def get_gap_rom(rom): """Based on a rom, create model which is used to evaluate H2-Gap norm.""" A = to_matrix(rom.A, format='dense') B = to_matrix(rom.B, format='dense') C = to_matrix(rom.C, format='dense') if isinstance(rom.E, IdentityOperator): P = spla.solve_continuous_are(A.T, C.T, B.dot(B.T), np.eye(len(C)), balanced=False) F = P @ C.T else: E = to_matrix(rom.E, format='dense') P = spla.solve_continuous_are(A.T, C.T, B.dot(B.T), np.eye(len(C)), e=E.T, balanced=False) F = E @ P @ C.T AF = A - F @ C mFB = np.concatenate((-F, B), axis=1) return LTIModel.from_matrices( AF, mFB, C, E=None if isinstance(rom.E, IdentityOperator) else E)
def _poles_b_c_to_lti(poles, b, c): r"""Create an |LTIModel| from poles and residue rank-1 factors. Returns an |LTIModel| with real matrices such that its transfer function is .. math:: \sum_{i = 1}^r \frac{c_i b_i^T}{s - \lambda_i} where :math:`\lambda_i, b_i, c_i` are the poles and residue rank-1 factors. Parameters ---------- poles Sequence of poles. b |VectorArray| of right residue rank-1 factors. c |VectorArray| of left residue rank-1 factors. Returns ------- |LTIModel|. """ A, B, C = [], [], [] for i, pole in enumerate(poles): if pole.imag == 0: A.append(pole.real) B.append(b[i].to_numpy().real) C.append(c[i].to_numpy().real.T) elif pole.imag > 0: A.append([[pole.real, pole.imag], [-pole.imag, pole.real]]) bi = b[i].to_numpy() B.append(np.vstack([2 * bi.real, -2 * bi.imag])) ci = c[i].to_numpy() C.append(np.hstack([ci.real.T, ci.imag.T])) A = spla.block_diag(*A) B = np.vstack(B) C = np.hstack(C) return LTIModel.from_matrices(A, B, C)
def _poles_b_c_to_lti(poles, b, c): r"""Create an |LTIModel| from poles and residue rank-1 factors. Returns an |LTIModel| with real matrices such that its transfer function is .. math:: \sum_{i = 1}^r \frac{c_i b_i^T}{s - \lambda_i} where :math:`\lambda_i, b_i, c_i` are the poles and residue rank-1 factors. Parameters ---------- poles Sequence of poles. b |NumPy array| of shape `(rom.order, rom.dim_input)`. c |NumPy array| of shape `(rom.order, rom.dim_output)`. Returns ------- |LTIModel|. """ A, B, C = [], [], [] for i, pole in enumerate(poles): if pole.imag == 0: A.append(pole.real) B.append(b[i].real) C.append(c[i].real[:, np.newaxis]) elif pole.imag > 0: A.append([[pole.real, pole.imag], [-pole.imag, pole.real]]) B.append(np.vstack([2 * b[i].real, -2 * b[i].imag])) C.append(np.hstack([c[i].real[:, np.newaxis], c[i].imag[:, np.newaxis]])) A = spla.block_diag(*A) B = np.vstack(B) C = np.hstack(C) return LTIModel.from_matrices(A, B, C)
def reduce(self, sigma, b, c): """Realization-independent tangential Hermite interpolation. Parameters ---------- sigma Interpolation points (closed under conjugation), list of length `r`. b Right tangential directions, |NumPy array| of shape `(fom.input_dim, r)`. c Left tangential directions, |NumPy array| of shape `(fom.output_dim, r)`. Returns ------- lti The reduced-order |LTIModel| interpolating the transfer function of `fom`. """ r = len(sigma) assert isinstance(b, np.ndarray) and b.shape == (self.fom.input_dim, r) assert isinstance(c, np.ndarray) and c.shape == (self.fom.output_dim, r) # rescale tangential directions (to avoid overflow or underflow) if b.shape[0] > 1: for i in range(r): b[:, i] /= spla.norm(b[:, i]) else: b = np.ones((1, r)) if c.shape[0] > 1: for i in range(r): c[:, i] /= spla.norm(c[:, i]) else: c = np.ones((1, r)) # matrices of the interpolatory LTI system Er = np.empty((r, r), dtype=complex) Ar = np.empty((r, r), dtype=complex) Br = np.empty((r, self.fom.input_dim), dtype=complex) Cr = np.empty((self.fom.output_dim, r), dtype=complex) Hs = [self.fom.eval_tf(s, mu=self.mu) for s in sigma] dHs = [self.fom.eval_dtf(s, mu=self.mu) for s in sigma] for i in range(r): for j in range(r): if i != j: Er[i, j] = -c[:, i].dot( (Hs[i] - Hs[j]).dot(b[:, j])) / (sigma[i] - sigma[j]) Ar[i, j] = -c[:, i].dot( (sigma[i] * Hs[i] - sigma[j] * Hs[j])).dot(b[:, j]) / ( sigma[i] - sigma[j]) else: Er[i, i] = -c[:, i].dot(dHs[i].dot(b[:, i])) Ar[i, i] = -c[:, i].dot( (Hs[i] + sigma[i] * dHs[i]).dot(b[:, i])) Br[i, :] = Hs[i].T.dot(c[:, i]) Cr[:, i] = Hs[i].dot(b[:, i]) # transform the system to have real matrices T = np.zeros((r, r), dtype=complex) for i in range(r): if sigma[i].imag == 0: T[i, i] = 1 else: indices = np.nonzero( np.isclose(sigma[i + 1:], sigma[i].conjugate()))[0] if len(indices) > 0: j = i + 1 + indices[0] T[i, i] = 1 T[i, j] = 1 T[j, i] = -1j T[j, j] = 1j Er = (T.dot(Er).dot(T.conj().T)).real Ar = (T.dot(Ar).dot(T.conj().T)).real Br = (T.dot(Br)).real Cr = (Cr.dot(T.conj().T)).real return LTIModel.from_matrices(Ar, Br, Cr, D=None, E=Er, cont_time=self.fom.cont_time)
def reduce(self, sigma, b, c): """Realization-independent tangential Hermite interpolation. Parameters ---------- sigma Interpolation points (closed under conjugation), sequence of length `r`. b Right tangential directions, |NumPy array| of shape `(r, fom.dim_input)`. c Left tangential directions, |NumPy array| of shape `(r, fom.dim_output)`. Returns ------- lti The reduced-order |LTIModel| interpolating the transfer function of `fom`. """ r = len(sigma) assert b.shape == (r, self.fom.dim_input) assert c.shape == (r, self.fom.dim_output) # rescale tangential directions (to avoid overflow or underflow) b = b * (1 / np.linalg.norm(b)) if b.shape[1] > 1 else np.ones((r, 1)) c = c * (1 / np.linalg.norm(c)) if c.shape[1] > 1 else np.ones((r, 1)) # matrices of the interpolatory LTI system Er = np.empty((r, r), dtype=np.complex_) Ar = np.empty((r, r), dtype=np.complex_) Br = np.empty((r, self.fom.dim_input), dtype=np.complex_) Cr = np.empty((self.fom.dim_output, r), dtype=np.complex_) Hs = [self.fom.eval_tf(s, mu=self.mu) for s in sigma] dHs = [self.fom.eval_dtf(s, mu=self.mu) for s in sigma] for i in range(r): for j in range(r): if i != j: Er[i, j] = -c[i] @ (Hs[i] - Hs[j]) @ b[j] / (sigma[i] - sigma[j]) Ar[i, j] = ( -c[i] @ (sigma[i] * Hs[i] - sigma[j] * Hs[j]) @ b[j] / (sigma[i] - sigma[j])) else: Er[i, i] = -c[i] @ dHs[i] @ b[i] Ar[i, i] = -c[i] @ (Hs[i] + sigma[i] * dHs[i]) @ b[i] Br[i, :] = Hs[i].T @ c[i] Cr[:, i] = Hs[i] @ b[i] # transform the system to have real matrices T = np.zeros((r, r), dtype=np.complex_) for i in range(r): if sigma[i].imag == 0: T[i, i] = 1 else: j = np.argmin(np.abs(sigma - sigma[i].conjugate())) if i < j: T[i, i] = 1 T[i, j] = 1 T[j, i] = -1j T[j, j] = 1j Er = (T @ Er @ T.conj().T).real Ar = (T @ Ar @ T.conj().T).real Br = (T @ Br).real Cr = (Cr @ T.conj().T).real return LTIModel.from_matrices(Ar, Br, Cr, None, Er, cont_time=self.fom.cont_time)
def reduce(self, sigma, b, c): """Realization-independent tangential Hermite interpolation. Parameters ---------- sigma Interpolation points (closed under conjugation), list of length `r`. b Right tangential directions, |NumPy array| of shape `(fom.input_dim, r)`. c Left tangential directions, |NumPy array| of shape `(fom.output_dim, r)`. Returns ------- lti The reduced-order |LTIModel| interpolating the transfer function of `fom`. """ r = len(sigma) assert isinstance(b, np.ndarray) and b.shape == (self.fom.input_dim, r) assert isinstance(c, np.ndarray) and c.shape == (self.fom.output_dim, r) # rescale tangential directions (to avoid overflow or underflow) if b.shape[0] > 1: for i in range(r): b[:, i] /= spla.norm(b[:, i]) else: b = np.ones((1, r)) if c.shape[0] > 1: for i in range(r): c[:, i] /= spla.norm(c[:, i]) else: c = np.ones((1, r)) # matrices of the interpolatory LTI system Er = np.empty((r, r), dtype=complex) Ar = np.empty((r, r), dtype=complex) Br = np.empty((r, self.fom.input_dim), dtype=complex) Cr = np.empty((self.fom.output_dim, r), dtype=complex) Hs = [self.fom.eval_tf(s) for s in sigma] dHs = [self.fom.eval_dtf(s) for s in sigma] for i in range(r): for j in range(r): if i != j: Er[i, j] = -c[:, i].dot((Hs[i] - Hs[j]).dot(b[:, j])) / (sigma[i] - sigma[j]) Ar[i, j] = -c[:, i].dot((sigma[i] * Hs[i] - sigma[j] * Hs[j])).dot(b[:, j]) / (sigma[i] - sigma[j]) else: Er[i, i] = -c[:, i].dot(dHs[i].dot(b[:, i])) Ar[i, i] = -c[:, i].dot((Hs[i] + sigma[i] * dHs[i]).dot(b[:, i])) Br[i, :] = Hs[i].T.dot(c[:, i]) Cr[:, i] = Hs[i].dot(b[:, i]) # transform the system to have real matrices T = np.zeros((r, r), dtype=complex) for i in range(r): if sigma[i].imag == 0: T[i, i] = 1 else: indices = np.nonzero(np.isclose(sigma[i + 1:], sigma[i].conjugate()))[0] if len(indices) > 0: j = i + 1 + indices[0] T[i, i] = 1 T[i, j] = 1 T[j, i] = -1j T[j, j] = 1j Er = (T.dot(Er).dot(T.conj().T)).real Ar = (T.dot(Ar).dot(T.conj().T)).real Br = (T.dot(Br)).real Cr = (Cr.dot(T.conj().T)).real return LTIModel.from_matrices(Ar, Br, Cr, D=None, E=Er, cont_time=self.fom.cont_time)