def discretize_stationary_cg(analytical_problem, diameter=None, domain_discretizer=None, grid_type=None, grid=None, boundary_info=None, preassemble=True): """Discretizes an |StationaryProblem| using finite elements. Parameters ---------- analytical_problem The |StationaryProblem| to discretize. diameter If not `None`, `diameter` is passed as an argument to the `domain_discretizer`. domain_discretizer Discretizer to be used for discretizing the analytical domain. This has to be a function `domain_discretizer(domain_description, diameter, ...)`. If `None`, |discretize_domain_default| is used. grid_type If not `None`, this parameter is forwarded to `domain_discretizer` to specify the type of the generated |Grid|. grid Instead of using a domain discretizer, the |Grid| can also be passed directly using this parameter. boundary_info A |BoundaryInfo| specifying the boundary types of the grid boundary entities. Must be provided if `grid` is specified. preassemble If `True`, preassemble all operators in the resulting |Discretization|. Returns ------- d The |Discretization| that has been generated. data Dictionary with the following entries: :grid: The generated |Grid|. :boundary_info: The generated |BoundaryInfo|. """ assert isinstance(analytical_problem, StationaryProblem) assert grid is None or boundary_info is not None assert boundary_info is None or grid is not None assert grid is None or domain_discretizer is None assert grid_type is None or grid is None p = analytical_problem if not (p.nonlinear_advection == p.nonlinear_advection_derivative == p.nonlinear_reaction == p.nonlinear_reaction_derivative == None): raise NotImplementedError if grid is None: domain_discretizer = domain_discretizer or discretize_domain_default if grid_type: domain_discretizer = partial(domain_discretizer, grid_type=grid_type) if diameter is None: grid, boundary_info = domain_discretizer(p.domain) else: grid, boundary_info = domain_discretizer(p.domain, diameter=diameter) assert grid.reference_element in (line, triangle, square) if grid.reference_element is square: DiffusionOperator = DiffusionOperatorQ1 AdvectionOperator = AdvectionOperatorQ1 ReactionOperator = L2ProductQ1 Functional = L2ProductFunctionalQ1 else: DiffusionOperator = DiffusionOperatorP1 AdvectionOperator = AdvectionOperatorP1 ReactionOperator = L2ProductP1 Functional = L2ProductFunctionalP1 Li = [ DiffusionOperator(grid, boundary_info, diffusion_constant=0, name='boundary_part') ] coefficients = [1.] # diffusion part if isinstance(p.diffusion, LincombFunction): Li += [ DiffusionOperator(grid, boundary_info, diffusion_function=df, dirichlet_clear_diag=True, name='diffusion_{}'.format(i)) for i, df in enumerate(p.diffusion.functions) ] coefficients += list(p.diffusion.coefficients) elif p.diffusion is not None: Li += [ DiffusionOperator(grid, boundary_info, diffusion_function=p.diffusion, dirichlet_clear_diag=True, name='diffusion') ] coefficients.append(1.) # advection part if isinstance(p.advection, LincombFunction): Li += [ AdvectionOperator(grid, boundary_info, advection_function=af, dirichlet_clear_diag=True, name='advection_{}'.format(i)) for i, af in enumerate(p.advection.functions) ] coefficients += list(p.advection.coefficients) elif p.advection is not None: Li += [ AdvectionOperator(grid, boundary_info, advection_function=p.advection, dirichlet_clear_diag=True, name='advection') ] coefficients.append(1.) # reaction part if isinstance(p.reaction, LincombFunction): Li += [ ReactionOperator(grid, boundary_info, coefficient_function=rf, dirichlet_clear_diag=True, name='reaction_{}'.format(i)) for i, rf in enumerate(p.reaction.functions) ] coefficients += list(p.reaction.coefficients) elif p.reaction is not None: Li += [ ReactionOperator(grid, boundary_info, coefficient_function=p.reaction, dirichlet_clear_diag=True, name='reaction') ] coefficients.append(1.) # robin boundaries if p.robin_data is not None: if grid.reference_element is square: raise NotImplementedError Li += [ RobinBoundaryOperator(grid, boundary_info, robin_data=p.robin_data, order=2, name='robin') ] coefficients.append(1.) L = LincombOperator(operators=Li, coefficients=coefficients, name='ellipticOperator') rhs = p.rhs or ConstantFunction(0., dim_domain=p.domain.dim) F = Functional(grid, rhs, boundary_info, dirichlet_data=p.dirichlet_data, neumann_data=p.neumann_data) if grid.reference_element in (triangle, square): visualizer = PatchVisualizer(grid=grid, bounding_box=grid.bounding_box(), codim=2) elif grid.reference_element is line: visualizer = OnedVisualizer(grid=grid, codim=1) else: visualizer = None Prod = L2ProductQ1 if grid.reference_element is square else L2ProductP1 empty_bi = EmptyBoundaryInfo(grid) l2_product = Prod(grid, empty_bi, name='l2') l2_0_product = Prod(grid, boundary_info, dirichlet_clear_columns=True, name='l2_0') h1_semi_product = DiffusionOperator(grid, empty_bi, name='h1_semi') h1_0_semi_product = DiffusionOperator(grid, boundary_info, dirichlet_clear_columns=True, name='h1_0_semi') products = { 'h1': l2_product + h1_semi_product, 'h1_semi': h1_semi_product, 'l2': l2_product, 'h1_0': l2_0_product + h1_0_semi_product, 'h1_0_semi': h1_0_semi_product, 'l2_0': l2_0_product } parameter_space = p.parameter_space if hasattr(p, 'parameter_space') else None d = StationaryDiscretization(L, F, products=products, visualizer=visualizer, parameter_space=parameter_space, name='{}_CG'.format(p.name)) data = {'grid': grid, 'boundary_info': boundary_info} if preassemble: data['unassembled_d'] = d d = preassemble_(d) return d, data
def discretize_stationary_cg(analytical_problem, diameter=None, domain_discretizer=None, grid_type=None, grid=None, boundary_info=None, preassemble=True): """Discretizes a |StationaryProblem| using finite elements. Parameters ---------- analytical_problem The |StationaryProblem| to discretize. diameter If not `None`, `diameter` is passed as an argument to the `domain_discretizer`. domain_discretizer Discretizer to be used for discretizing the analytical domain. This has to be a function `domain_discretizer(domain_description, diameter, ...)`. If `None`, |discretize_domain_default| is used. grid_type If not `None`, this parameter is forwarded to `domain_discretizer` to specify the type of the generated |Grid|. grid Instead of using a domain discretizer, the |Grid| can also be passed directly using this parameter. boundary_info A |BoundaryInfo| specifying the boundary types of the grid boundary entities. Must be provided if `grid` is specified. preassemble If `True`, preassemble all operators in the resulting |Model|. Returns ------- m The |Model| that has been generated. data Dictionary with the following entries: :grid: The generated |Grid|. :boundary_info: The generated |BoundaryInfo|. :unassembled_m: In case `preassemble` is `True`, the generated |Model| before preassembling operators. """ assert isinstance(analytical_problem, StationaryProblem) assert grid is None or boundary_info is not None assert boundary_info is None or grid is not None assert grid is None or domain_discretizer is None assert grid_type is None or grid is None p = analytical_problem if not (p.nonlinear_advection == p.nonlinear_advection_derivative == p.nonlinear_reaction == p.nonlinear_reaction_derivative is None): raise NotImplementedError if grid is None: domain_discretizer = domain_discretizer or discretize_domain_default if grid_type: domain_discretizer = partial(domain_discretizer, grid_type=grid_type) if diameter is None: grid, boundary_info = domain_discretizer(p.domain) else: grid, boundary_info = domain_discretizer(p.domain, diameter=diameter) assert grid.reference_element in (line, triangle, square) if grid.reference_element is square: DiffusionOperator = DiffusionOperatorQ1 AdvectionOperator = AdvectionOperatorQ1 ReactionOperator = L2ProductQ1 L2Functional = L2ProductFunctionalQ1 BoundaryL2Functional = BoundaryL2ProductFunctional else: DiffusionOperator = DiffusionOperatorP1 AdvectionOperator = AdvectionOperatorP1 ReactionOperator = L2ProductP1 L2Functional = L2ProductFunctionalP1 BoundaryL2Functional = BoundaryL2ProductFunctional Li = [ DiffusionOperator(grid, boundary_info, diffusion_constant=0, name='boundary_part') ] coefficients = [1.] # diffusion part if isinstance(p.diffusion, LincombFunction): Li += [ DiffusionOperator(grid, boundary_info, diffusion_function=df, dirichlet_clear_diag=True, name=f'diffusion_{i}') for i, df in enumerate(p.diffusion.functions) ] coefficients += list(p.diffusion.coefficients) elif p.diffusion is not None: Li += [ DiffusionOperator(grid, boundary_info, diffusion_function=p.diffusion, dirichlet_clear_diag=True, name='diffusion') ] coefficients.append(1.) # advection part if isinstance(p.advection, LincombFunction): Li += [ AdvectionOperator(grid, boundary_info, advection_function=af, dirichlet_clear_diag=True, name=f'advection_{i}') for i, af in enumerate(p.advection.functions) ] coefficients += list(p.advection.coefficients) elif p.advection is not None: Li += [ AdvectionOperator(grid, boundary_info, advection_function=p.advection, dirichlet_clear_diag=True, name='advection') ] coefficients.append(1.) # reaction part if isinstance(p.reaction, LincombFunction): Li += [ ReactionOperator(grid, boundary_info, coefficient_function=rf, dirichlet_clear_diag=True, name=f'reaction_{i}') for i, rf in enumerate(p.reaction.functions) ] coefficients += list(p.reaction.coefficients) elif p.reaction is not None: Li += [ ReactionOperator(grid, boundary_info, coefficient_function=p.reaction, dirichlet_clear_diag=True, name='reaction') ] coefficients.append(1.) # robin boundaries if p.robin_data is not None: assert isinstance(p.robin_data, tuple) and len(p.robin_data) == 2 if isinstance(p.robin_data[0], LincombFunction): for i, rd in enumerate(p.robin_data[0].functions): robin_tuple = (rd, p.robin_data[1]) Li += [ RobinBoundaryOperator(grid, boundary_info, robin_data=robin_tuple, name=f'robin_{i}') ] coefficients += list(p.robin_data[0].coefficients) else: Li += [ RobinBoundaryOperator(grid, boundary_info, robin_data=p.robin_data, name=f'robin') ] coefficients.append(1.) L = LincombOperator(operators=Li, coefficients=coefficients, name='ellipticOperator') # right-hand side rhs = p.rhs or ConstantFunction(0., dim_domain=p.domain.dim) Fi = [] coefficients_F = [] if isinstance(p.rhs, LincombFunction): Fi += [ L2Functional(grid, rh, dirichlet_clear_dofs=True, boundary_info=boundary_info, name=f'rhs_{i}') for i, rh in enumerate(p.rhs.functions) ] coefficients_F += list(p.rhs.coefficients) else: Fi += [ L2Functional(grid, rhs, dirichlet_clear_dofs=True, boundary_info=boundary_info, name='rhs') ] coefficients_F.append(1.) if p.neumann_data is not None and boundary_info.has_neumann: if isinstance(p.neumann_data, LincombFunction): Fi += [ BoundaryL2Functional(grid, -ne, boundary_info=boundary_info, boundary_type='neumann', dirichlet_clear_dofs=True, name=f'neumann_{i}') for i, ne in enumerate(p.neumann_data.functions) ] coefficients_F += list(p.neumann_data.coefficients) else: Fi += [ BoundaryL2Functional(grid, -p.neumann_data, boundary_info=boundary_info, boundary_type='neumann', dirichlet_clear_dofs=True) ] coefficients_F.append(1.) if p.robin_data is not None and boundary_info.has_robin: if isinstance(p.robin_data[0], LincombFunction): Fi += [ BoundaryL2Functional(grid, rob * p.robin_data[1], boundary_info=boundary_info, boundary_type='robin', dirichlet_clear_dofs=True, name=f'robin_{i}') for i, rob in enumerate(p.robin_data[0].functions) ] coefficients_F += list(p.robin_data[0].coefficients) else: Fi += [ BoundaryL2Functional(grid, p.robin_data[0] * p.robin_data[1], boundary_info=boundary_info, boundary_type='robin', dirichlet_clear_dofs=True) ] coefficients_F.append(1.) if p.dirichlet_data is not None and boundary_info.has_dirichlet: if isinstance(p.dirichlet_data, LincombFunction): Fi += [ BoundaryDirichletFunctional(grid, di, boundary_info, name=f'dirichlet{i}') for i, di in enumerate(p.dirichlet_data.functions) ] coefficients_F += list(p.dirichlet_data.coefficients) else: Fi += [ BoundaryDirichletFunctional(grid, p.dirichlet_data, boundary_info) ] coefficients_F.append(1.) F = LincombOperator(operators=Fi, coefficients=coefficients_F, name='rhsOperator') if grid.reference_element in (triangle, square): visualizer = PatchVisualizer(grid=grid, bounding_box=grid.bounding_box(), codim=2) elif grid.reference_element is line: visualizer = OnedVisualizer(grid=grid, codim=1) else: visualizer = None Prod = L2ProductQ1 if grid.reference_element is square else L2ProductP1 empty_bi = EmptyBoundaryInfo(grid) l2_product = Prod(grid, empty_bi, name='l2') l2_0_product = Prod(grid, boundary_info, dirichlet_clear_columns=True, name='l2_0') h1_semi_product = DiffusionOperator(grid, empty_bi, name='h1_semi') h1_0_semi_product = DiffusionOperator(grid, boundary_info, dirichlet_clear_columns=True, name='h1_0_semi') products = { 'h1': l2_product + h1_semi_product, 'h1_semi': h1_semi_product, 'l2': l2_product, 'h1_0': l2_0_product + h1_0_semi_product, 'h1_0_semi': h1_0_semi_product, 'l2_0': l2_0_product } # assemble additionals output functionals if p.outputs: if any(v[0] not in ('l2', 'l2_boundary') for v in p.outputs): raise NotImplementedError outputs = [ L2Functional(grid, v[1], dirichlet_clear_dofs=False).H if v[0] == 'l2' else BoundaryL2Functional( grid, v[1], dirichlet_clear_dofs=False).H for v in p.outputs ] if len(outputs) > 1: from pymor.operators.block import BlockColumnOperator output_functional = BlockColumnOperator(outputs) else: output_functional = outputs[0] else: output_functional = None parameter_space = p.parameter_space if hasattr(p, 'parameter_space') else None m = StationaryModel(L, F, output_functional=output_functional, products=products, visualizer=visualizer, parameter_space=parameter_space, name=f'{p.name}_CG') data = {'grid': grid, 'boundary_info': boundary_info} if preassemble: data['unassembled_m'] = m m = preassemble_(m) return m, data
def discretize_stationary_fv(analytical_problem, diameter=None, domain_discretizer=None, grid_type=None, num_flux='lax_friedrichs', lxf_lambda=1., eo_gausspoints=5, eo_intervals=1, grid=None, boundary_info=None, preassemble=True): """Discretizes an |StationaryProblem| using the finite volume method. Parameters ---------- analytical_problem The |StationaryProblem| to discretize. diameter If not `None`, `diameter` is passed as an argument to the `domain_discretizer`. domain_discretizer Discretizer to be used for discretizing the analytical domain. This has to be a function `domain_discretizer(domain_description, diameter, ...)`. If `None`, |discretize_domain_default| is used. grid_type If not `None`, this parameter is forwarded to `domain_discretizer` to specify the type of the generated |Grid|. num_flux The numerical flux to use in the finite volume formulation. Allowed values are `'lax_friedrichs'`, `'engquist_osher'`, `'simplified_engquist_osher'` (see :mod:`pymor.operators.fv`). lxf_lambda The stabilization parameter for the Lax-Friedrichs numerical flux (ignored, if different flux is chosen). eo_gausspoints Number of Gauss points for the Engquist-Osher numerical flux (ignored, if different flux is chosen). eo_intervals Number of sub-intervals to use for integration when using Engquist-Osher numerical flux (ignored, if different flux is chosen). grid Instead of using a domain discretizer, the |Grid| can also be passed directly using this parameter. boundary_info A |BoundaryInfo| specifying the boundary types of the grid boundary entities. Must be provided if `grid` is specified. preassemble If `True`, preassemble all operators in the resulting |Discretization|. Returns ------- discretization The |Discretization| that has been generated. data Dictionary with the following entries: :grid: The generated |Grid|. :boundary_info: The generated |BoundaryInfo|. """ assert isinstance(analytical_problem, StationaryProblem) assert grid is None or boundary_info is not None assert boundary_info is None or grid is not None assert grid is None or domain_discretizer is None assert grid_type is None or grid is None p = analytical_problem if analytical_problem.robin_data is not None: raise NotImplementedError if grid is None: domain_discretizer = domain_discretizer or discretize_domain_default if grid_type: domain_discretizer = partial(domain_discretizer, grid_type=grid_type) if diameter is None: grid, boundary_info = domain_discretizer(analytical_problem.domain) else: grid, boundary_info = domain_discretizer(analytical_problem.domain, diameter=diameter) L, L_coefficients = [], [] F, F_coefficients = [], [] if p.rhs is not None or p.neumann_data is not None: F += [ L2ProductFunctional(grid, p.rhs, boundary_info=boundary_info, neumann_data=p.neumann_data) ] F_coefficients += [1.] # diffusion part if isinstance(p.diffusion, LincombFunction): L += [ DiffusionOperator(grid, boundary_info, diffusion_function=df, name='diffusion_{}'.format(i)) for i, df in enumerate(p.diffusion.functions) ] L_coefficients += p.diffusion.coefficients if p.dirichlet_data is not None: F += [ L2ProductFunctional(grid, None, boundary_info=boundary_info, dirichlet_data=p.dirichlet_data, diffusion_function=df, name='dirichlet_{}'.format(i)) for i, df in enumerate(p.diffusion.functions) ] F_coefficients += p.diffusion.coefficients elif p.diffusion is not None: L += [ DiffusionOperator(grid, boundary_info, diffusion_function=p.diffusion, name='diffusion') ] L_coefficients += [1.] if p.dirichlet_data is not None: F += [ L2ProductFunctional(grid, None, boundary_info=boundary_info, dirichlet_data=p.dirichlet_data, diffusion_function=p.diffusion, name='dirichlet') ] F_coefficients += [1.] # advection part if isinstance(p.advection, LincombFunction): L += [ LinearAdvectionLaxFriedrichs(grid, boundary_info, af, name='advection_{}'.format(i)) for i, af in enumerate(p.advection.functions) ] L_coefficients += list(p.advection.coefficients) elif p.advection is not None: L += [ LinearAdvectionLaxFriedrichs(grid, boundary_info, p.advection, name='advection') ] L_coefficients.append(1.) # nonlinear advection part if p.nonlinear_advection is not None: if num_flux == 'lax_friedrichs': L += [ nonlinear_advection_lax_friedrichs_operator( grid, boundary_info, p.nonlinear_advection, dirichlet_data=p.dirichlet_data, lxf_lambda=lxf_lambda) ] elif num_flux == 'upwind': L += [ nonlinear_advection_upwind_operator( grid, boundary_info, p.nonlinear_advection, p.nonlinear_advection_derivative, dirichlet_data=p.dirichlet_data) ] elif num_flux == 'engquist_osher': L += [ nonlinear_advection_engquist_osher_operator( grid, boundary_info, p.nonlinear_advection, p.nonlinear_advection_derivative, gausspoints=eo_gausspoints, intervals=eo_intervals, dirichlet_data=p.dirichlet_data) ] elif num_flux == 'simplified_engquist_osher': L += [ nonlinear_advection_simplified_engquist_osher_operator( grid, boundary_info, p.nonlinear_advection, p.nonlinear_advection_derivative, dirichlet_data=p.dirichlet_data) ] else: raise NotImplementedError L_coefficients.append(1.) # reaction part if isinstance(p.reaction, LincombFunction): raise NotImplementedError elif p.reaction is not None: L += [ReactionOperator(grid, p.reaction, name='reaction')] L_coefficients += [1.] # nonlinear reaction part if p.nonlinear_reaction is not None: L += [ NonlinearReactionOperator(grid, p.nonlinear_reaction, p.nonlinear_reaction_derivative) ] L_coefficients += [1.] # system operator if len(L_coefficients) == 1 and L_coefficients[0] == 1.: L = L[0] else: L = LincombOperator(operators=L, coefficients=L_coefficients, name='elliptic_operator') # rhs if len(F_coefficients) == 0: F = ZeroOperator(L.range, NumpyVectorSpace(1)) elif len(F_coefficients) == 1 and F_coefficients[0] == 1.: F = F[0] else: F = LincombOperator(operators=F, coefficients=F_coefficients, name='rhs') if grid.reference_element in (triangle, square): visualizer = PatchVisualizer(grid=grid, bounding_box=grid.bounding_box(), codim=0) elif grid.reference_element is line: visualizer = OnedVisualizer(grid=grid, codim=0) else: visualizer = None l2_product = L2Product(grid, name='l2') products = {'l2': l2_product} parameter_space = p.parameter_space if hasattr(p, 'parameter_space') else None discretization = StationaryDiscretization(L, F, products=products, visualizer=visualizer, parameter_space=parameter_space, name='{}_FV'.format(p.name)) data = {'grid': grid, 'boundary_info': boundary_info} if preassemble: data['unassembled_discretization'] = discretization discretization = preassemble_(discretization) return discretization, data