = solve_lyap_dense(to_matrix(A, format='dense'), to_matrix(E, format='dense') if E else None, B.to_numpy().T if not trans else B.to_numpy(), trans=trans, options=options) return A.source.from_numpy(_chol(X).T)
def solve_lyap_dense(A, E, B, trans=False, options=None): """Compute the solution of a Lyapunov equation. See :func:`pymor.algorithms.lyapunov.solve_lyap_dense` for a general description. This function uses `pymess.glyap`. Parameters ---------- A The operator A as a 2D |NumPy array|. E The operator E as a 2D |NumPy array| or `None`. B The operator B as a 2D |NumPy array|. trans Whether the first operator in the Lyapunov equation is transposed. options The solver options to use (see :func:`lyap_dense_solver_options`). Returns ------- X Lyapunov equation solution as a |NumPy array|. """ _solve_lyap_dense_check_args(A, E, B, trans) options = _parse_options(options, lyap_lrcf_solver_options(), 'pymess_glyap', None, False) if options['type'] == 'pymess_glyap': Y = B.dot(B.T) if not trans else B.T.dot(B) op = pymess.MESS_OP_NONE if not trans else pymess.MESS_OP_TRANSPOSE X = pymess.glyap(A, E, Y, op=op)[0] X = np.asarray(X) else: raise ValueError( f'Unexpected Lyapunov equation solver ({options["type"]}).') return X
def solve_lyap_dense(A, E, B, trans=False, options=None): """Compute the solution of a Lyapunov equation. See :func:`pymor.algorithms.lyapunov.solve_lyap_dense` for a general description. This function uses `pymess.glyap`. Parameters ---------- A The operator A as a 2D |NumPy array|. E The operator E as a 2D |NumPy array| or `None`. B The operator B as a 2D |NumPy array|. trans Whether the first operator in the Lyapunov equation is transposed. options The solver options to use (see :func:`lyap_dense_solver_options`). Returns ------- X Lyapunov equation solution as a |NumPy array|. """ _solve_lyap_dense_check_args(A, E, B, trans) options = _parse_options(options, lyap_lrcf_solver_options(), 'pymess_glyap', None, False) if options['type'] == 'pymess_glyap': Y = B.dot(B.T) if not trans else B.T.dot(B) op = pymess.MESS_OP_NONE if not trans else pymess.MESS_OP_TRANSPOSE X = pymess.glyap(A, E, Y, op=op)[0] else: raise ValueError(f'Unexpected Lyapunov equation solver ({options["type"]}).') return X
def solve_ricc_lrcf(A, E, B, C, R=None, S=None, trans=False, options=None): """Compute an approximate low-rank solution of a Riccati equation. See :func:`pymor.algorithms.riccati.solve_ricc_lrcf` for a general description. This function uses `slycot.sb02md` (if E and S are `None`), `slycot.sb02od` (if E is `None` and S is not `None`) and `slycot.sg03ad` (if E is not `None`), which are dense solvers. Therefore, we assume all |Operators| and |VectorArrays| can be converted to |NumPy arrays| using :func:`~pymor.algorithms.to_matrix.to_matrix` and :func:`~pymor.vectorarrays.interfaces.VectorArrayInterface.to_numpy`. Parameters ---------- A The |Operator| A. E The |Operator| E or `None`. B The operator B as a |VectorArray| from `A.source`. C The operator C as a |VectorArray| from `A.source`. R The operator R as a 2D |NumPy array| or `None`. S The operator S as a |VectorArray| from `A.source` or `None`. trans Whether the first |Operator| in the Riccati equation is transposed. options The solver options to use (see :func:`ricc_lrcf_solver_options`). Returns ------- Z Low-rank Cholesky factor of the Riccati equation solution, |VectorArray| from `A.source`. """ _solve_ricc_check_args(A, E, B, C, R, S, trans) options = _parse_options(options, ricc_lrcf_solver_options(), 'slycot', None, False) if options['type'] != 'slycot': raise ValueError( f"Unexpected Riccati equation solver ({options['type']}).") A_source = A.source A = to_matrix(A, format='dense') E = to_matrix(E, format='dense') if E else None B = B.to_numpy().T C = C.to_numpy() S = S.to_numpy().T if S else None n = A.shape[0] dico = 'C' if E is None: if S is None: if not trans: A = A.T G = C.T.dot(C) if R is None else slycot.sb02mt( n, C.shape[0], C.T, R)[-1] else: G = B.dot(B.T) if R is None else slycot.sb02mt( n, B.shape[1], B, R)[-1] Q = B.dot(B.T) if not trans else C.T.dot(C) X, rcond = slycot.sb02md(n, A, G, Q, dico)[:2] _ricc_rcond_check('slycot.sb02md', rcond) else: m = C.shape[0] if not trans else B.shape[1] p = B.shape[1] if not trans else C.shape[0] if R is None: R = np.eye(m) if not trans: A = A.T B, C = C.T, B.T X, rcond = slycot.sb02od(n, m, A, B, C, R, dico, p=p, L=S, fact='C')[:2] _ricc_rcond_check('slycot.sb02od', rcond) else: jobb = 'B' fact = 'C' uplo = 'U' jobl = 'Z' if S is None else 'N' scal = 'N' sort = 'S' acc = 'R' m = C.shape[0] if not trans else B.shape[1] p = B.shape[1] if not trans else C.shape[0] if R is None: R = np.eye(m) if S is None: S = np.empty((n, m)) if not trans: A = A.T E = E.T B, C = C.T, B.T out = slycot.sg02ad(dico, jobb, fact, uplo, jobl, scal, sort, acc, n, m, p, A, E, B, C, R, S) X = out[1] rcond = out[0] _ricc_rcond_check('slycot.sg02ad', rcond) return A_source.from_numpy(_chol(X).T)
def solve_ricc_lrcf(A, E, B, C, R=None, S=None, trans=False, options=None, default_solver=None): """Compute an approximate low-rank solution of a Riccati equation. See :func:`pymor.algorithms.riccati.solve_ricc_lrcf` for a general description. This function uses `pymess.dense_nm_gmpcare` and `pymess.lrnm`. For both methods, :meth:`~pymor.vectorarrays.interfaces.VectorArrayInterface.to_numpy` and :meth:`~pymor.vectorarrays.interfaces.VectorSpaceInterface.from_numpy` need to be implemented for `A.source`. Additionally, since `dense_nm_gmpcare` is a dense solver, it expects :func:`~pymor.algorithms.to_matrix.to_matrix` to work for A and E. If the solver is not specified using the options or default_solver arguments, `dense_nm_gmpcare` is used for small problems (smaller than defined with :func:`~pymor.algorithms.lyapunov.mat_eqn_sparse_min_size`) and `lrnm` for large problems. Parameters ---------- A The |Operator| A. E The |Operator| E or `None`. B The operator B as a |VectorArray| from `A.source`. C The operator C as a |VectorArray| from `A.source`. R The operator R as a 2D |NumPy array| or `None`. S The operator S as a |VectorArray| from `A.source` or `None`. trans Whether the first |Operator| in the Riccati equation is transposed. options The solver options to use (see :func:`ricc_lrcf_solver_options`). default_solver Default solver to use (pymess_lrnm, pymess_dense_nm_gmpcare). If `None`, chose solver depending on dimension `A`. Returns ------- Z Low-rank Cholesky factor of the Riccati equation solution, |VectorArray| from `A.source`. """ _solve_ricc_check_args(A, E, B, C, R, S, trans) if default_solver is None: default_solver = 'pymess_lrnm' if A.source.dim >= mat_eqn_sparse_min_size() else 'pymess_dense_nm_gmpcare' options = _parse_options(options, ricc_lrcf_solver_options(), default_solver, None, False) if options['type'] == 'pymess_dense_nm_gmpcare': X = _call_pymess_dense_nm_gmpare(A, E, B, C, R, S, trans=trans, options=options['opts'], plus=False) Z = _chol(X) elif options['type'] == 'pymess_lrnm': if S is not None: raise NotImplementedError if R is not None: import scipy.linalg as spla Rc = spla.cholesky(R) # R = Rc^T * Rc Rci = spla.solve_triangular(Rc, np.eye(Rc.shape[0])) # R^{-1} = Rci * Rci^T if not trans: C = C.lincomb(Rci.T) # C <- Rci^T * C = (C^T * Rci)^T else: B = B.lincomb(Rci.T) # B <- B * Rci opts = options['opts'] opts.type = pymess.MESS_OP_NONE if not trans else pymess.MESS_OP_TRANSPOSE eqn = RiccatiEquation(opts, A, E, B, C) Z, status = pymess.lrnm(eqn, opts) else: raise ValueError(f'Unexpected Riccati equation solver ({options["type"]}).') return A.source.from_numpy(Z.T)
def solve_ricc(A, E=None, B=None, Q=None, C=None, R=None, G=None, trans=False, options=None): """Find a factor of the solution of a Riccati equation using solve_continuous_are. Returns factor :math:`Z` such that :math:`Z Z^T` is approximately the solution :math:`X` of a Riccati equation .. math:: A^T X E + E^T X A - E^T X B R^{-1} B^T X E + Q = 0. If E in `None`, it is taken to be the identity matrix. Q can instead be given as C^T * C. In this case, Q needs to be `None`, and C not `None`. B * R^{-1} B^T can instead be given by G. In this case, B and R need to be `None`, and G not `None`. If R and G are `None`, then R is taken to be the identity matrix. If trans is `True`, then the dual Riccati equation is solved .. math:: A X E^T + E X A^T - E X C^T R^{-1} C X E^T + Q = 0, where Q can be replaced by B * B^T and C^T * R^{-1} * C by G. This uses the `scipy.linalg.spla.solve_continuous_are` method. Generalized Riccati equation is not supported. It can only solve medium-sized dense problems and assumes access to the matrix data of all operators. Parameters ---------- A The |Operator| A. B The |Operator| B or `None`. E The |Operator| E or `None`. Q The |Operator| Q or `None`. C The |Operator| C or `None`. R The |Operator| R or `None`. G The |Operator| G or `None`. trans If the dual equation needs to be solved. options The |solver_options| to use (see :func:`ricc_solver_options`). Returns ------- Z Low-rank factor of the Riccati equation solution, |VectorArray| from `A.source`. """ _solve_ricc_check_args(A, E, B, Q, C, R, G, trans) options = _parse_options(options, lyap_solver_options(), 'scipy', None, False) assert options['type'] == 'scipy' if E is not None or G is not None: raise NotImplementedError import scipy.linalg as spla A_mat = to_matrix(A, format='dense') B_mat = to_matrix(B, format='dense') if B else None C_mat = to_matrix(C, format='dense') if C else None Q_mat = to_matrix(Q, format='dense') if Q else None R_mat = to_matrix(R, format='dense') if R else None if R is None: if not trans: R_mat = np.eye(B.source.dim) else: R_mat = np.eye(C.range.dim) if not trans: if Q is None: Q_mat = C_mat.T.dot(C_mat) X = spla.solve_continuous_are(A_mat, B_mat, Q_mat, R_mat) else: if Q is None: Q_mat = B_mat.dot(B_mat.T) X = spla.solve_continuous_are(A_mat.T, C_mat.T, Q_mat, R_mat) Z = chol(X, copy=False) Z = A.source.from_numpy(np.array(Z).T) return Z
def apply_inverse(op, V, initial_guess=None, options=None, least_squares=False, check_finite=True, default_solver='scipy_spsolve', default_least_squares_solver='scipy_least_squares_lsmr'): """Solve linear equation system. Applies the inverse of `op` to the vectors in `V` using SciPy. Parameters ---------- op The linear, non-parametric |Operator| to invert. V |VectorArray| of right-hand sides for the equation system. initial_guess |VectorArray| with the same length as `V` containing initial guesses for the solution. Some implementations of `apply_inverse` may ignore this parameter. If `None` a solver-dependent default is used. options The |solver_options| to use (see :func:`solver_options`). least_squares If `True`, return least squares solution. check_finite Test if solution only contains finite values. default_solver Default solver to use (scipy_spsolve, scipy_bicgstab, scipy_bicgstab_spilu, scipy_lgmres, scipy_least_squares_lsmr, scipy_least_squares_lsqr). default_least_squares_solver Default solver to use for least squares problems (scipy_least_squares_lsmr, scipy_least_squares_lsqr). Returns ------- |VectorArray| of the solution vectors. """ assert V in op.range assert initial_guess is None or initial_guess in op.source and len( initial_guess) == len(V) if isinstance(op, NumpyMatrixOperator): matrix = op.matrix else: from pymor.algorithms.to_matrix import to_matrix matrix = to_matrix(op) options = _parse_options(options, solver_options(), default_solver, default_least_squares_solver, least_squares) V = V.to_numpy() initial_guess = initial_guess.to_numpy( ) if initial_guess is not None else None promoted_type = np.promote_types(matrix.dtype, V.dtype) R = np.empty((len(V), matrix.shape[1]), dtype=promoted_type) if options['type'] == 'scipy_bicgstab': for i, VV in enumerate(V): R[i], info = bicgstab( matrix, VV, initial_guess[i] if initial_guess is not None else None, tol=options['tol'], maxiter=options['maxiter']) if info != 0: if info > 0: raise InversionError( f'bicgstab failed to converge after {info} iterations') else: raise InversionError( 'bicgstab failed with error code {} (illegal input or breakdown)' .format(info)) elif options['type'] == 'scipy_bicgstab_spilu': ilu = spilu(matrix, drop_tol=options['spilu_drop_tol'], fill_factor=options['spilu_fill_factor'], drop_rule=options['spilu_drop_rule'], permc_spec=options['spilu_permc_spec']) precond = LinearOperator(matrix.shape, ilu.solve) for i, VV in enumerate(V): R[i], info = bicgstab( matrix, VV, initial_guess[i] if initial_guess is not None else None, tol=options['tol'], maxiter=options['maxiter'], M=precond) if info != 0: if info > 0: raise InversionError( f'bicgstab failed to converge after {info} iterations') else: raise InversionError( 'bicgstab failed with error code {} (illegal input or breakdown)' .format(info)) elif options['type'] == 'scipy_spsolve': try: # maybe remove unusable factorization: if hasattr(matrix, 'factorization'): fdtype = matrix.factorizationdtype if not np.can_cast(V.dtype, fdtype, casting='safe'): del matrix.factorization if hasattr(matrix, 'factorization'): # we may use a complex factorization of a real matrix to # apply it to a real vector. In that case, we downcast # the result here, removing the imaginary part, # which should be zero. R = matrix.factorization.solve(V.T).T.astype(promoted_type, copy=False) elif options['keep_factorization']: # the matrix is always converted to the promoted type. # if matrix.dtype == promoted_type, this is a no_op matrix.factorization = splu(matrix_astype_nocopy( matrix.tocsc(), promoted_type), permc_spec=options['permc_spec']) matrix.factorizationdtype = promoted_type R = matrix.factorization.solve(V.T).T else: # the matrix is always converted to the promoted type. # if matrix.dtype == promoted_type, this is a no_op R = spsolve(matrix_astype_nocopy(matrix, promoted_type), V.T, permc_spec=options['permc_spec']).T except RuntimeError as e: raise InversionError(e) elif options['type'] == 'scipy_lgmres': for i, VV in enumerate(V): R[i], info = lgmres( matrix, VV, initial_guess[i] if initial_guess is not None else None, tol=options['tol'], atol=options['tol'], maxiter=options['maxiter'], inner_m=options['inner_m'], outer_k=options['outer_k']) if info > 0: raise InversionError( f'lgmres failed to converge after {info} iterations') assert info == 0 elif options['type'] == 'scipy_least_squares_lsmr': from scipy.sparse.linalg import lsmr for i, VV in enumerate(V): R[i], info, itn, _, _, _, _, _ = lsmr( matrix, VV, damp=options['damp'], atol=options['atol'], btol=options['btol'], conlim=options['conlim'], maxiter=options['maxiter'], show=options['show'], x0=initial_guess[i] if initial_guess is not None else None) assert 0 <= info <= 7 if info == 7: raise InversionError( f'lsmr failed to converge after {itn} iterations') elif options['type'] == 'scipy_least_squares_lsqr': for i, VV in enumerate(V): R[i], info, itn, _, _, _, _, _, _, _ = lsqr( matrix, VV, damp=options['damp'], atol=options['atol'], btol=options['btol'], conlim=options['conlim'], iter_lim=options['iter_lim'], show=options['show'], x0=initial_guess[i] if initial_guess is not None else None) assert 0 <= info <= 7 if info == 7: raise InversionError( f'lsmr failed to converge after {itn} iterations') else: raise ValueError('Unknown solver type') if check_finite: if not np.isfinite(np.sum(R)): raise InversionError('Result contains non-finite values') return op.source.from_numpy(R)
def solve_lyap_lrcf(A, E, B, trans=False, options=None): """Compute an approximate low-rank solution of a Lyapunov equation. See :func:`pymor.algorithms.lyapunov.solve_lyap_lrcf` for a general description. This function uses the low-rank ADI iteration as described in Algorithm 4.3 in [PK16]_. Parameters ---------- A The |Operator| A. E The |Operator| E or `None`. B The operator B as a |VectorArray| from `A.source`. trans Whether the first |Operator| in the Lyapunov equation is transposed. options The solver options to use (see :func:`lyap_lrcf_solver_options`). Returns ------- Z Low-rank Cholesky factor of the Lyapunov equation solution, |VectorArray| from `A.source`. """ _solve_lyap_lrcf_check_args(A, E, B, trans) options = _parse_options(options, lyap_lrcf_solver_options(), 'lradi', None, False) logger = getLogger('pymor.algorithms.lradi.solve_lyap_lrcf') shift_options = options['shift_options'][options['shifts']] if shift_options['type'] == 'projection_shifts': init_shifts = projection_shifts_init iteration_shifts = projection_shifts else: raise ValueError('Unknown lradi shift strategy.') if E is None: E = IdentityOperator(A.source) Z = A.source.empty(reserve=len(B) * options['maxiter']) W = B.copy() j = 0 j_shift = 0 shifts = init_shifts(A, E, W, shift_options) res = np.linalg.norm(W.gramian(), ord=2) init_res = res Btol = res * options['tol'] while res > Btol and j < options['maxiter']: if shifts[j_shift].imag == 0: AaE = A + shifts[j_shift].real * E if not trans: V = AaE.apply_inverse(W) W -= E.apply(V) * (2 * shifts[j_shift].real) else: V = AaE.apply_inverse_adjoint(W) W -= E.apply_adjoint(V) * (2 * shifts[j_shift].real) Z.append(V * np.sqrt(-2 * shifts[j_shift].real)) j += 1 else: AaE = A + shifts[j_shift] * E gs = -4 * shifts[j_shift].real d = shifts[j_shift].real / shifts[j_shift].imag if not trans: V = AaE.apply_inverse(W) W += E.apply(V.real + V.imag * d) * gs else: V = AaE.apply_inverse_adjoint(W).conj() W += E.apply_adjoint(V.real + V.imag * d) * gs g = np.sqrt(gs) Z.append((V.real + V.imag * d) * g) Z.append(V.imag * (g * np.sqrt(d**2 + 1))) j += 2 j_shift += 1 res = np.linalg.norm(W.gramian(), ord=2) logger.info(f'Relative residual at step {j}: {res/init_res:.5e}') if j_shift >= shifts.size: shifts = iteration_shifts(A, E, V, shifts) j_shift = 0 if res > Btol: logger.warning( f'Prescribed relative residual tolerance was not achieved ' f'({res/init_res:e} > {options["tol"]:e}) after ' f'{options["maxiter"]} ADI steps.') return Z
def solve_lyap(A, E, B, trans=False, options=None): """Find a factor of the solution of a Lyapunov equation. Returns factor :math:`Z` such that :math:`Z Z^T` is approximately the solution :math:`X` of a Lyapunov equation (if E is `None`). .. math:: A X + X A^T + B B^T = 0 or generalized Lyapunov equation .. math:: A X E^T + E X A^T + B B^T = 0. If trans is `True`, then it solves (if E is `None`) .. math:: A^T X + X A + B^T B = 0 or .. math:: A^T X E + E^T X A + B^T B = 0. This uses the `scipy.linalg.spla.solve_continuous_lyapunov` method. It is only applicable to the standard Lyapunov equation (E = I). Furthermore, it can only solve medium-sized dense problems and assumes access to the matrix data of all operators. Parameters ---------- A The |Operator| A. E The |Operator| E or `None`. B The |Operator| B. trans If the dual equation needs to be solved. options The |solver_options| to use (see :func:`lyap_solver_options`). Returns ------- Z Low-rank factor of the Lyapunov equation solution, |VectorArray| from `A.source`. """ _solve_lyap_check_args(A, E, B, trans) options = _parse_options(options, lyap_solver_options(), 'scipy', None, False) assert options['type'] == 'scipy' if E is not None: raise NotImplementedError import scipy.linalg as spla A_mat = to_matrix(A, format='dense') B_mat = to_matrix(B, format='dense') if not trans: X = spla.solve_continuous_lyapunov(A_mat, -B_mat.dot(B_mat.T)) else: X = spla.solve_continuous_lyapunov(A_mat.T, -B_mat.T.dot(B_mat)) Z = chol(X, copy=False) Z = A.source.from_numpy(np.array(Z).T) return Z
def solve_ricc(A, E=None, B=None, Q=None, C=None, R=None, G=None, trans=False, options=None): """Find a factor of the solution of a Riccati equation Returns factor :math:`Z` such that :math:`Z Z^T` is approximately the solution :math:`X` of a Riccati equation .. math:: A^T X E + E^T X A - E^T X B R^{-1} B^T X E + Q = 0. If E in `None`, it is taken to be the identity matrix. Q can instead be given as C^T * C. In this case, Q needs to be `None`, and C not `None`. B * R^{-1} B^T can instead be given by G. In this case, B and R need to be `None`, and G not `None`. If R and G are `None`, then R is taken to be the identity matrix. If trans is `True`, then the dual Riccati equation is solved .. math:: A X E^T + E X A^T - E X C^T R^{-1} C X E^T + Q = 0, where Q can be replaced by B * B^T and C^T * R^{-1} * C by G. This uses the `slycot` package, in particular its interfaces to SLICOT functions `SB02MD` (for the standard Riccati equations) and `SG02AD` (for the generalized Riccati equations). These methods are only applicable to medium-sized dense problems and need access to the matrix data of all operators. Parameters ---------- A The |Operator| A. B The |Operator| B or `None`. E The |Operator| E or `None`. Q The |Operator| Q or `None`. C The |Operator| C or `None`. R The |Operator| R or `None`. G The |Operator| G or `None`. trans If the dual equation needs to be solved. options The |solver_options| to use (see :func:`ricc_solver_options`). Returns ------- Z Low-rank factor of the Riccati equation solution, |VectorArray| from `A.source`. """ _solve_ricc_check_args(A, E, B, Q, C, R, G, trans) options = _parse_options(options, ricc_solver_options(), 'slycot', None, False) assert options['type'] == 'slycot' import slycot A_mat = to_matrix(A, format='dense') B_mat = to_matrix(B, format='dense') if B else None C_mat = to_matrix(C, format='dense') if C else None R_mat = to_matrix(R, format='dense') if R else None G_mat = to_matrix(G, format='dense') if G else None Q_mat = to_matrix(Q, format='dense') if Q else None n = A_mat.shape[0] dico = 'C' if E is None: if not trans: if G is None: if R is None: G_mat = B_mat.dot(B_mat.T) else: G_mat = slycot.sb02mt(n, B_mat.shape[1], B_mat, R_mat)[-1] if C is not None: Q_mat = C_mat.T.dot(C_mat) X = slycot.sb02md(n, A_mat, G_mat, Q_mat, dico)[0] else: if G is None: if R is None: G_mat = C_mat.T.dot(C_mat) else: G_mat = slycot.sb02mt(n, C_mat.shape[0], C_mat.T, R_mat)[-1] if B is not None: Q_mat = B_mat.dot(B_mat.T) X = slycot.sb02md(n, A_mat.T, G_mat, Q_mat, dico)[0] else: E_mat = to_matrix(E, format='dense') if E else None jobb = 'B' if G is None else 'B' fact = 'C' if Q is None else 'N' uplo = 'U' jobl = 'Z' scal = 'N' sort = 'S' acc = 'R' if not trans: m = 0 if B is None else B_mat.shape[1] p = 0 if C is None else C_mat.shape[0] if G is not None: B_mat = G_mat R_mat = np.empty((1, 1)) elif R is None: R_mat = np.eye(m) if Q is None: Q_mat = C_mat L_mat = np.empty((n, m)) ret = slycot.sg02ad(dico, jobb, fact, uplo, jobl, scal, sort, acc, n, m, p, A_mat, E_mat, B_mat, Q_mat, R_mat, L_mat) else: m = 0 if C is None else C_mat.shape[0] p = 0 if B is None else B_mat.shape[1] if G is not None: C_mat = G_mat R_mat = np.empty((1, 1)) elif R is None: C_mat = C_mat.T R_mat = np.eye(m) else: C_mat = C_mat.T if Q is None: Q_mat = B_mat.T L_mat = np.empty((n, m)) ret = slycot.sg02ad(dico, jobb, fact, uplo, jobl, scal, sort, acc, n, m, p, A_mat.T, E_mat.T, C_mat, Q_mat, R_mat, L_mat) X = ret[1] iwarn = ret[-1] if iwarn == 1: print('slycot.sg02ad warning: solution may be inaccurate.') from pymor.bindings.scipy import chol Z = chol(X, copy=False) Z = A.source.from_numpy(np.array(Z).T) return Z
def solve_ricc(A, E=None, B=None, Q=None, C=None, R=None, G=None, trans=False, options=None, default_solver='pymess'): """Find a factor of the solution of a Riccati equation Returns factor :math:`Z` such that :math:`Z Z^T` is approximately the solution :math:`X` of a Riccati equation .. math:: A^T X E + E^T X A - E^T X B R^{-1} B^T X E + Q = 0. If E in `None`, it is taken to be the identity matrix. Q can instead be given as C^T * C. In this case, Q needs to be `None`, and C not `None`. B * R^{-1} B^T can instead be given by G. In this case, B and R need to be `None`, and G not `None`. If R and G are `None`, then R is taken to be the identity matrix. If trans is `True`, then the dual Riccati equation is solved .. math:: A X E^T + E X A^T - E X C^T R^{-1} C X E^T + Q = 0, where Q can be replaced by B * B^T and C^T * R^{-1} * C by G. This uses the `pymess` package, in particular its `care` and `lrnm` methods. Operators Q, R, and G are not supported, Both methods can be used for large-scale problems. The restrictions are: - `care` needs access to all matrix data, i.e., it expects :func:`~pymor.algorithms.to_matrix.to_matrix` to work for A, E, B, and C, - `lrnm` needs access to the data of the operators B and C, i.e., it expects :func:`~pymor.algorithms.to_matrix.to_matrix` to work for B and C. Parameters ---------- A The |Operator| A. B The |Operator| B or `None`. E The |Operator| E or `None`. Q The |Operator| Q or `None`. C The |Operator| C or `None`. R The |Operator| R or `None`. G The |Operator| G or `None`. trans If the dual equation needs to be solved. options The |solver_options| to use (see :func:`ricc_solver_options`). default_solver The solver to use when no `options` are specified (pymess, pymess_care, pymess_lrnm). Returns ------- Z Low-rank factor of the Riccati equation solution, |VectorArray| from `A.source`. """ _solve_ricc_check_args(A, E, B, Q, C, R, G, trans) options = _parse_options(options, ricc_solver_options(), default_solver, None, False) if options['type'] == 'pymess': if A.source.dim >= PYMESS_MIN_SPARSE_SIZE: options = dict(options, type='pymess_lrnm') # do not modify original dict! else: options = dict(options, type='pymess_care') # do not modify original dict! if options['type'] == 'pymess_care': if Q is not None or R is not None or G is not None: raise NotImplementedError A_mat = to_matrix(A, format='dense') if A.source.dim < PYMESS_MIN_SPARSE_SIZE else to_matrix(A) if E is not None: E_mat = to_matrix(E, format='dense') if A.source.dim < PYMESS_MIN_SPARSE_SIZE else to_matrix(E) else: E_mat = None B_mat = to_matrix(B, format='dense') if B else None C_mat = to_matrix(C, format='dense') if C else None if not trans: Z = pymess.care(A_mat, E_mat, B_mat, C_mat) else: if E is None: Z = pymess.care(A_mat.T, None, C_mat.T, B_mat.T) else: Z = pymess.care(A_mat.T, E_mat.T, C_mat.T, B_mat.T) elif options['type'] == 'pymess_lrnm': if Q is not None or R is not None or G is not None: raise NotImplementedError opts = options['opts'] if not trans: opts.type = pymess.MESS_OP_TRANSPOSE else: opts.type = pymess.MESS_OP_NONE eqn = RiccatiEquation(opts, A, E, B, C) Z, status = pymess.lrnm(eqn, opts) Z = A.source.from_numpy(np.array(Z).T) return Z
def solve_ricc_lrcf(A, E, B, C, R=None, S=None, trans=False, options=None): """Compute an approximate low-rank solution of a Riccati equation. See :func:`pymor.algorithms.riccati.solve_ricc_lrcf` for a general description. This function uses `slycot.sb02md` (if E and S are `None`), `slycot.sb02od` (if E is `None` and S is not `None`) and `slycot.sg03ad` (if E is not `None`), which are dense solvers. Therefore, we assume all |Operators| and |VectorArrays| can be converted to |NumPy arrays| using :func:`~pymor.algorithms.to_matrix.to_matrix` and :func:`~pymor.vectorarrays.interfaces.VectorArrayInterface.to_numpy`. Parameters ---------- A The |Operator| A. E The |Operator| E or `None`. B The operator B as a |VectorArray| from `A.source`. C The operator C as a |VectorArray| from `A.source`. R The operator R as a 2D |NumPy array| or `None`. S The operator S as a |VectorArray| from `A.source` or `None`. trans Whether the first |Operator| in the Riccati equation is transposed. options The solver options to use (see :func:`ricc_lrcf_solver_options`). Returns ------- Z Low-rank Cholesky factor of the Riccati equation solution, |VectorArray| from `A.source`. """ _solve_ricc_check_args(A, E, B, C, R, S, trans) options = _parse_options(options, ricc_lrcf_solver_options(), 'slycot', None, False) if options['type'] != 'slycot': raise ValueError(f"Unexpected Riccati equation solver ({options['type']}).") A_source = A.source A = to_matrix(A, format='dense') E = to_matrix(E, format='dense') if E else None B = B.to_numpy().T C = C.to_numpy() S = S.to_numpy().T if S else None n = A.shape[0] dico = 'C' if E is None: if S is None: if not trans: A = A.T G = C.T.dot(C) if R is None else slycot.sb02mt(n, C.shape[0], C.T, R)[-1] else: G = B.dot(B.T) if R is None else slycot.sb02mt(n, B.shape[1], B, R)[-1] Q = B.dot(B.T) if not trans else C.T.dot(C) X, rcond = slycot.sb02md(n, A, G, Q, dico)[:2] _ricc_rcond_check('slycot.sb02md', rcond) else: m = C.shape[0] if not trans else B.shape[1] p = B.shape[1] if not trans else C.shape[0] if R is None: R = np.eye(m) if not trans: A = A.T B, C = C.T, B.T X, rcond = slycot.sb02od(n, m, A, B, C, R, dico, p=p, L=S, fact='C')[:2] _ricc_rcond_check('slycot.sb02od', rcond) else: jobb = 'B' fact = 'C' uplo = 'U' jobl = 'Z' if S is None else 'N' scal = 'N' sort = 'S' acc = 'R' m = C.shape[0] if not trans else B.shape[1] p = B.shape[1] if not trans else C.shape[0] if R is None: R = np.eye(m) if S is None: S = np.empty((n, m)) if not trans: A = A.T E = E.T B, C = C.T, B.T out = slycot.sg02ad(dico, jobb, fact, uplo, jobl, scal, sort, acc, n, m, p, A, E, B, C, R, S) X = out[1] rcond = out[0] _ricc_rcond_check('slycot.sg02ad', rcond) return A_source.from_numpy(_chol(X).T)
def apply_inverse(op, V, options=None, least_squares=False, check_finite=True, default_solver='scipy_spsolve', default_least_squares_solver='scipy_least_squares_lsmr'): """Solve linear equation system. Applies the inverse of `op` to the vectors in `rhs` using PyAMG. Parameters ---------- op The linear, non-parametric |Operator| to invert. rhs |VectorArray| of right-hand sides for the equation system. options The |solver_options| to use (see :func:`solver_options`). check_finite Test if solution only containes finite values. default_solver Default solver to use (scipy_spsolve, scipy_bicgstab, scipy_bicgstab_spilu, scipy_lgmres, scipy_least_squares_lsmr, scipy_least_squares_lsqr). default_least_squares_solver Default solver to use for least squares problems (scipy_least_squares_lsmr, scipy_least_squares_lsqr). Returns ------- |VectorArray| of the solution vectors. """ assert V in op.range if isinstance(op, NumpyMatrixOperator): matrix = op._matrix else: from pymor.algorithms.to_matrix import to_matrix matrix = to_matrix(op) options = _parse_options(options, solver_options(), default_solver, default_least_squares_solver, least_squares) V = V.data promoted_type = np.promote_types(matrix.dtype, V.dtype) R = np.empty((len(V), matrix.shape[1]), dtype=promoted_type) if options['type'] == 'scipy_bicgstab': for i, VV in enumerate(V): R[i], info = bicgstab(matrix, VV, tol=options['tol'], maxiter=options['maxiter']) if info != 0: if info > 0: raise InversionError( 'bicgstab failed to converge after {} iterations'. format(info)) else: raise InversionError( 'bicgstab failed with error code {} (illegal input or breakdown)' .format(info)) elif options['type'] == 'scipy_bicgstab_spilu': if Version(scipy.version.version) >= Version('0.19'): ilu = spilu(matrix, drop_tol=options['spilu_drop_tol'], fill_factor=options['spilu_fill_factor'], drop_rule=options['spilu_drop_rule'], permc_spec=options['spilu_permc_spec']) else: if options['spilu_drop_rule']: logger = getLogger('pymor.operators.numpy._apply_inverse') logger.error( "ignoring drop_rule in ilu factorization due to old SciPy") ilu = spilu(matrix, drop_tol=options['spilu_drop_tol'], fill_factor=options['spilu_fill_factor'], permc_spec=options['spilu_permc_spec']) precond = LinearOperator(matrix.shape, ilu.solve) for i, VV in enumerate(V): R[i], info = bicgstab(matrix, VV, tol=options['tol'], maxiter=options['maxiter'], M=precond) if info != 0: if info > 0: raise InversionError( 'bicgstab failed to converge after {} iterations'. format(info)) else: raise InversionError( 'bicgstab failed with error code {} (illegal input or breakdown)' .format(info)) elif options['type'] == 'scipy_spsolve': try: # maybe remove unusable factorization: if hasattr(matrix, 'factorization'): fdtype = matrix.factorizationdtype if not np.can_cast(V.dtype, fdtype, casting='safe'): del matrix.factorization if Version(scipy.version.version) >= Version('0.14'): if hasattr(matrix, 'factorization'): # we may use a complex factorization of a real matrix to # apply it to a real vector. In that case, we downcast # the result here, removing the imaginary part, # which should be zero. R = matrix.factorization.solve(V.T).T.astype(promoted_type, copy=False) elif options['keep_factorization']: # the matrix is always converted to the promoted type. # if matrix.dtype == promoted_type, this is a no_op matrix.factorization = splu( matrix_astype_nocopy(matrix.tocsc(), promoted_type), permc_spec=options['permc_spec']) matrix.factorizationdtype = promoted_type R = matrix.factorization.solve(V.T).T else: # the matrix is always converted to the promoted type. # if matrix.dtype == promoted_type, this is a no_op R = spsolve(matrix_astype_nocopy(matrix, promoted_type), V.T, permc_spec=options['permc_spec']).T else: # see if-part for documentation if hasattr(matrix, 'factorization'): for i, VV in enumerate(V): R[i] = matrix.factorization.solve(VV).astype( promoted_type, copy=False) elif options['keep_factorization']: matrix.factorization = splu( matrix_astype_nocopy(matrix.tocsc(), promoted_type), permc_spec=options['permc_spec']) matrix.factorizationdtype = promoted_type for i, VV in enumerate(V): R[i] = matrix.factorization.solve(VV) elif len(V) > 1: factorization = splu(matrix_astype_nocopy( matrix.tocsc(), promoted_type), permc_spec=options['permc_spec']) for i, VV in enumerate(V): R[i] = factorization.solve(VV) else: R = spsolve(matrix_astype_nocopy(matrix, promoted_type), V.T, permc_spec=options['permc_spec']).reshape( (1, -1)) except RuntimeError as e: raise InversionError(e) elif options['type'] == 'scipy_lgmres': for i, VV in enumerate(V): R[i], info = lgmres(matrix, VV, tol=options['tol'], maxiter=options['maxiter'], inner_m=options['inner_m'], outer_k=options['outer_k']) if info > 0: raise InversionError( 'lgmres failed to converge after {} iterations'.format( info)) assert info == 0 elif options['type'] == 'scipy_least_squares_lsmr': from scipy.sparse.linalg import lsmr for i, VV in enumerate(V): R[i], info, itn, _, _, _, _, _ = lsmr(matrix, VV, damp=options['damp'], atol=options['atol'], btol=options['btol'], conlim=options['conlim'], maxiter=options['maxiter'], show=options['show']) assert 0 <= info <= 7 if info == 7: raise InversionError( 'lsmr failed to converge after {} iterations'.format(itn)) elif options['type'] == 'scipy_least_squares_lsqr': for i, VV in enumerate(V): R[i], info, itn, _, _, _, _, _, _, _ = lsqr( matrix, VV, damp=options['damp'], atol=options['atol'], btol=options['btol'], conlim=options['conlim'], iter_lim=options['iter_lim'], show=options['show']) assert 0 <= info <= 7 if info == 7: raise InversionError( 'lsmr failed to converge after {} iterations'.format(itn)) else: raise ValueError('Unknown solver type') if check_finite: if not np.isfinite(np.sum(R)): raise InversionError('Result contains non-finite values') return op.source.from_data(R)
def solve_ricc_lrcf(A, E, B, C, R=None, S=None, trans=False, options=None): """Compute an approximate low-rank solution of a Riccati equation. See :func:`pymor.algorithms.riccati.solve_ricc_lrcf` for a general description. This function is an implementation of Algorithm 2 in [BBKS18]_. Parameters ---------- A The |Operator| A. E The |Operator| E or `None`. B The operator B as a |VectorArray| from `A.source`. C The operator C as a |VectorArray| from `A.source`. R The operator R as a 2D |NumPy array| or `None`. S The operator S as a |VectorArray| from `A.source` or `None`. trans Whether the first |Operator| in the Riccati equation is transposed. options The solver options to use. (see :func:`ricc_lrcf_solver_options`) Returns ------- Z Low-rank Cholesky factor of the Riccati equation solution, |VectorArray| from `A.source`. """ _solve_ricc_check_args(A, E, B, C, None, None, trans) options = _parse_options(options, ricc_lrcf_solver_options(), 'lrradi', None, False) logger = getLogger('pymor.algorithms.lrradi.solve_ricc_lrcf') shift_options = options['shift_options'][options['shifts']] if shift_options['type'] == 'hamiltonian_shifts': init_shifts = hamiltonian_shifts_init iteration_shifts = hamiltonian_shifts else: raise ValueError('Unknown lrradi shift strategy.') if E is None: E = IdentityOperator(A.source) if S is not None: raise NotImplementedError if R is not None: Rc = spla.cholesky(R) # R = Rc^T * Rc Rci = spla.solve_triangular(Rc, np.eye( Rc.shape[0])) # R^{-1} = Rci * Rci^T if not trans: C = C.lincomb(Rci.T) # C <- Rci^T * C = (C^T * Rci)^T else: B = B.lincomb(Rci.T) # B <- B * Rci if not trans: B, C = C, B Z = A.source.empty(reserve=len(C) * options['maxiter']) Y = np.empty((0, 0)) K = A.source.zeros(len(B)) RF = C.copy() j = 0 j_shift = 0 shifts = init_shifts(A, E, B, C, shift_options) res = np.linalg.norm(RF.gramian(), ord=2) init_res = res Ctol = res * options['tol'] while res > Ctol and j < options['maxiter']: if not trans: AsE = A + shifts[j_shift] * E else: AsE = A + np.conj(shifts[j_shift]) * E if j == 0: if not trans: V = AsE.apply_inverse(RF) * np.sqrt(-2 * shifts[j_shift].real) else: V = AsE.apply_inverse_adjoint(RF) * np.sqrt( -2 * shifts[j_shift].real) else: if not trans: LN = AsE.apply_inverse(cat_arrays([RF, K])) else: LN = AsE.apply_inverse_adjoint(cat_arrays([RF, K])) L = LN[:len(RF)] N = LN[-len(K):] ImBN = np.eye(len(K)) - B.dot(N) ImBNKL = spla.solve(ImBN, B.dot(L)) V = (L + N.lincomb(ImBNKL.T)) * np.sqrt(-2 * shifts[j_shift].real) if np.imag(shifts[j_shift]) == 0: Z.append(V) VB = V.dot(B) Yt = np.eye(len(C)) - (VB @ VB.T) / (2 * shifts[j_shift].real) Y = spla.block_diag(Y, Yt) if not trans: EVYt = E.apply(V).lincomb(np.linalg.inv(Yt)) else: EVYt = E.apply_adjoint(V).lincomb(np.linalg.inv(Yt)) RF.axpy(np.sqrt(-2 * shifts[j_shift].real), EVYt) K += EVYt.lincomb(VB.T) j += 1 else: Z.append(V.real) Z.append(V.imag) Vr = V.real.dot(B) Vi = V.imag.dot(B) sa = np.abs(shifts[j_shift]) F1 = np.vstack((-shifts[j_shift].real / sa * Vr - shifts[j_shift].imag / sa * Vi, shifts[j_shift].imag / sa * Vr - shifts[j_shift].real / sa * Vi)) F2 = np.vstack((Vr, Vi)) F3 = np.vstack((shifts[j_shift].imag / sa * np.eye(len(C)), shifts[j_shift].real / sa * np.eye(len(C)))) Yt = spla.block_diag(np.eye(len(C)), 0.5 * np.eye(len(C))) \ - (F1 @ F1.T) / (4 * shifts[j_shift].real) \ - (F2 @ F2.T) / (4 * shifts[j_shift].real) \ - (F3 @ F3.T) / 2 Y = spla.block_diag(Y, Yt) EVYt = E.apply(cat_arrays([V.real, V.imag])).lincomb(np.linalg.inv(Yt)) RF.axpy(np.sqrt(-2 * shifts[j_shift].real), EVYt[:len(C)]) K += EVYt.lincomb(F2.T) j += 2 j_shift += 1 res = np.linalg.norm(RF.gramian(), ord=2) logger.info(f'Relative residual at step {j}: {res/init_res:.5e}') if j_shift >= shifts.size: shifts = iteration_shifts(A, E, B, RF, K, Z, shift_options) j_shift = 0 # transform solution to lrcf cf = spla.cholesky(Y) Z_cf = Z.lincomb(spla.solve_triangular(cf, np.eye(len(Z))).T) return Z_cf
def apply_inverse(op, V, options=None, least_squares=False, check_finite=True, default_solver='scipy_spsolve', default_least_squares_solver='scipy_least_squares_lsmr'): """Solve linear equation system. Applies the inverse of `op` to the vectors in `rhs` using PyAMG. Parameters ---------- op The linear, non-parametric |Operator| to invert. rhs |VectorArray| of right-hand sides for the equation system. options The |solver_options| to use (see :func:`solver_options`). check_finite Test if solution only containes finite values. default_solver Default solver to use (scipy_spsolve, scipy_bicgstab, scipy_bicgstab_spilu, scipy_lgmres, scipy_least_squares_lsmr, scipy_least_squares_lsqr). default_least_squares_solver Default solver to use for least squares problems (scipy_least_squares_lsmr, scipy_least_squares_lsqr). Returns ------- |VectorArray| of the solution vectors. """ assert V in op.range if isinstance(op, NumpyMatrixOperator): matrix = op._matrix else: from pymor.algorithms.to_matrix import to_matrix matrix = to_matrix(op) options = _parse_options(options, solver_options(), default_solver, default_least_squares_solver, least_squares) V = V.data promoted_type = np.promote_types(matrix.dtype, V.dtype) R = np.empty((len(V), matrix.shape[1]), dtype=promoted_type) if options['type'] == 'scipy_bicgstab': for i, VV in enumerate(V): R[i], info = bicgstab(matrix, VV, tol=options['tol'], maxiter=options['maxiter']) if info != 0: if info > 0: raise InversionError('bicgstab failed to converge after {} iterations'.format(info)) else: raise InversionError('bicgstab failed with error code {} (illegal input or breakdown)'. format(info)) elif options['type'] == 'scipy_bicgstab_spilu': if Version(scipy.version.version) >= Version('0.19'): ilu = spilu(matrix, drop_tol=options['spilu_drop_tol'], fill_factor=options['spilu_fill_factor'], drop_rule=options['spilu_drop_rule'], permc_spec=options['spilu_permc_spec']) else: if options['spilu_drop_rule']: logger = getLogger('pymor.operators.numpy._apply_inverse') logger.error("ignoring drop_rule in ilu factorization due to old SciPy") ilu = spilu(matrix, drop_tol=options['spilu_drop_tol'], fill_factor=options['spilu_fill_factor'], permc_spec=options['spilu_permc_spec']) precond = LinearOperator(matrix.shape, ilu.solve) for i, VV in enumerate(V): R[i], info = bicgstab(matrix, VV, tol=options['tol'], maxiter=options['maxiter'], M=precond) if info != 0: if info > 0: raise InversionError('bicgstab failed to converge after {} iterations'.format(info)) else: raise InversionError('bicgstab failed with error code {} (illegal input or breakdown)'. format(info)) elif options['type'] == 'scipy_spsolve': try: # maybe remove unusable factorization: if hasattr(matrix, 'factorization'): fdtype = matrix.factorizationdtype if not np.can_cast(V.dtype, fdtype, casting='safe'): del matrix.factorization if Version(scipy.version.version) >= Version('0.14'): if hasattr(matrix, 'factorization'): # we may use a complex factorization of a real matrix to # apply it to a real vector. In that case, we downcast # the result here, removing the imaginary part, # which should be zero. R = matrix.factorization.solve(V.T).T.astype(promoted_type, copy=False) elif options['keep_factorization']: # the matrix is always converted to the promoted type. # if matrix.dtype == promoted_type, this is a no_op matrix.factorization = splu(matrix_astype_nocopy(matrix.tocsc(), promoted_type), permc_spec=options['permc_spec']) matrix.factorizationdtype = promoted_type R = matrix.factorization.solve(V.T).T else: # the matrix is always converted to the promoted type. # if matrix.dtype == promoted_type, this is a no_op R = spsolve(matrix_astype_nocopy(matrix, promoted_type), V.T, permc_spec=options['permc_spec']).T else: # see if-part for documentation if hasattr(matrix, 'factorization'): for i, VV in enumerate(V): R[i] = matrix.factorization.solve(VV).astype(promoted_type, copy=False) elif options['keep_factorization']: matrix.factorization = splu(matrix_astype_nocopy(matrix.tocsc(), promoted_type), permc_spec=options['permc_spec']) matrix.factorizationdtype = promoted_type for i, VV in enumerate(V): R[i] = matrix.factorization.solve(VV) elif len(V) > 1: factorization = splu(matrix_astype_nocopy(matrix.tocsc(), promoted_type), permc_spec=options['permc_spec']) for i, VV in enumerate(V): R[i] = factorization.solve(VV) else: R = spsolve(matrix_astype_nocopy(matrix, promoted_type), V.T, permc_spec=options['permc_spec']).reshape((1, -1)) except RuntimeError as e: raise InversionError(e) elif options['type'] == 'scipy_lgmres': for i, VV in enumerate(V): R[i], info = lgmres(matrix, VV, tol=options['tol'], maxiter=options['maxiter'], inner_m=options['inner_m'], outer_k=options['outer_k']) if info > 0: raise InversionError('lgmres failed to converge after {} iterations'.format(info)) assert info == 0 elif options['type'] == 'scipy_least_squares_lsmr': from scipy.sparse.linalg import lsmr for i, VV in enumerate(V): R[i], info, itn, _, _, _, _, _ = lsmr(matrix, VV, damp=options['damp'], atol=options['atol'], btol=options['btol'], conlim=options['conlim'], maxiter=options['maxiter'], show=options['show']) assert 0 <= info <= 7 if info == 7: raise InversionError('lsmr failed to converge after {} iterations'.format(itn)) elif options['type'] == 'scipy_least_squares_lsqr': for i, VV in enumerate(V): R[i], info, itn, _, _, _, _, _, _, _ = lsqr(matrix, VV, damp=options['damp'], atol=options['atol'], btol=options['btol'], conlim=options['conlim'], iter_lim=options['iter_lim'], show=options['show']) assert 0 <= info <= 7 if info == 7: raise InversionError('lsmr failed to converge after {} iterations'.format(itn)) else: raise ValueError('Unknown solver type') if check_finite: if not np.isfinite(np.sum(R)): raise InversionError('Result contains non-finite values') return op.source.from_data(R)
def solve_lyap_lrcf(A, E, B, trans=False, options=None, default_solver=None): """Compute an approximate low-rank solution of a Lyapunov equation. See :func:`pymor.algorithms.lyapunov.solve_lyap_lrcf` for a general description. This function uses `pymess.glyap` and `pymess.lradi`. For both methods, :meth:`~pymor.vectorarrays.interface.VectorArray.to_numpy` and :meth:`~pymor.vectorarrays.interface.VectorSpace.from_numpy` need to be implemented for `A.source`. Additionally, since `glyap` is a dense solver, it expects :func:`~pymor.algorithms.to_matrix.to_matrix` to work for A and E. If the solver is not specified using the options or default_solver arguments, `glyap` is used for small problems (smaller than defined with :func:`~pymor.algorithms.lyapunov.mat_eqn_sparse_min_size`) and `lradi` for large problems. Parameters ---------- A The non-parametric |Operator| A. E The non-parametric |Operator| E or `None`. B The operator B as a |VectorArray| from `A.source`. trans Whether the first |Operator| in the Lyapunov equation is transposed. options The solver options to use (see :func:`lyap_lrcf_solver_options`). default_solver Default solver to use (pymess_lradi, pymess_glyap). If `None`, choose solver depending on the dimension of A. Returns ------- Z Low-rank Cholesky factor of the Lyapunov equation solution, |VectorArray| from `A.source`. """ _solve_lyap_lrcf_check_args(A, E, B, trans) if default_solver is None: default_solver = 'pymess_lradi' if A.source.dim >= mat_eqn_sparse_min_size( ) else 'pymess_glyap' options = _parse_options(options, lyap_lrcf_solver_options(), default_solver, None, False) if options['type'] == 'pymess_glyap': X = solve_lyap_dense(to_matrix(A, format='dense'), to_matrix(E, format='dense') if E else None, B.to_numpy().T if not trans else B.to_numpy(), trans=trans, options=options) Z = _chol(X) elif options['type'] == 'pymess_lradi': opts = options['opts'] opts.type = pymess.MESS_OP_NONE if not trans else pymess.MESS_OP_TRANSPOSE eqn = LyapunovEquation(opts, A, E, B) Z, status = pymess.lradi(eqn, opts) relres = status.res2_norm / status.res2_0 if relres > opts.adi.res2_tol: logger = getLogger('pymor.bindings.pymess.solve_lyap_lrcf') logger.warning( f'Desired relative residual tolerance was not achieved ' f'({relres:e} > {opts.adi.res2_tol:e}).') else: raise ValueError( f'Unexpected Lyapunov equation solver ({options["type"]}).') return A.source.from_numpy(Z.T)
def solve_lyap_lrcf(A, E, B, trans=False, options=None, default_solver=None): """Compute an approximate low-rank solution of a Lyapunov equation. See :func:`pymor.algorithms.lyapunov.solve_lyap_lrcf` for a general description. This function uses `pymess.glyap` and `pymess.lradi`. For both methods, :meth:`~pymor.vectorarrays.interfaces.VectorArrayInterface.to_numpy` and :meth:`~pymor.vectorarrays.interfaces.VectorSpaceInterface.from_numpy` need to be implemented for `A.source`. Additionally, since `glyap` is a dense solver, it expects :func:`~pymor.algorithms.to_matrix.to_matrix` to work for A and E. If the solver is not specified using the options or default_solver arguments, `glyap` is used for small problems (smaller than defined with :func:`~pymor.algorithms.lyapunov.mat_eqn_sparse_min_size`) and `lradi` for large problems. Parameters ---------- A The |Operator| A. E The |Operator| E or `None`. B The operator B as a |VectorArray| from `A.source`. trans Whether the first |Operator| in the Lyapunov equation is transposed. options The solver options to use (see :func:`lyap_lrcf_solver_options`). default_solver Default solver to use (pymess_lradi, pymess_glyap). If `None`, choose solver depending on the dimension of A. Returns ------- Z Low-rank Cholesky factor of the Lyapunov equation solution, |VectorArray| from `A.source`. """ _solve_lyap_lrcf_check_args(A, E, B, trans) if default_solver is None: default_solver = 'pymess_lradi' if A.source.dim >= mat_eqn_sparse_min_size() else 'pymess_glyap' options = _parse_options(options, lyap_lrcf_solver_options(), default_solver, None, False) if options['type'] == 'pymess_glyap': X = solve_lyap_dense(to_matrix(A, format='dense'), to_matrix(E, format='dense') if E else None, B.to_numpy().T if not trans else B.to_numpy(), trans=trans, options=options) Z = _chol(X) elif options['type'] == 'pymess_lradi': opts = options['opts'] opts.type = pymess.MESS_OP_NONE if not trans else pymess.MESS_OP_TRANSPOSE eqn = LyapunovEquation(opts, A, E, B) Z, status = pymess.lradi(eqn, opts) else: raise ValueError(f'Unexpected Lyapunov equation solver ({options["type"]}).') return A.source.from_numpy(Z.T)
def apply_inverse(op, V, options=None, least_squares=False, check_finite=True, default_solver='pyamg_solve'): """Solve linear equation system. Applies the inverse of `op` to the vectors in `rhs` using PyAMG. Parameters ---------- op The linear, non-parametric |Operator| to invert. rhs |VectorArray| of right-hand sides for the equation system. options The |solver_options| to use (see :func:`solver_options`). least_squares Must be `False`. check_finite Test if solution only contains finite values. default_solver Default solver to use (pyamg_solve, pyamg_rs, pyamg_sa). Returns ------- |VectorArray| of the solution vectors. """ assert V in op.range if least_squares: raise NotImplementedError if isinstance(op, NumpyMatrixOperator): matrix = op.matrix else: from pymor.algorithms.to_matrix import to_matrix matrix = to_matrix(op) options = _parse_options(options, solver_options(), default_solver, None, least_squares) V = V.to_numpy() promoted_type = np.promote_types(matrix.dtype, V.dtype) R = np.empty((len(V), matrix.shape[1]), dtype=promoted_type) if options['type'] == 'pyamg_solve': if len(V) > 0: V_iter = iter(enumerate(V)) R[0], ml = pyamg.solve(matrix, next(V_iter)[1], tol=options['tol'], maxiter=options['maxiter'], return_solver=True) for i, VV in V_iter: R[i] = pyamg.solve(matrix, VV, tol=options['tol'], maxiter=options['maxiter'], existing_solver=ml) elif options['type'] == 'pyamg_rs': ml = pyamg.ruge_stuben_solver( matrix, strength=options['strength'], CF=options['CF'], presmoother=options['presmoother'], postsmoother=options['postsmoother'], max_levels=options['max_levels'], max_coarse=options['max_coarse'], coarse_solver=options['coarse_solver']) for i, VV in enumerate(V): R[i] = ml.solve(VV, tol=options['tol'], maxiter=options['maxiter'], cycle=options['cycle'], accel=options['accel']) elif options['type'] == 'pyamg_sa': ml = pyamg.smoothed_aggregation_solver( matrix, symmetry=options['symmetry'], strength=options['strength'], aggregate=options['aggregate'], smooth=options['smooth'], presmoother=options['presmoother'], postsmoother=options['postsmoother'], improve_candidates=options['improve_candidates'], max_levels=options['max_levels'], max_coarse=options['max_coarse'], diagonal_dominance=options['diagonal_dominance']) for i, VV in enumerate(V): R[i] = ml.solve(VV, tol=options['tol'], maxiter=options['maxiter'], cycle=options['cycle'], accel=options['accel']) else: raise ValueError('Unknown solver type') if check_finite: if not np.isfinite(np.sum(R)): raise InversionError('Result contains non-finite values') return op.source.from_numpy(R)
def solve_lyap(A, E, B, trans=False, options=None, default_solver='pymess'): """Find a factor of the solution of a Lyapunov equation. Returns factor :math:`Z` such that :math:`Z Z^T` is approximately the solution :math:`X` of a Lyapunov equation (if E is `None`). .. math:: A X + X A^T + B B^T = 0 or a generalized Lyapunov equation .. math:: A X E^T + E X A^T + B B^T = 0. If trans is `True`, then it solves (if E is `None`) .. math:: A^T X + X A + B^T B = 0 or .. math:: A^T X E + E^T X A + B^T B = 0. This uses the `pymess` package, in particular its `lyap` and `lradi` methods. Both methods can be used for large-scale problems. The restrictions are: - `lyap` needs access to all matrix data, i.e., it expects :func:`~pymor.algorithms.to_matrix.to_matrix` to work for A, E, and B, - `lradi` needs access to the data of the operator B, i.e., it expects :func:`~pymor.algorithms.to_matrix.to_matrix` to work for B. Parameters ---------- A The |Operator| A. E The |Operator| E or `None`. B The |Operator| B. trans If the dual equation needs to be solved. options The |solver_options| to use (see :func:`lyap_solver_options`). default_solver The solver to use when no `options` are specified (`'pymess'`, `'pymess_lyap'`, or `'pymess_lradi'`). Returns ------- Z Low-rank factor of the Lyapunov equation solution, |VectorArray| from `A.source`. """ _solve_lyap_check_args(A, E, B, trans) options = _parse_options(options, lyap_solver_options(), default_solver, None, False) if options['type'] == 'pymess': if A.source.dim >= PYMESS_MIN_SPARSE_SIZE: options = dict(options, type='pymess_lradi') # do not modify original dict! else: options = dict(options, type='pymess_lyap') # do not modify original dict! if options['type'] == 'pymess_lyap': A_mat = to_matrix(A, format='dense') if A.source.dim < PYMESS_MIN_SPARSE_SIZE else to_matrix(A) if E is not None: E_mat = to_matrix(E, format='dense') if A.source.dim < PYMESS_MIN_SPARSE_SIZE else to_matrix(E) else: E_mat = None B_mat = to_matrix(B, format='dense') if not trans: Z = pymess.lyap(A_mat, E_mat, B_mat) else: if E is None: Z = pymess.lyap(A_mat.T, None, B_mat.T) else: Z = pymess.lyap(A_mat.T, E_mat.T, B_mat.T) elif options['type'] == 'pymess_lradi': opts = options['opts'] if trans: opts.type = pymess.MESS_OP_TRANSPOSE else: opts.type = pymess.MESS_OP_NONE eqn = LyapunovEquation(opts, A, E, B) Z, status = pymess.lradi(eqn, opts) Z = A.source.from_numpy(np.array(Z).T) return Z
def solve_lyap_lrcf(A, E, B, trans=False, options=None): """Compute an approximate low-rank solution of a Lyapunov equation. See :func:`pymor.algorithms.lyapunov.solve_lyap_lrcf` for a general description. This function uses the low-rank ADI iteration as described in Algorithm 4.3 in [PK16]_. Parameters ---------- A The |Operator| A. E The |Operator| E or `None`. B The operator B as a |VectorArray| from `A.source`. trans Whether the first |Operator| in the Lyapunov equation is transposed. options The solver options to use (see :func:`lyap_lrcf_solver_options`). Returns ------- Z Low-rank Cholesky factor of the Lyapunov equation solution, |VectorArray| from `A.source`. """ _solve_lyap_lrcf_check_args(A, E, B, trans) options = _parse_options(options, lyap_lrcf_solver_options(), 'lradi', None, False) logger = getLogger('pymor.algorithms.lradi.solve_lyap_lrcf') shift_options = options['shift_options'][options['shifts']] if shift_options['type'] == 'projection_shifts': init_shifts = projection_shifts_init iteration_shifts = projection_shifts else: raise ValueError('Unknown lradi shift strategy.') if E is None: E = IdentityOperator(A.source) Z = A.source.empty(reserve=len(B) * options['maxiter']) W = B.copy() j = 0 j_shift = 0 shifts = init_shifts(A, E, W, shift_options) res = np.linalg.norm(W.gramian(), ord=2) init_res = res Btol = res * options['tol'] while res > Btol and j < options['maxiter']: if shifts[j_shift].imag == 0: AaE = A + shifts[j_shift].real * E if not trans: V = AaE.apply_inverse(W) W -= E.apply(V) * (2 * shifts[j_shift].real) else: V = AaE.apply_inverse_adjoint(W) W -= E.apply_adjoint(V) * (2 * shifts[j_shift].real) Z.append(V * np.sqrt(-2 * shifts[j_shift].real)) j += 1 else: AaE = A + shifts[j_shift] * E gs = -4 * shifts[j_shift].real d = shifts[j_shift].real / shifts[j_shift].imag if not trans: V = AaE.apply_inverse(W) W += E.apply(V.real + V.imag * d) * gs else: V = AaE.apply_inverse_adjoint(W).conj() W += E.apply_adjoint(V.real + V.imag * d) * gs g = np.sqrt(gs) Z.append((V.real + V.imag * d) * g) Z.append(V.imag * (g * np.sqrt(d**2 + 1))) j += 2 j_shift += 1 res = np.linalg.norm(W.gramian(), ord=2) logger.info(f'Relative residual at step {j}: {res/init_res:.5e}') if j_shift >= shifts.size: shifts = iteration_shifts(A, E, V, shifts) j_shift = 0 if res > Btol: logger.warning(f'Prescribed relative residual tolerance was not achieved ' f'({res/init_res:e} > {options["tol"]:e}) after ' f'{options["maxiter"]} ADI steps.') return Z
def solve_ricc_lrcf(A, E, B, C, R=None, S=None, trans=False, options=None): """Compute an approximate low-rank solution of a Riccati equation. See :func:`pymor.algorithms.riccati.solve_ricc_lrcf` for a general description. This function uses `scipy.linalg.solve_continuous_are`, which is a dense solver. Therefore, we assume all |Operators| and |VectorArrays| can be converted to |NumPy arrays| using :func:`~pymor.algorithms.to_matrix.to_matrix` and :func:`~pymor.vectorarrays.interfaces.VectorArrayInterface.to_numpy`. Parameters ---------- A The |Operator| A. E The |Operator| E or `None`. B The operator B as a |VectorArray| from `A.source`. C The operator C as a |VectorArray| from `A.source`. R The operator R as a 2D |NumPy array| or `None`. S The operator S as a |VectorArray| from `A.source` or `None`. trans Whether the first |Operator| in the Riccati equation is transposed. options The solver options to use (see :func:`ricc_lrcf_solver_options`). Returns ------- Z Low-rank Cholesky factor of the Riccati equation solution, |VectorArray| from `A.source`. """ _solve_ricc_check_args(A, E, B, C, R, S, trans) options = _parse_options(options, ricc_lrcf_solver_options(), 'scipy', None, False) if options['type'] != 'scipy': raise ValueError(f"Unexpected Riccati equation solver ({options['type']}).") A_source = A.source A = to_matrix(A, format='dense') E = to_matrix(E, format='dense') if E else None B = B.to_numpy().T C = C.to_numpy() S = S.to_numpy().T if S else None if R is None: R = np.eye(C.shape[0] if not trans else B.shape[1]) if not trans: if E is not None: E = E.T X = solve_continuous_are(A.T, C.T, B.dot(B.T), R, E, S) else: X = solve_continuous_are(A, B, C.T.dot(C), R, E, S) return A_source.from_numpy(_chol(X).T)
def apply_inverse(op, V, options=None, least_squares=False, check_finite=True, default_solver='pyamg_solve'): """Solve linear equation system. Applies the inverse of `op` to the vectors in `rhs` using PyAMG. Parameters ---------- op The linear, non-parametric |Operator| to invert. rhs |VectorArray| of right-hand sides for the equation system. options The |solver_options| to use (see :func:`solver_options`). check_finite Test if solution only containes finite values. default_solver Default solver to use (pyamg_solve, pyamg_rs, pyamg_sa). Returns ------- |VectorArray| of the solution vectors. """ assert V in op.range if isinstance(op, NumpyMatrixOperator): matrix = op._matrix else: from pymor.algorithms.to_matrix import to_matrix matrix = to_matrix(op) options = _parse_options(options, solver_options(), default_solver, None, least_squares) V = V.data promoted_type = np.promote_types(matrix.dtype, V.dtype) R = np.empty((len(V), matrix.shape[1]), dtype=promoted_type) if options['type'] == 'pyamg_solve': if len(V) > 0: V_iter = iter(enumerate(V)) R[0], ml = pyamg.solve(matrix, next(V_iter)[1], tol=options['tol'], maxiter=options['maxiter'], return_solver=True) for i, VV in V_iter: R[i] = pyamg.solve(matrix, VV, tol=options['tol'], maxiter=options['maxiter'], existing_solver=ml) elif options['type'] == 'pyamg_rs': ml = pyamg.ruge_stuben_solver(matrix, strength=options['strength'], CF=options['CF'], presmoother=options['presmoother'], postsmoother=options['postsmoother'], max_levels=options['max_levels'], max_coarse=options['max_coarse'], coarse_solver=options['coarse_solver']) for i, VV in enumerate(V): R[i] = ml.solve(VV, tol=options['tol'], maxiter=options['maxiter'], cycle=options['cycle'], accel=options['accel']) elif options['type'] == 'pyamg_sa': ml = pyamg.smoothed_aggregation_solver(matrix, symmetry=options['symmetry'], strength=options['strength'], aggregate=options['aggregate'], smooth=options['smooth'], presmoother=options['presmoother'], postsmoother=options['postsmoother'], improve_candidates=options['improve_candidates'], max_levels=options['max_levels'], max_coarse=options['max_coarse'], diagonal_dominance=options['diagonal_dominance']) for i, VV in enumerate(V): R[i] = ml.solve(VV, tol=options['tol'], maxiter=options['maxiter'], cycle=options['cycle'], accel=options['accel']) else: raise ValueError('Unknown solver type') if check_finite: if not np.isfinite(np.sum(R)): raise InversionError('Result contains non-finite values') return op.source.from_data(R)
def solve_ricc_lrcf(A, E, B, C, R=None, S=None, trans=False, options=None, default_solver=None): """Compute an approximate low-rank solution of a Riccati equation. See :func:`pymor.algorithms.riccati.solve_ricc_lrcf` for a general description. This function uses `pymess.dense_nm_gmpcare` and `pymess.lrnm`. For both methods, :meth:`~pymor.vectorarrays.interface.VectorArray.to_numpy` and :meth:`~pymor.vectorarrays.interface.VectorSpace.from_numpy` need to be implemented for `A.source`. Additionally, since `dense_nm_gmpcare` is a dense solver, it expects :func:`~pymor.algorithms.to_matrix.to_matrix` to work for A and E. If the solver is not specified using the options or default_solver arguments, `dense_nm_gmpcare` is used for small problems (smaller than defined with :func:`~pymor.algorithms.lyapunov.mat_eqn_sparse_min_size`) and `lrnm` for large problems. Parameters ---------- A The non-parametric |Operator| A. E The non-parametric |Operator| E or `None`. B The operator B as a |VectorArray| from `A.source`. C The operator C as a |VectorArray| from `A.source`. R The operator R as a 2D |NumPy array| or `None`. S The operator S as a |VectorArray| from `A.source` or `None`. trans Whether the first |Operator| in the Riccati equation is transposed. options The solver options to use (see :func:`ricc_lrcf_solver_options`). default_solver Default solver to use (pymess_lrnm, pymess_dense_nm_gmpcare). If `None`, chose solver depending on dimension `A`. Returns ------- Z Low-rank Cholesky factor of the Riccati equation solution, |VectorArray| from `A.source`. """ _solve_ricc_check_args(A, E, B, C, R, S, trans) if default_solver is None: default_solver = 'pymess_lrnm' if A.source.dim >= mat_eqn_sparse_min_size( ) else 'pymess_dense_nm_gmpcare' options = _parse_options(options, ricc_lrcf_solver_options(), default_solver, None, False) if options['type'] == 'pymess_dense_nm_gmpcare': X = _call_pymess_dense_nm_gmpare(A, E, B, C, R, S, trans=trans, options=options['opts'], plus=False, method_name='solve_ricc_lrcf') Z = _chol(X) elif options['type'] == 'pymess_lrnm': if S is not None: raise NotImplementedError if R is not None: import scipy.linalg as spla Rc = spla.cholesky(R) # R = Rc^T * Rc Rci = spla.solve_triangular(Rc, np.eye( Rc.shape[0])) # R^{-1} = Rci * Rci^T if not trans: C = C.lincomb(Rci.T) # C <- Rci^T * C = (C^T * Rci)^T else: B = B.lincomb(Rci.T) # B <- B * Rci opts = options['opts'] opts.type = pymess.MESS_OP_NONE if not trans else pymess.MESS_OP_TRANSPOSE eqn = RiccatiEquation(opts, A, E, B, C) Z, status = pymess.lrnm(eqn, opts) relres = status.res2_norm / status.res2_0 if relres > opts.adi.res2_tol: logger = getLogger('pymor.bindings.pymess.solve_ricc_lrcf') logger.warning( f'Desired relative residual tolerance was not achieved ' f'({relres:e} > {opts.adi.res2_tol:e}).') else: raise ValueError( f'Unexpected Riccati equation solver ({options["type"]}).') return A.source.from_numpy(Z.T)
def solve_lyap(A, E, B, trans=False, options=None): """Find a factor of the solution of a Lyapunov equation. Returns factor :math:`Z` such that :math:`Z Z^T` is approximately the solution :math:`X` of a Lyapunov equation (if E is `None`). .. math:: A X + X A^T + B B^T = 0 or generalized Lyapunov equation .. math:: A X E^T + E X A^T + B B^T = 0. If trans is `True`, then it solves (if E is `None`) .. math:: A^T X + X A + B^T B = 0 or .. math:: A^T X E + E^T X A + B^T B = 0. This uses the `slycot` package, in particular its interfaces to SLICOT functions `SB03MD` (for the standard Lyapunov equations) and `SG03AD` (for the generalized Lyapunov equations). These methods are only applicable to medium-sized dense problems and need access to the matrix data of all operators. Parameters ---------- A The |Operator| A. E The |Operator| E or `None`. B The |Operator| B. trans If the dual equation needs to be solved. options The |solver_options| to use (see :func:`lyap_solver_options`). Returns ------- Z Low-rank factor of the Lyapunov equation solution, |VectorArray| from `A.source`. """ _solve_lyap_check_args(A, E, B, trans) options = _parse_options(options, lyap_solver_options(), 'slycot', None, False) assert options['type'] == 'slycot' import slycot A_mat = to_matrix(A, format='dense') if E is not None: E_mat = to_matrix(E, format='dense') B_mat = to_matrix(B, format='dense') n = A_mat.shape[0] if not trans: C = -B_mat.dot(B_mat.T) trana = 'T' else: C = -B_mat.T.dot(B_mat) trana = 'N' dico = 'C' if E is None: U = np.zeros((n, n)) X, scale, _, _, _ = slycot.sb03md(n, C, A_mat, U, dico, trana=trana) else: job = 'B' fact = 'N' Q = np.zeros((n, n)) Z = np.zeros((n, n)) uplo = 'L' X = C _, _, _, _, X, scale, _, _, _, _, _ = slycot.sg03ad(dico, job, fact, trana, uplo, n, A_mat, E_mat, Q, Z, X) from pymor.bindings.scipy import chol Z = chol(X, copy=False) Z = A.source.from_numpy(np.array(Z).T) return Z