示例#1
0
    def test_cartesian_product(self):

        # simple case
        n = 2
        x_min = -np.ones((n, 1))
        x_max = -x_min
        p1 = Polyhedron.from_bounds(x_min, x_max)
        C = np.ones((1, n))
        d = np.zeros((1, 1))
        p1.add_equality(C, d)
        p2 = p1.cartesian_product(p1)

        # derive the cartesian product
        x_min = -np.ones((2 * n, 1))
        x_max = -x_min
        p3 = Polyhedron.from_bounds(x_min, x_max)
        C = block_diag(*[np.ones((1, n))] * 2)
        d = np.zeros((2, 1))
        p3.add_equality(C, d)

        # compare results
        self.assertTrue(
            same_rows(np.hstack((p2.A, p2.b)), np.hstack((p3.A, p3.b))))
        self.assertTrue(
            same_rows(np.hstack((p2.C, p2.d)), np.hstack((p3.C, p3.d))))
示例#2
0
    def test_initialization(self):

        # 1 or 2d right hand sides
        A = np.eye(3)
        C = np.eye(2)
        b = np.ones(3)
        b_1d = np.ones(3)
        d = np.ones(2)
        d_1d = np.ones(2)
        p = Polyhedron(A, b, C, d)
        p_1d = Polyhedron(A, b_1d, C, d_1d)
        np.testing.assert_array_equal(p.b, p_1d.b)
        np.testing.assert_array_equal(p.d, p_1d.d)

        # wrong initializations
        self.assertRaises(ValueError, Polyhedron, A, b, C)
        self.assertRaises(ValueError, Polyhedron, A, d)
        self.assertRaises(ValueError, Polyhedron, A, b, C, b)
        A = np.eye(3)
        b = np.ones((3,1))
        C = np.eye(2)
        d = np.ones((2,1))
        self.assertRaises(ValueError, Polyhedron, A, b)
        b = np.ones(3)
        self.assertRaises(ValueError, Polyhedron, A, b, C, d)
示例#3
0
    def test_normalize(self):

        # construct polyhedron
        A = np.array([[0.,2.],[0.,-3.]])
        b = np.array([2.,0.])
        C = np.ones((1, 2))
        d = np.ones(1)
        p = Polyhedron(A, b, C, d)

        # normalize
        p.normalize()
        A = np.array([[0., 1.], [0., -1.]])
        b = np.array([1., 0.])
        C = np.ones((1, 2))/np.sqrt(2.)
        d = np.ones(1)/np.sqrt(2.)
        self.assertTrue(same_rows(
            np.column_stack((A, b)),
            np.column_stack((p.A, p.b)),
            normalize=False
            ))
        self.assertTrue(same_rows(
            np.column_stack((C, d)),
            np.column_stack((p.C, p.d)),
            normalize=False
            ))
示例#4
0
    def test_is_well_posed(self):

        # domains
        D0 = Polyhedron.from_bounds(-np.ones(3), np.ones(3))
        D1 = Polyhedron.from_bounds(np.zeros(3), 2.*np.ones(3))
        domains = [D0, D1]

        # pwa system
        A = np.ones((2,2))
        B = np.ones((2,1))
        c = np.ones(2)
        S = AffineSystem(A, B, c)
        affine_systems = [S]*2
        S_pwa = PieceWiseAffineSystem(affine_systems, domains)

        # check if well posed
        self.assertFalse(S_pwa.is_well_posed())

        # make it well posed
        D1.add_lower_bound(np.ones(3))
        D2 = Polyhedron.from_bounds(2.*np.ones(3), 3.*np.ones(3))
        domains = [D0, D1, D2]
        affine_systems = [S]*3
        S_pwa = PieceWiseAffineSystem(affine_systems, domains)
        self.assertTrue(S_pwa.is_well_posed())
示例#5
0
    def test_intersection(self):

        # first polyhedron
        x1_min = -np.ones((2, 1))
        x1_max = -x1_min
        p1 = Polyhedron.from_bounds(x1_min, x1_max)

        # second polyhedron
        x2_min = np.zeros((2, 1))
        x2_max = 2. * np.ones((2, 1))
        p2 = Polyhedron.from_bounds(x2_min, x2_max)

        # intersection
        p3 = p1.intersection(p2)
        p3.remove_redundant_inequalities()
        p4 = Polyhedron.from_bounds(x2_min, x1_max)
        self.assertTrue(
            same_rows(np.hstack((p3.A, p3.b)), np.hstack((p4.A, p4.b))))

        # add equalities
        C1 = np.array([[1., 0.]])
        d1 = np.array([-.5])
        p1.add_equality(C1, d1)
        p3 = p1.intersection(p2)
        self.assertTrue(p3.empty)
示例#6
0
    def test_orthogonal_projection(self):
        # (more tests on projections are in geometry/test_orthogonal_projection.py)

        # unbounded polyhedron
        x_min = -np.ones((3, 1))
        p = Polyhedron.from_lower_bound(x_min)
        self.assertRaises(ValueError, p.project_to, range(2))

        # simple 3d onto 2d
        p.add_upper_bound(-x_min)
        E = np.vstack((np.eye(2), -np.eye(2)))
        f = np.ones((4, 1))
        vertices = [
            np.array(v).reshape(2, 1) for v in product([1., -1.], repeat=2)
        ]
        proj = p.project_to(range(2))
        proj.remove_redundant_inequalities()
        self.assertTrue(
            same_rows(np.hstack((E, f)), np.hstack((proj.A, proj.b))))
        self.assertTrue(same_vectors(vertices, proj.vertices))

        # lower dimensional
        C = np.array([[1., 1., 0.]])
        d = np.zeros((1, 1))
        p.add_equality(C, d)
        self.assertRaises(ValueError, p.project_to, range(2))

        # lower dimensional
        x_min = -np.ones((3, 1))
        x_max = 2. * x_min
        p = Polyhedron.from_bounds(x_min, x_max)
        self.assertRaises(ValueError, p.project_to, range(2))
示例#7
0
def verify_controller(A, B, K, x_min, x_max, u_min, u_max, dimensions=[0, 1]):
    """
    x_min = np.array([[-1.],[-1.]])
    x_max = np.array([[ 1.],[ 1.]])
    u_min = np.array([[-15.]])
    u_max = np.array([[ 15.]])
    """
    S = LinearSystem(A, B)
    X = Polyhedron.from_bounds(x_min, x_max)
    U = Polyhedron.from_bounds(u_min, u_max)
    D = X.cartesian_product(U)

    start = time.time()
    # I added this try-catch -Greg
    try:
        O_inf = S.mcais(K, D)
    except ValueError:
        # K is not stable for this environment - therefore the safe space is
        # empty, so we return an empty polyhedron (Added -Greg)
        O_inf = Polyhedron.from_bounds(x_max, x_min)
    end = time.time()
    print("mcais execution time: {} secs".format(end - start))

    #if (len(dimensions) >= 2):
    #  D.plot(dimensions, label=r'$D$', facecolor='b')
    #  O_inf.plot(dimensions, label=r'$\mathcal{O}_{\infty}$', facecolor='r')
    #  plt.legend()
    #  plt.show()
    return O_inf
示例#8
0
    def test_from_convex_hull(self):

        # simple 2d
        points = [
            np.array([0.,0.]),
            np.array([1.,0.]),
            np.array([0.,1.])
        ]
        p = Polyhedron.from_convex_hull(points)
        A = np.array([
            [-1., 0.],
            [0., -1.],
            [1., 1.],
            ])
        b = np.array([0.,0.,1.])
        self.assertTrue(same_rows(
            np.column_stack((A, b)),
            np.column_stack((p.A, p.b))
            ))

        # simple 3d
        points = [
            np.array([0.,0.,0.]),
            np.array([1.,0.,0.]),
            np.array([0.,1.,0.]),
            np.array([0.,0.,1.])
        ]
        p = Polyhedron.from_convex_hull(points)
        A = np.array([
            [-1., 0., 0.],
            [0., -1., 0.],
            [0., 0., -1.],
            [1., 1., 1.],
            ])
        b = np.array([0.,0.,0.,1.])
        self.assertTrue(same_rows(
            np.column_stack((A, b)),
            np.column_stack((p.A, p.b))
            ))

        # another 2d with internal point
        points = [
            np.array([0.,0.]),
            np.array([1.,0.]),
            np.array([0.,1.]),
            np.array([1.,1.]),
            np.array([.5,.5]),
        ]
        p = Polyhedron.from_convex_hull(points)
        A = np.array([
            [-1., 0.],
            [0., -1.],
            [1., 0.],
            [0., 1.],
            ])
        b = np.array([0.,0.,1.,1.])
        self.assertTrue(same_rows(
            np.column_stack((A, b)),
            np.column_stack((p.A, p.b))
            ))
示例#9
0
    def test_bounded(self):

        # bounded (empty), easy (ker(A) empty)
        x_min = np.ones((2, 1))
        x_max = -np.ones((2, 1))
        p = Polyhedron.from_bounds(x_min, x_max)
        self.assertTrue(p.bounded)

        # bounded (empty), tricky (ker(A) not empty)
        x0_min = np.array([[1.]])
        x0_max = np.array([[-1.]])
        p = Polyhedron.from_bounds(x0_min, x0_max, [0], 2)
        self.assertTrue(p.bounded)

        # bounded easy
        x_min = 1. * np.ones((2, 1))
        x_max = 2. * np.ones((2, 1))
        p = Polyhedron.from_bounds(x_min, x_max)
        self.assertTrue(p.bounded)

        # unbounded, halfspace
        x0_min = np.array([[0.]])
        p = Polyhedron.from_lower_bound(x0_min, [0], 2)
        self.assertFalse(p.bounded)

        # unbounded, positive orthant
        x1_min = x0_min
        p.add_lower_bound(x1_min, [1])
        self.assertFalse(p.bounded)

        # unbounded: parallel inequalities, slice of positive orthant
        x0_max = np.array([[1.]])
        p.add_upper_bound(x0_max, [0])
        self.assertFalse(p.bounded)

        # unbounded lower dimensional, line in the positive orthant
        x0_min = x0_max
        p.add_lower_bound(x0_min, [0])
        self.assertFalse(p.bounded)

        # bounded lower dimensional, segment in the positive orthant
        x1_max = np.array([[1000.]])
        p.add_upper_bound(x1_max, [1])
        self.assertTrue(p.bounded)

        # with equalities, 3d case
        x_min = np.array([[-1.], [-2.]])
        x_max = -x_min
        p = Polyhedron.from_bounds(x_min, x_max, [0, 1], 3)
        C = np.array([[1., 0., -1.]])
        d = np.zeros((1, 1))
        p.add_equality(C, d)
        self.assertTrue(p.bounded)
示例#10
0
    def test_chebyshev(self):

        # simple 2d problem
        x_min = np.zeros((2, 1))
        x_max = 2. * np.ones((2, 1))
        p = Polyhedron.from_bounds(x_min, x_max)
        self.assertAlmostEqual(p.radius, 1.)
        np.testing.assert_array_almost_equal(p.center, np.ones((2, 1)))

        # add nasty inequality
        A = np.zeros((1, 2))
        b = np.ones((1, 1))
        p.add_inequality(A, b)
        self.assertAlmostEqual(p.radius, 1.)
        np.testing.assert_array_almost_equal(p.center, np.ones((2, 1)))

        # add equality
        C = np.ones((1, 2))
        d = np.array([[3.]])
        p.add_equality(C, d)
        self.assertAlmostEqual(p.radius, np.sqrt(2.) / 2.)
        np.testing.assert_array_almost_equal(p.center, 1.5 * np.ones((2, 1)))

        # negative radius
        x_min = np.ones((2, 1))
        x_max = -np.ones((2, 1))
        p = Polyhedron.from_bounds(x_min, x_max)
        self.assertAlmostEqual(p.radius, -1.)
        np.testing.assert_array_almost_equal(p.center, np.zeros((2, 1)))

        # unbounded
        p = Polyhedron.from_lower_bound(x_min)
        self.assertTrue(p.radius is None)
        self.assertTrue(p.center is None)

        # bounded very difficult
        x0_max = np.array([[2.]])
        p.add_upper_bound(x0_max, [1])
        self.assertAlmostEqual(p.radius, .5)
        self.assertAlmostEqual(p.center[0, 0], 1.5)

        # 3d case
        x_min = np.array([[-1.], [-2.]])
        x_max = -x_min
        p = Polyhedron.from_bounds(x_min, x_max, [0, 1], 3)
        C = np.array([[1., 0., -1.]])
        d = np.zeros((1, 1))
        p.add_equality(C, d)
        self.assertAlmostEqual(p.radius, np.sqrt(2.))
        self.assertAlmostEqual(p.center[0, 0], 0.)
        self.assertAlmostEqual(p.center[2, 0], 0.)
        self.assertTrue(np.abs(p.center[1, 0]) < 2. - p.radius + 1.e-6)
示例#11
0
文件: utils.py 项目: xyyeh/pympc
def _voronoi_1d(points):
    """
    Given a list of 1-dimensional points, returns the Voronoi partition of the space as a list of Polyhedron (pympc class).

    Arguments
    ----------
    points : list of numpy.ndarray
        Points for the Voronoi partition.

    Returns
    ----------
    partition : list of Polyhedron
        Halfspace representation of all the cells of the partiotion.
    """

    # order point from smallest to biggest
    points = sorted(points)

    # loop from the smaller point
    polyhedra = []
    for i, point in enumerate(points):

        # h-rep of the cell for the point i
        A = []
        b = []

        # get previous and next point (if any)
        tips = []
        if i > 0:
            tips.append(points[i-1])
        if i < len(points)-1:
            tips.append(points[i+1])


        # vector from point i to the next/previous point
        for tip in tips:
            bottom = point
            center = bottom + (tip - bottom) / 2.

            # hyperplane that separates point i and its neighbor
            Ai = tip - point
            bi = Ai.dot(center)
            A.append(Ai)
            b.append(bi)

        # assemble cell i and add to partition
        polyhedron = Polyhedron(np.vstack(A), np.array(b))
        polyhedron.normalize()
        polyhedra.append(polyhedron)

    return polyhedra
示例#12
0
    def test_is_included_in(self):

        # inner polyhdron
        x_min = 1. * np.ones((2, 1))
        x_max = 2. * np.ones((2, 1))
        p1 = Polyhedron.from_bounds(x_min, x_max)

        # outer polyhdron
        x_min = .5 * np.ones((2, 1))
        x_max = 2.5 * np.ones((2, 1))
        p2 = Polyhedron.from_bounds(x_min, x_max)

        # check inclusions
        self.assertTrue(p1.is_included_in(p1))
        self.assertTrue(p1.is_included_in(p2))
        self.assertFalse(p2.is_included_in(p1))

        # polytope that intesects p1
        x_min = .5 * np.ones((2, 1))
        x_max = 1.5 * np.ones((2, 1))
        p2 = Polyhedron.from_bounds(x_min, x_max)
        self.assertFalse(p1.is_included_in(p2))
        self.assertFalse(p2.is_included_in(p1))

        # polytope that includes p1, with two equal facets
        x_min = .5 * np.ones((2, 1))
        x_max = 2. * np.ones((2, 1))
        p2 = Polyhedron.from_bounds(x_min, x_max)
        self.assertTrue(p1.is_included_in(p2))
        self.assertFalse(p2.is_included_in(p1))

        # polytope that does not include p1, with two equal facets
        x_min = 1.5 * np.ones((2, 1))
        p2.add_lower_bound(x_min)
        self.assertFalse(p1.is_included_in(p2))
        self.assertTrue(p2.is_included_in(p1))

        # with equalities
        C = np.ones((1, 2))
        d = np.array([[3.5]])
        p1.add_equality(C, d)
        self.assertTrue(p1.is_included_in(p2))
        self.assertFalse(p2.is_included_in(p1))
        p2.add_equality(C, d)
        self.assertTrue(p1.is_included_in(p2))
        self.assertTrue(p2.is_included_in(p1))
        x1_max = np.array([[1.75]])
        p2.add_upper_bound(x1_max, [1])
        self.assertFalse(p1.is_included_in(p2))
        self.assertTrue(p2.is_included_in(p1))
示例#13
0
    def test_intialization(self):
        np.random.seed(1)

        # different number of systems and domains
        A = np.ones((3, 3))
        B = np.ones((3, 2))
        c = np.ones(3)
        S = AffineSystem(A, B, c)
        affine_systems = [S] * 5
        F = np.ones((9, 5))
        g = np.ones(9)
        D = Polyhedron(F, g)
        domains = [D] * 4
        self.assertRaises(ValueError, PieceWiseAffineSystem, affine_systems,
                          domains)

        # incopatible number of states in affine systems
        domains += [D, D]
        A = np.ones((2, 2))
        B = np.ones((2, 2))
        c = np.ones(2)
        affine_systems.append(AffineSystem(A, B, c))
        self.assertRaises(ValueError, PieceWiseAffineSystem, affine_systems,
                          domains)

        # incopatible number of inputs in affine systems
        del affine_systems[-1]
        A = np.ones((3, 3))
        B = np.ones((3, 1))
        c = np.ones(3)
        affine_systems.append(AffineSystem(A, B, c))
        self.assertRaises(ValueError, PieceWiseAffineSystem, affine_systems,
                          domains)

        # different dimensinality of the domains and the systems
        del affine_systems[-1]
        affine_systems += [S, S]
        F = np.ones((9, 4))
        g = np.ones(9)
        domains.append(Polyhedron(F, g))
        self.assertRaises(ValueError, PieceWiseAffineSystem, affine_systems,
                          domains)

        # different dimensinality of the domains and the systems
        F = np.ones((9, 4))
        g = np.ones(9)
        D = Polyhedron(F, g)
        domains = [D] * 7
        self.assertRaises(ValueError, PieceWiseAffineSystem, affine_systems,
                          domains)
示例#14
0
    def test_mcais(self):
        np.random.seed(1)

        # domain
        nx = 2
        x_min = - np.ones(nx)
        x_max = - x_min
        X = Polyhedron.from_bounds(x_min, x_max)

        # stable dynamics
        for i in range(10):
            stable = False
            while not stable:
                A = np.random.rand(nx, nx)
                stable = np.max(np.absolute(np.linalg.eig(A)[0])) < 1.

            # get mcais
            O_inf = mcais(A, X)

            # generate random initial conditions
            for j in range(100):
                x = 3.*np.random.rand(nx) - 1.5

                # if inside stays inside X, if outside sooner or later will leave X
                if O_inf.contains(x):
                    while np.linalg.norm(x) > 0.001:
                        x = A.dot(x)
                        self.assertTrue(X.contains(x))
                else:
                    while X.contains(x):
                        x = A.dot(x)
                        if np.linalg.norm(x) < 0.0001:
                            self.assertTrue(False)
                            pass
示例#15
0
    def mcais(self, K, D, **kwargs):
        """
        Returns the maximal constraint-admissible invariant set O_inf for the closed-loop system X(t+1) = (A + B K) x(t).
        It holds that x(0) in O_inf <=> (x(t), u(t) = K x(t)) in D for all t >= 0.

        Arguments
        ----------
        K : numpy.ndarray
            Stabilizing feedback gain for the linear system.
        D : instance of Polyhedron
            Constraint set in the state and input space.

        Returns
        ----------
        O_inf : instance of Polyhedron
            Maximal constraint-admissible (positive) ivariant.
        t : int
            Determinedness index.
        """

        # closed loop dynamics
        A_cl = self.A + self.B.dot(K)

        # state-space constraint set
        X_cl = Polyhedron(D.A[:, :self.nx] + D.A[:, self.nx:].dot(K), D.b)
        O_inf = mcais(A_cl, X_cl, **kwargs)

        return O_inf
示例#16
0
文件: utils.py 项目: xyyeh/pympc
def _voronoi_nd(points):
    """
    Given a list of n-dimensional points, returns the Voronoi partition of the space as a list of Polyhedron (pympc class).
    Uses the scipy wrapper of Voronoi from Qhull.
    Does not work in case of 1-dimensional points.

    Arguments
    ----------
    points : list of numpy.ndarray
        Points for the Voronoi partition.

    Returns
    ----------
    partition : list of Polyhedron
        Halfspace representation of all the cells of the partiotion.
    """

    # loop over points
    partition = []
    for i, point in enumerate(points):

        # h-rep of the cell for the point i
        A = []
        b = []

        # loop over the points that share a facet with point i
        for ridge in Voronoi(points).ridge_points:
            if i in ridge:

                # vector from point i to the neighbor
                bottom = point
                tip = points[ridge[1 - ridge.tolist().index(i)]]

                # hyperplane that separates point i and its neighbor
                Ai = tip - point
                center = bottom + (tip - bottom) / 2.
                bi = Ai.dot(center)
                A.append(Ai)
                b.append(bi)

        # assemble cell i and add to partition
        cell = Polyhedron(np.vstack(A), np.array(b))
        cell.normalize()
        partition.append(cell)

    return partition
示例#17
0
    def get_feasible_set(self):
        """
        Returns the feasible set of the mqQP, i.e. {x | exists u: Au u + Ax x <= b}.

        Returns
        ----------
        instance of Polyhedron
            Feasible set.
        """

        # constraint set
        C = Polyhedron(
            np.hstack((self.A['x'], self.A['u'])),
            self.b
            )

        # feasible set
        return C.project_to(range(self.A['x'].shape[1]))
示例#18
0
def verify_controller_via_discretization(Acl, h, x_min, x_max):
    #discretize the system for efficient verification
    X = Polyhedron.from_bounds(x_min, x_max)
    O_inf = mcais(la.expm(Acl * h), X, verbose=False)
    # dimensions=[0,2]
    # X.plot(dimensions, label=r'$D$', facecolor='b')
    # O_inf.plot(dimensions, label=r'$\mathcal{O}_{\infty}$', facecolor='r')
    # plt.legend()
    # plt.show()
    return O_inf
示例#19
0
    def test_delete_attributes(self):

        # initialize polyhedron
        x_min = - np.ones(2)
        x_max = - x_min
        p = Polyhedron.from_bounds(x_min, x_max)

        # compute alle the property attributes
        self.assertFalse(p.empty)
        self.assertTrue(p.bounded)
        self.assertAlmostEqual(p.radius, 1.)
        np.testing.assert_array_almost_equal(
            p.center,
            np.zeros(2)
            )
        self.assertTrue(same_vectors(
            p.vertices,
            [np.array(v) for v in product([1., -1.], repeat=2)]
            ))

        # add inequality
        A = np.eye(2)
        b = .8*np.ones(2)
        p.add_inequality(A, b)
        self.assertFalse(p.empty)
        self.assertTrue(p.bounded)
        self.assertAlmostEqual(p.radius, .9)
        np.testing.assert_array_almost_equal(
            p.center,
            -.1*np.ones(2)
            )
        self.assertTrue(same_vectors(
            p.vertices,
            [np.array(v) for v in product([.8, -1.], repeat=2)]
            ))

        # add equality
        C = np.array([[1., 1.]])
        d = np.zeros(1)
        p.add_equality(C, d)
        self.assertFalse(p.empty)
        self.assertTrue(p.bounded)
        self.assertAlmostEqual(p.radius, .8*np.sqrt(2.))
        np.testing.assert_array_almost_equal(
            p.center,
            np.zeros(2)
            )
        self.assertTrue(same_vectors(
            p.vertices,
            [np.array([-.8,.8]), np.array([.8,-.8])]
            ))
示例#20
0
def verify_controller(A, B, K, x_min, x_max, u_min, u_max, dimensions=[0, 1]):
    """
  x_min = np.array([[-1.],[-1.]])
  x_max = np.array([[ 1.],[ 1.]])
  u_min = np.array([[-15.]])
  u_max = np.array([[ 15.]])
  """
    S = LinearSystem(A, B)
    X = Polyhedron.from_bounds(x_min, x_max)
    U = Polyhedron.from_bounds(u_min, u_max)
    D = X.cartesian_product(U)

    start = time.time()
    O_inf = S.mcais(K, D)
    end = time.time()
    print("mcais execution time: {} secs".format(end - start))

    #if (len(dimensions) >= 2):
    #  D.plot(dimensions, label=r'$D$', facecolor='b')
    #  O_inf.plot(dimensions, label=r'$\mathcal{O}_{\infty}$', facecolor='r')
    #  plt.legend()
    #  plt.show()
    return O_inf
示例#21
0
    def test_mcais(self):
        """
        Tests only if the function macais() il called correctly.
        For the tests of mcais() see the class TestMCAIS.
        """

        # undamped pendulum linearized around the unstable equilibrium
        A = np.array([[0., 1.], [1., 0.]])
        B = np.array([[0.], [1.]])
        h = .1
        S = LinearSystem.from_continuous(A, B, h)
        K = S.solve_dare(np.eye(2), np.eye(1))[1]
        d_min = - np.ones(3)
        d_max = - d_min
        D = Polyhedron.from_bounds(d_min, d_max)
        O_inf = S.mcais(K, D)
        self.assertTrue(O_inf.contains(np.zeros(2)))
示例#22
0
    def test_empty(self):

        # full dimensional
        x_min = 1. * np.ones((2, 1))
        x_max = 2. * np.ones((2, 1))
        p = Polyhedron.from_bounds(x_min, x_max)
        self.assertFalse(p.empty)

        # lower dimensional, but not empy
        C = np.ones((1, 2))
        d = np.array([[3.]])
        p.add_equality(C, d)
        self.assertFalse(p.empty)

        # lower dimensional and empty
        x_0_max = np.array([[.5]])
        p.add_upper_bound(x_0_max, [0])
        self.assertTrue(p.empty)
示例#23
0
    def test_remove_equalities(self):

        # contruct polyhedron
        x_min = - np.ones(2)
        x_max = - x_min
        p = Polyhedron.from_bounds(x_min, x_max)
        C = np.ones((1, 2))
        d = np.ones(1)
        p.add_equality(C, d)
        E, f, N, R = p._remove_equalities()

        # check result
        self.assertAlmostEqual(N[0,0]/N[1,0], -1)
        self.assertAlmostEqual(R[0,0]/R[1,0], 1)
        intersections = [
            np.sqrt(2.)/2,
            3.*np.sqrt(2.)/2,
            - np.sqrt(2.)/2,
            - 3.*np.sqrt(2.)/2
            ]
        for n in intersections:
            residual = E.dot(np.array([[n]])) - f
            self.assertAlmostEqual(np.min(np.abs(residual)), 0.)

        # add another feasible equality (raises 'equality constraints C x = d do not have a nullspace.')
        C = np.array([[1., -1.]])
        d = np.zeros(1)
        p1 = copy(p)
        p1.add_equality(C, d)
        self.assertRaises(ValueError, p1._remove_equalities)

        # add another unfeasible equality (raises 'equality constraints C x = d do not have a nullspace.')
        C = np.array([[0., 1.]])
        d = np.array([5.])
        p1.add_equality(C, d)
        self.assertRaises(ValueError, p1._remove_equalities)

        # add a linearly dependent equality (raises 'equality constraints C x = d are linearly dependent.')
        C = 2*np.ones((1, 2))
        d = np.ones(1)
        p2 = copy(p)
        p2.add_equality(C, d)
        self.assertRaises(ValueError, p2._remove_equalities)
示例#24
0
文件: utils.py 项目: xyyeh/pympc
def graph_representation(S):
    '''
    For the PWA system S
    x+ = Ai x + Bi u + ci if Fi x + Gi u <= hi,
    returns the graphs of the dynamics (list of Polyhedron)
    [ Fi  Gi  0] [ x]    [ hi]
    [ Ai  Bi -I] [ u] <= [-ci]
    [-Ai -Bi  I] [x+]    [ ci]
    '''
    P = []
    for i in range(S.nm):
        Di = S.domains[i]
        Si = S.affine_systems[i]
        Ai = np.vstack((
            np.hstack((Di.A, np.zeros((Di.A.shape[0], S.nx)))),
            np.hstack((Si.A, Si.B, -np.eye(S.nx))),
            np.hstack((-Si.A, -Si.B, np.eye(S.nx))),
            ))
        bi = np.concatenate((Di.b, -Si.c, Si.c))
        P.append(Polyhedron(Ai, bi))
    return P
示例#25
0
文件: utils.py 项目: xyyeh/pympc
def constrained_voronoi(points, X=None):
    """
    Given a list of n-dimensional points, returns the Voronoi partition of the Polyhedron X as a list of Polyhedron.
    If X is None, returns the partition of the whole space.

    Arguments
    ----------
    points : list of numpy.ndarray
        Points for the Voronoi partition.
    X : Polyhedron
        Set we want to partition.

    Returns
    ----------
    partition : list of Polyhedron
        Halfspace representation of all the cells of the partiotion.
    """

    # get indices of non-coincident coordinates
    nx = min(p.size for p in points)
    assert nx == max(p.size for p in points)
    indices = [i for i in range(nx) if not np.isclose(min([p[i] for p in points]), max([p[i] for p in points]))]

    # get voronoi partition without boundaries
    points_lower_dimensional = [p[indices] for p in points]
    if len(indices) == 1:
        vor = _voronoi_1d(points_lower_dimensional)
    else:
        vor = _voronoi_nd(points_lower_dimensional)

    # go back to the higher dimensional space
    partition = [Polyhedron(np.zeros((0,nx)), np.zeros(0)) for i in points]
    for i, cell in enumerate(vor):
        partition[i].add_inequality(cell.A, cell.b, indices=indices)

        # intersect with X is provided
        if X is not None:
            partition[i].add_inequality(X.A, X.b)

    return partition
示例#26
0
    def test_contains(self):

        # some points
        x1 = 2. * np.ones((2, 1))
        x2 = 2.5 * np.ones((2, 1))
        x3 = 3.5 * np.ones((2, 1))

        # full dimensional
        x_min = 1. * np.ones((2, 1))
        x_max = 3. * np.ones((2, 1))
        p = Polyhedron.from_bounds(x_min, x_max)
        self.assertTrue(p.contains(x1))
        self.assertTrue(p.contains(x2))
        self.assertFalse(p.contains(x3))

        # lower dimensional, but not empty
        C = np.ones((1, 2))
        d = np.array([[4.]])
        p.add_equality(C, d)
        self.assertTrue(p.contains(x1))
        self.assertFalse(p.contains(x2))
        self.assertFalse(p.contains(x3))
示例#27
0
    def test_from_functions(self):

        # row vector input
        x = np.ones((1, 5))
        self.assertRaises(ValueError, Polyhedron.from_lower_bound, x)

        # from lower bound
        x = np.ones((2, 1))
        p = Polyhedron.from_lower_bound(x)
        A_lb = np.array([[-1., 0.], [0., -1.]])
        b_lb = np.array([[-1.], [-1.]])
        self.assertTrue(
            same_rows(np.hstack((A_lb, b_lb)), np.hstack((p.A, p.b))))

        # from upper bound
        p = Polyhedron.from_upper_bound(x)
        A_ub = np.array([[1., 0.], [0., 1.]])
        b_ub = np.array([[1.], [1.]])
        self.assertTrue(
            same_rows(np.hstack((A_ub, b_ub)), np.hstack((p.A, p.b))))

        # from upper and lower bounds
        p = Polyhedron.from_bounds(x, x)
        A = np.vstack((A_lb, A_ub))
        b = np.vstack((b_lb, b_ub))
        self.assertTrue(same_rows(np.hstack((A, b)), np.hstack((p.A, p.b))))

        # different size lower and upper bound
        y = np.ones((3, 1))
        self.assertRaises(ValueError, Polyhedron.from_bounds, x, y)

        # from lower bound of not all the variables
        indices = [1, 2]
        n = 3
        p = Polyhedron.from_lower_bound(x, indices, n)
        A_lb = np.array([[0., -1., 0.], [0., 0., -1.]])
        b_lb = np.array([[-1.], [-1.]])
        self.assertTrue(
            same_rows(np.hstack((A_lb, b_lb)), np.hstack((p.A, p.b))))

        # from lower bound of not all the variables
        indices = [0, 2]
        n = 3
        p = Polyhedron.from_upper_bound(x, indices, n)
        A_ub = np.array([[1., 0., 0.], [0., 0., 1.]])
        b_ub = np.array([[1.], [1.]])
        self.assertTrue(
            same_rows(np.hstack((A_ub, b_ub)), np.hstack((p.A, p.b))))

        # from upper and lower bounds of not all the variables
        indices = [0, 1]
        n = 3
        p = Polyhedron.from_bounds(x, x, indices, n)
        A = np.array([[-1., 0., 0.], [0., -1., 0.], [1., 0., 0.], [0., 1.,
                                                                   0.]])
        b = np.array([[-1.], [-1.], [1.], [1.]])
        self.assertTrue(same_rows(np.hstack((A, b)), np.hstack((p.A, p.b))))

        # too many indices
        indices = [1, 2, 3]
        n = 5
        self.assertRaises(ValueError, Polyhedron.from_lower_bound, x, indices,
                          n)
        self.assertRaises(ValueError, Polyhedron.from_upper_bound, x, indices,
                          n)
        self.assertRaises(ValueError, Polyhedron.from_bounds, x, x, indices, n)
示例#28
0
    def test_convex_hull_method(self):
        np.random.seed(3)

        # cube from n-dimensions to n-1-dimensions
        for n in range(2, 6):
            x_min = -np.ones((n, 1))
            x_max = -x_min
            p = Polyhedron.from_bounds(x_min, x_max)
            E = np.vstack((np.eye(n - 1), -np.eye(n - 1)))
            f = np.ones((2 * (n - 1), 1))
            vertices = [
                np.array(v).reshape(n - 1, 1)
                for v in product([1., -1.], repeat=n - 1)
            ]
            E_chm, f_chm, vertices_chm = convex_hull_method(
                p.A, p.b, range(n - 1))
            p_chm = Polyhedron(E_chm, f_chm)
            p_chm.remove_redundant_inequalities()
            self.assertTrue(
                same_rows(np.hstack((E, f)), np.hstack((p_chm.A, p_chm.b))))
            self.assertTrue(same_vectors(vertices, vertices_chm))

        # test with random polytopes wiith m facets
        m = 10

        # dimension of the higher dimensional polytope
        for n in range(3, 6):

            # dimension of the lower dimensional polytope
            for n_proj in range(2, n):

                # higher dimensional polytope
                A = np.random.randn(m, n)
                b = np.random.rand(m, 1)
                p = Polyhedron(A, b)

                # if not empty or unbounded
                if p.vertices is not None:
                    points = [v[:n_proj, :] for v in p.vertices]
                    p = Polyhedron.from_convex_hull(points)

                    # check half spaces
                    p.remove_redundant_inequalities()
                    E_chm, f_chm, vertices_chm = convex_hull_method(
                        A, b, range(n_proj))
                    p_chm = Polyhedron(E_chm, f_chm)
                    p_chm.remove_redundant_inequalities()
                    self.assertTrue(
                        same_rows(np.hstack((p.A, p.b)),
                                  np.hstack((p_chm.A, p_chm.b))))

                    # check vertices
                    self.assertTrue(same_vectors(p.vertices, vertices_chm))
示例#29
0
    def test_vertices(self):

        # basic eample
        A = np.array([[-1, 0.], [0., -1.], [2., 1.], [-0.5, 1.]])
        b = np.array([[0.], [0.], [4.], [2.]])
        p = Polyhedron(A, b)
        u_list = [
            np.array([[0.], [0.]]),
            np.array([[2.], [0.]]),
            np.array([[0.], [2.]]),
            np.array([[.8], [2.4]])
        ]
        self.assertTrue(same_vectors(p.vertices, u_list))

        # 1d example
        A = np.array([[-1], [1.]])
        b = np.array([[1.], [1.]])
        p = Polyhedron(A, b)
        u_list = [np.array([[-1.]]), np.array([[1.]])]
        self.assertTrue(same_vectors(p.vertices, u_list))

        # unbounded
        x_min = np.zeros((2, 1))
        p = Polyhedron.from_lower_bound(x_min)
        self.assertTrue(p.vertices is None)

        # lower dimensional (because of the inequalities)
        x_max = np.array([[1.], [0.]])
        p.add_upper_bound(x_max)
        self.assertTrue(p.vertices is None)

        # empty
        x_max = -np.ones((2, 1))
        p.add_upper_bound(x_max)
        self.assertTrue(p.vertices is None)

        # 3d case
        x_min = -np.ones((3, 1))
        x_max = -x_min
        p = Polyhedron.from_bounds(x_min, x_max)
        u_list = [
            np.array(v).reshape(3, 1) for v in product([1., -1.], repeat=3)
        ]
        self.assertTrue(same_vectors(p.vertices, u_list))

        # 3d case with equalities
        x_min = np.array([[-1.], [-2.]])
        x_max = -x_min
        p = Polyhedron.from_bounds(x_min, x_max, [0, 1], 3)
        C = np.array([[1., 0., -1.]])
        d = np.zeros((1, 1))
        p.add_equality(C, d)
        u_list = [
            np.array([[1.], [2.], [1.]]),
            np.array([[-1.], [2.], [-1.]]),
            np.array([[1.], [-2.], [1.]]),
            np.array([[-1.], [-2.], [-1.]])
        ]
        self.assertTrue(same_vectors(p.vertices, u_list))
示例#30
0
    def test_add_functions(self):

        # add inequalities
        A = np.eye(2)
        b = np.ones(2)
        p = Polyhedron(A, b)
        A = np.ones((1, 2))
        b = np.ones((1, 1))
        p.add_inequality(A, b)
        A = np.array([[1., 0.], [0., 1.], [1., 1.]])
        b = np.ones((3, 1))
        self.assertTrue(same_rows(np.hstack((A, b)), np.hstack((p.A, p.b))))
        c = np.ones(2)
        self.assertRaises(ValueError, p.add_inequality, A, c)

        # add equalities
        p.add_equality(A, b)
        self.assertTrue(same_rows(np.hstack((A, b)), np.hstack((p.C, p.d))))
        b = np.ones(2)
        self.assertRaises(ValueError, p.add_equality, A, b)

        # add lower bounds
        A = np.zeros((0, 2))
        b = np.zeros((0, 1))
        p = Polyhedron(A, b)
        p.add_lower_bound(-np.ones((2, 1)))
        p.add_upper_bound(2 * np.ones((2, 1)))
        p.add_bounds(-3 * np.ones((2, 1)), 3 * np.ones((2, 1)))
        p.add_lower_bound(-4 * np.ones((1, 1)), [0])
        p.add_upper_bound(5 * np.ones((1, 1)), [0])
        p.add_bounds(-6 * np.ones((1, 1)), 6 * np.ones((1, 1)), [1])
        A = np.array([[-1., 0.], [0., -1.], [1., 0.], [0., 1.], [-1., 0.],
                      [0., -1.], [1., 0.], [0., 1.], [-1., 0.], [1., 0.],
                      [0., -1.], [0., 1.]])
        b = np.array([[1.], [1.], [2.], [2.], [3.], [3.], [3.], [3.], [4.],
                      [5.], [6.], [6.]])
        self.assertTrue(same_rows(np.hstack((A, b)), np.hstack((p.A, p.b))))

        # wrong size bounds
        A = np.eye(3)
        b = np.ones(3)
        p = Polyhedron(A, b)
        x = np.zeros((1, 1))
        indices = [0, 1]
        self.assertRaises(ValueError, p.add_lower_bound, x, indices)
        self.assertRaises(ValueError, p.add_upper_bound, x, indices)
        self.assertRaises(ValueError, p.add_bounds, x, x, indices)