示例#1
0
def convert_particles_to_pynbody_data(particles, length_unit=units.kpc, pynbody_unit="kpc"):
    if not HAS_PYNBODY:
        raise AmuseException("Couldn't find pynbody")

    if hasattr(particles, "u"):
        pynbody_data = _new(gas=len(particles))
    else:
        pynbody_data = _new(dm=len(particles))
    pynbody_data._filename = "AMUSE"
    if hasattr(particles, "mass"):
        pynbody_data['mass'] = SimArray(particles.mass.value_in(units.MSun), "Msol")
    if hasattr(particles, "position"):
        pynbody_data['x'] = SimArray(particles.x.value_in(length_unit), pynbody_unit)
        pynbody_data['y'] = SimArray(particles.y.value_in(length_unit), pynbody_unit)
        pynbody_data['z'] = SimArray(particles.z.value_in(length_unit), pynbody_unit)
    if hasattr(particles, "velocity"):
        pynbody_data['vx'] = SimArray(particles.vx.value_in(units.km / units.s), "km s^-1")
        pynbody_data['vy'] = SimArray(particles.vy.value_in(units.km / units.s), "km s^-1")
        pynbody_data['vz'] = SimArray(particles.vz.value_in(units.km / units.s), "km s^-1")
    if hasattr(particles, "h_smooth"):
        pynbody_data['smooth'] = SimArray(particles.h_smooth.value_in(length_unit), pynbody_unit)
    if hasattr(particles, "rho"):
        pynbody_data['rho'] = SimArray(particles.rho.value_in(units.g / units.cm**3),
            "g cm^-3")
    if hasattr(particles, "temp"):
        pynbody_data['temp'] = SimArray(particles.temp.value_in(units.K), "K")
    elif hasattr(particles, "u"):
#        pynbody_data['u'] = SimArray(particles.u.value_in(units.km**2 / units.s**2), "km^2 s^-2")
        temp = 2.0/3.0 * particles.u * mu() / constants.kB
        pynbody_data['temp'] = SimArray(temp.value_in(units.K), "K")
    return pynbody_data
示例#2
0
 def __init__(self, **kwargs):
     self.__profile = kwargs.get('profile', density_profiles.alphabetagamma)
     self.__drhodr = kwargs.get('drhodr',
                                density_profiles.dalphabetagammadr)
     self.__d2rhodr2 = kwargs.get('d2rhodr2',
                                  density_profiles.d2alphabetagammadr2)
     self.__pars = kwargs.get('pars', {
         'alpha': 1.,
         'beta': 3.,
         'gamma': 1.,
         'c': 10.,
         'factor': 0.1
     })
     if self.__profile == density_profiles.alphabetagamma and self.__pars[
             'beta'] <= 3.:
         if 'factor' not in self.__pars.keys(): self.__pars['factor'] = 0.1
     self.__m_vir = kwargs.get('m_vir', '1e12 Msol')
     self.__m_vir = units.Unit(self.__m_vir)
     self.__h = kwargs.get('h', 0.7)
     self.__overden = kwargs.get('overden', 200.)
     self.__r_vir = tools.calc_r_vir(self.__m_vir, self.__h, self.__overden)
     self.__r_s = self.__r_vir / self.__pars['c']
     self.__n_particles = int(kwargs.get('n_particles', 1e5))
     self.__logxmax_rho = np.log10(self.__pars['c']) + 2.
     # Make sure to sample well inside the gravitational softening
     self.__logxmin_rho = self.__logxmax_rho - .5 * np.log10(
         self.__n_particles) - 3.
     self.__logxmax_dist_func = np.log10(self.__pars['c']) + 13.
     self.__logxmin_dist_func = self.__logxmax_dist_func - .5 * np.log10(
         self.__n_particles)
     self.__logxmin_dist_func -= 14.
     self.__n_sample_rho = int(kwargs.get('n_sample_rho', 1e4))
     self.__n_sample_dist_func = int(kwargs.get('n_sample_dist_func', 1e2))
     self.__n_sample_dist_func_rho = int(
         kwargs.get('n_sample_dist_func_rho', 1e4))
     self.__random_seed = kwargs.get('random_seed', 4)
     if 'prng' in kwargs.keys():
         self.__prng = kwargs['prng']
     else:
         self.__prng = np.random.RandomState(self.__random_seed)
     self.__spline_order = kwargs.get('spline_order', 3)
     self.__progress_bar = kwargs.get('progress_bar', False)
     self.__no_bulk_vel = kwargs.get('no_bulk_vel', True)
     self.__x_rho = np.logspace(self.__logxmin_rho, self.__logxmax_rho,
                                self.__n_sample_rho)
     self.__do_velocities = kwargs.get('do_velocities', True)
     self.__gas = kwargs.get('gas', False)
     if 'snap' in kwargs.keys():
         self.sim = kwargs['snap']
     elif self.__gas:
         self.sim = snapshot._new(gas=self.__n_particles)
     else:
         self.sim = snapshot._new(self.__n_particles)
示例#3
0
 def __init__(self, **kwargs):
     self.__profile = kwargs.get('profile', density_profiles.alphabetagamma)
     self.__drhodr = kwargs.get('drhodr', density_profiles.dalphabetagammadr)
     self.__d2rhodr2 = kwargs.get('d2rhodr2', density_profiles.d2alphabetagammadr2)
     self.__pars = kwargs.get('pars', {'alpha': 1., 'beta': 3., 'gamma': 1.,
         'c': 10., 'factor': 0.1})
     if self.__profile == density_profiles.alphabetagamma and self.__pars['beta'] <= 3.:
         if 'factor' not in self.__pars.keys(): self.__pars['factor'] = 0.1
     self.__m_vir = kwargs.get('m_vir', '1e12 Msol')
     self.__m_vir = units.Unit(self.__m_vir)
     self.__h = kwargs.get('h', 0.7)
     self.__overden = kwargs.get('overden', 200.)
     self.__r_vir = tools.calc_r_vir(self.__m_vir, self.__h, self.__overden)
     self.__r_s = self.__r_vir/self.__pars['c']
     self.__n_particles = int(kwargs.get('n_particles', 1e5))
     self.__logxmax_rho = np.log10(self.__pars['c']) + 2.
     # Make sure to sample well inside the gravitational softening
     self.__logxmin_rho = self.__logxmax_rho - .5*np.log10(self.__n_particles) - 3.
     self.__logxmax_dist_func = np.log10(self.__pars['c']) + 13.
     self.__logxmin_dist_func = self.__logxmax_dist_func - .5*np.log10(self.__n_particles)
     self.__logxmin_dist_func -= 14.
     self.__n_sample_rho = int(kwargs.get('n_sample_rho', 1e4))
     self.__n_sample_dist_func = int(kwargs.get('n_sample_dist_func', 1e2))
     self.__n_sample_dist_func_rho = int(kwargs.get('n_sample_dist_func_rho', 1e4))
     self.__random_seed = kwargs.get('random_seed', 4)
     if 'prng' in kwargs.keys():
         self.__prng = kwargs['prng']
     else:
         self.__prng = np.random.RandomState(self.__random_seed)
     self.__spline_order = kwargs.get('spline_order', 3)
     self.__progress_bar = kwargs.get('progress_bar', False)
     self.__no_bulk_vel = kwargs.get('no_bulk_vel', True)
     self.__x_rho = np.logspace(self.__logxmin_rho, self.__logxmax_rho, self.__n_sample_rho)
     self.__do_velocities = kwargs.get('do_velocities', True)
     self.__gas = kwargs.get('gas', False)
     if 'snap' in kwargs.keys():
         self.sim = kwargs['snap']
     elif self.__gas:
         self.sim = snapshot._new(gas=self.__n_particles)
     else:
         self.sim = snapshot._new(self.__n_particles)