示例#1
0
def elliptic_oned_demo(args):
    args['PROBLEM-NUMBER'] = int(args['PROBLEM-NUMBER'])
    assert 0 <= args['PROBLEM-NUMBER'] <= 1, ValueError('Invalid problem number.')
    args['N'] = int(args['N'])

    rhss = [ExpressionFunction('ones(x.shape[:-1]) * 10', 1, ()),
            ExpressionFunction('(x - 0.5)**2 * 1000', 1, ())]
    rhs = rhss[args['PROBLEM-NUMBER']]

    d0 = ExpressionFunction('1 - x', 1, ())
    d1 = ExpressionFunction('x', 1, ())

    parameter_space = CubicParameterSpace({'diffusionl': 0}, 0.1, 1)
    f0 = ProjectionParameterFunctional('diffusionl', 0)
    f1 = ExpressionParameterFunctional('1', {})

    problem = StationaryProblem(
        domain=LineDomain(),
        rhs=rhs,
        diffusion=LincombFunction([d0, d1], [f0, f1]),
        dirichlet_data=ConstantFunction(value=0, dim_domain=1),
        name='1DProblem'
    )

    print('Discretize ...')
    discretizer = discretize_stationary_fv if args['--fv'] else discretize_stationary_cg
    d, data = discretizer(problem, diameter=1 / args['N'])
    print(data['grid'])
    print()

    print('Solve ...')
    U = d.solution_space.empty()
    for mu in parameter_space.sample_uniformly(10):
        U.append(d.solve(mu))
    d.visualize(U, title='Solution for diffusionl in [0.1, 1]')
示例#2
0
def helmholtz_problem(domain=RectDomain(), rhs=None, parameter_range=(0., 100.),
                      dirichlet_data=None, neumann_data=None):
    """Helmholtz equation problem.

    This problem is to solve the Helmholtz equation ::

      - ∆ u(x, k) - k^2 u(x, k) = f(x, k)

    on a given domain.

    Parameters
    ----------
    domain
        A |DomainDescription| of the domain the problem is posed on.
    rhs
        The |Function| f(x, μ).
    parameter_range
        A tuple `(k_min, k_max)` describing the interval in which k is allowd to vary.
    dirichlet_data
        |Function| providing the Dirichlet boundary values.
    neumann_data
        |Function| providing the Neumann boundary values.
    """

    return StationaryProblem(

        domain=domain,

        rhs=rhs or ConstantFunction(1., dim_domain=domain.dim),

        dirichlet_data=dirichlet_data,

        neumann_data=neumann_data,

        diffusion=ConstantFunction(1., dim_domain=domain.dim),

        reaction=LincombFunction([ConstantFunction(1., dim_domain=domain.dim)],
                                 [ExpressionParameterFunctional('-k**2', {'k': ()})]),

        parameter_space=CubicParameterSpace({'k': ()}, *parameter_range),

        name='helmholtz_problem'

    )
示例#3
0
def elliptic2_demo(args):
    args['PROBLEM-NUMBER'] = int(args['PROBLEM-NUMBER'])
    assert 0 <= args['PROBLEM-NUMBER'] <= 1, ValueError(
        'Invalid problem number.')
    args['N'] = int(args['N'])

    rhss = [
        ExpressionFunction('ones(x.shape[:-1]) * 10', 2, ()),
        ExpressionFunction('(x[..., 0] - 0.5)**2 * 1000', 2, ())
    ]
    rhs = rhss[args['PROBLEM-NUMBER']]

    problem = StationaryProblem(
        domain=RectDomain(),
        rhs=rhs,
        diffusion=LincombFunction([
            ExpressionFunction('1 - x[..., 0]', 2, ()),
            ExpressionFunction('x[..., 0]', 2, ())
        ], [
            ProjectionParameterFunctional('diffusionl', 0),
            ExpressionParameterFunctional('1', {})
        ]),
        parameter_space=CubicParameterSpace({'diffusionl': 0}, 0.1, 1),
        name='2DProblem')

    print('Discretize ...')
    discretizer = discretize_stationary_fv if args[
        '--fv'] else discretize_stationary_cg
    m, data = discretizer(problem, diameter=1. / args['N'])
    print(data['grid'])
    print()

    print('Solve ...')
    U = m.solution_space.empty()
    for mu in m.parameter_space.sample_uniformly(10):
        U.append(m.solve(mu))
    m.visualize(U, title='Solution for diffusionl in [0.1, 1]')
示例#4
0
def thermal_block_problem(num_blocks=(3, 3), parameter_range=(0.1, 1)):
    """Analytical description of a 2D 'thermal block' diffusion problem.

    The problem is to solve the elliptic equation ::

      - ∇ ⋅ [ d(x, μ) ∇ u(x, μ) ] = f(x, μ)

    on the domain [0,1]^2 with Dirichlet zero boundary values. The domain is
    partitioned into nx x ny blocks and the diffusion function d(x, μ) is
    constant on each such block (i,j) with value μ_ij. ::

           ----------------------------
           |        |        |        |
           |  μ_11  |  μ_12  |  μ_13  |
           |        |        |        |
           |---------------------------
           |        |        |        |
           |  μ_21  |  μ_22  |  μ_23  |
           |        |        |        |
           ----------------------------

    Parameters
    ----------
    num_blocks
        The tuple `(nx, ny)`
    parameter_range
        A tuple `(μ_min, μ_max)`. Each |Parameter| component μ_ij is allowed
        to lie in the interval [μ_min, μ_max].
    """

    def parameter_functional_factory(ix, iy):
        return ProjectionParameterFunctional(component_name='diffusion',
                                             component_shape=(num_blocks[1], num_blocks[0]),
                                             index=(num_blocks[1] - iy - 1, ix),
                                             name=f'diffusion_{ix}_{iy}')

    def diffusion_function_factory(ix, iy):
        if ix + 1 < num_blocks[0]:
            X = '(x[..., 0] >= ix * dx) * (x[..., 0] < (ix + 1) * dx)'
        else:
            X = '(x[..., 0] >= ix * dx)'
        if iy + 1 < num_blocks[1]:
            Y = '(x[..., 1] >= iy * dy) * (x[..., 1] < (iy + 1) * dy)'
        else:
            Y = '(x[..., 1] >= iy * dy)'
        return ExpressionFunction(f'{X} * {Y} * 1.',
                                  2, (), {}, {'ix': ix, 'iy': iy, 'dx': 1. / num_blocks[0], 'dy': 1. / num_blocks[1]},
                                  name=f'diffusion_{ix}_{iy}')

    return StationaryProblem(

        domain=RectDomain(),

        rhs=ConstantFunction(dim_domain=2, value=1.),

        diffusion=LincombFunction([diffusion_function_factory(ix, iy)
                                   for ix, iy in product(range(num_blocks[0]), range(num_blocks[1]))],
                                  [parameter_functional_factory(ix, iy)
                                   for ix, iy in product(range(num_blocks[0]), range(num_blocks[1]))],
                                  name='diffusion'),

        parameter_space=CubicParameterSpace({'diffusion': (num_blocks[1], num_blocks[0])}, *parameter_range),

        name=f'ThermalBlock({num_blocks})'

    )
示例#5
0
def elliptic2_demo(args):
    args['PROBLEM-NUMBER'] = int(args['PROBLEM-NUMBER'])
    assert 0 <= args['PROBLEM-NUMBER'] <= 1, ValueError(
        'Invalid problem number.')
    args['N'] = int(args['N'])

    rhss = [
        ExpressionFunction('ones(x.shape[:-1]) * 10', 2, ()),
        LincombFunction([
            ExpressionFunction('ones(x.shape[:-1]) * 10', 2, ()),
            ConstantFunction(1., 2)
        ], [
            ProjectionParameterFunctional('mu', 0),
            ExpressionParameterFunctional('0.1', {})
        ])
    ]

    dirichlets = [
        ExpressionFunction('zeros(x.shape[:-1])', 2, ()),
        LincombFunction([
            ExpressionFunction('2 * x[..., 0]', 2, ()),
            ConstantFunction(1., 2)
        ], [
            ProjectionParameterFunctional('mu', 0),
            ExpressionParameterFunctional('0.5', {})
        ])
    ]

    neumanns = [
        None,
        LincombFunction([
            ExpressionFunction('1 - x[..., 1]', 2, ()),
            ConstantFunction(1., 2)
        ], [
            ProjectionParameterFunctional('mu', 0),
            ExpressionParameterFunctional('0.5**2', {})
        ])
    ]

    robins = [
        None,
        (LincombFunction(
            [ExpressionFunction('x[..., 1]', 2, ()),
             ConstantFunction(1., 2)], [
                 ProjectionParameterFunctional('mu', 0),
                 ExpressionParameterFunctional('1', {})
             ]), ConstantFunction(1., 2))
    ]

    domains = [
        RectDomain(),
        RectDomain(right='neumann', top='dirichlet', bottom='robin')
    ]

    rhs = rhss[args['PROBLEM-NUMBER']]
    dirichlet = dirichlets[args['PROBLEM-NUMBER']]
    neumann = neumanns[args['PROBLEM-NUMBER']]
    domain = domains[args['PROBLEM-NUMBER']]
    robin = robins[args['PROBLEM-NUMBER']]

    problem = StationaryProblem(domain=RectDomain(),
                                rhs=rhs,
                                diffusion=LincombFunction([
                                    ExpressionFunction('1 - x[..., 0]', 2, ()),
                                    ExpressionFunction('x[..., 0]', 2, ())
                                ], [
                                    ProjectionParameterFunctional('mu', 0),
                                    ExpressionParameterFunctional('1', {})
                                ]),
                                dirichlet_data=dirichlet,
                                neumann_data=neumann,
                                robin_data=robin,
                                parameter_space=CubicParameterSpace({'mu': 0},
                                                                    0.1, 1),
                                name='2DProblem')

    print('Discretize ...')
    discretizer = discretize_stationary_fv if args[
        '--fv'] else discretize_stationary_cg
    m, data = discretizer(problem, diameter=1. / args['N'])
    print(data['grid'])
    print()

    print('Solve ...')
    U = m.solution_space.empty()
    for mu in m.parameter_space.sample_uniformly(10):
        U.append(m.solve(mu))
    m.visualize(U, title='Solution for mu in [0.1, 1]')
示例#6
0
文件: text.py 项目: prklVIP/pymor
def text_problem(text='pyMOR', font_name=None):
    import numpy as np
    from PIL import Image, ImageDraw, ImageFont
    from tempfile import NamedTemporaryFile

    font_list = [font_name] if font_name else [
        'DejaVuSansMono.ttf', 'VeraMono.ttf', 'UbuntuMono-R.ttf', 'Arial.ttf'
    ]
    font = None
    for filename in font_list:
        try:
            font = ImageFont.truetype(
                filename, 64)  # load some font from file of given size
        except (OSError, IOError):
            pass
    if font is None:
        raise ValueError('Could not load TrueType font')

    size = font.getsize(text)  # compute width and height of rendered text
    size = (size[0] + 20, size[1] + 20
            )  # add a border of 10 pixels around the text

    def make_bitmap_function(
            char_num
    ):  # we need to genereate a BitmapFunction for each character
        img = Image.new('L',
                        size)  # create new Image object of given dimensions
        d = ImageDraw.Draw(img)  # create ImageDraw object for the given Image

        # in order to position the character correctly, we first draw all characters from the first
        # up to the wanted character
        d.text((10, 10), text[:char_num + 1], font=font, fill=255)

        # next we erase all previous character by drawing a black rectangle
        if char_num > 0:
            d.rectangle(
                ((0, 0), (font.getsize(text[:char_num])[0] + 10, size[1])),
                fill=0,
                outline=0)

        # open a new temporary file
        with NamedTemporaryFile(
                suffix='.png'
        ) as f:  # after leaving this 'with' block, the temporary
            # file is automatically deleted
            img.save(f, format='png')
            return BitmapFunction(f.name,
                                  bounding_box=[(0, 0), size],
                                  range=[0., 1.])

    # create BitmapFunctions for each character
    dfs = [make_bitmap_function(n) for n in range(len(text))]

    # create an indicator function for the background
    background = ConstantFunction(1., 2) - LincombFunction(
        dfs, np.ones(len(dfs)))

    # form the linear combination
    dfs = [background] + dfs
    coefficients = [1] + [
        ProjectionParameterFunctional('diffusion', (len(text), ), (i, ))
        for i in range(len(text))
    ]
    diffusion = LincombFunction(dfs, coefficients)

    return StationaryProblem(domain=RectDomain(dfs[1].bounding_box,
                                               bottom='neumann'),
                             neumann_data=ConstantFunction(-1., 2),
                             diffusion=diffusion,
                             parameter_space=CubicParameterSpace(
                                 diffusion.parameter_type, 0.1, 1.))
示例#7
0
     burgers_problem(parameter_range=(1., 1.3)),
     burgers_problem_2d(),
     burgers_problem_2d(torus=False, initial_data_type='bump', parameter_range=(1.3, 1.5))]


picklable_elliptic_problems = \
    [StationaryProblem(domain=RectDomain(), rhs=ConstantFunction(dim_domain=2, value=1.)),
     helmholtz_problem()]


non_picklable_elliptic_problems = \
    [StationaryProblem(domain=RectDomain(),
                     rhs=ConstantFunction(dim_domain=2, value=21.),
                     diffusion=LincombFunction(
                         [GenericFunction(dim_domain=2, mapping=lambda X, p=p: X[..., 0]**p)
                          for p in range(5)],
                         [ExpressionParameterFunctional('max(mu["exp"], {})'.format(m), parameter_type={'exp': ()})
                          for m in range(5)]
                     ))]

elliptic_problems = picklable_thermalblock_problems + non_picklable_elliptic_problems


@pytest.fixture(params=elliptic_problems + thermalblock_problems +
                burgers_problems)
def analytical_problem(request):
    return request.param


@pytest.fixture(params=picklable_elliptic_problems +
                picklable_thermalblock_problems + burgers_problems)
def picklable_analytical_problem(request):
if __name__ == '__main__':
    argvs = sys.argv
    parser = OptionParser()
    parser.add_option("--dir", dest="dir", default="./")
    opt, argc = parser.parse_args(argvs)
    print(opt, argc)

    rhs = ExpressionFunction('(x[..., 0] - 0.5)**2 * 1000', 2, ())

    problem = StationaryProblem(
        domain=RectDomain(),
        rhs=rhs,
        diffusion=LincombFunction(
            [ExpressionFunction('1 - x[..., 0]', 2, ()),
             ExpressionFunction('x[..., 0]', 2, ())],
            [ProjectionParameterFunctional(
                'diffusionl', 0), ExpressionParameterFunctional('1', {})]
        ),
        parameter_space=CubicParameterSpace({'diffusionl': 0}, 0.01, 0.1),
        name='2DProblem'
    )

    args = {'N': 100, 'samples': 10}
    m, data = discretize_stationary_cg(problem, diameter=1. / args['N'])
    U = m.solution_space.empty()
    for mu in m.parameter_space.sample_uniformly(args['samples']):
        U.append(m.solve(mu))

    Us = U * 1.5
    plot = m.visualize((U, Us), title='Solution for diffusionl=0.5')