示例#1
0
    def t1w2dwi_align(self):
        """
        A function to perform alignment from T1w_MNI --> DWI. Uses a local
        optimization cost function to get the two images close, and then uses
        bbr to obtain a good alignment of brain boundaries.
        Assumes input dwi is already preprocessed and brain extracted.
        """
        import time

        self.ap_path = regutils.apply_mask_to_image(self.ap_path, self.B0_mask,
                                                    self.ap_path)

        self.fa_path = regutils.apply_mask_to_image(self.fa_path, self.B0_mask,
                                                    self.fa_path)

        # Align T1w-->DWI
        regutils.align(
            self.ap_path,
            self.t1w_brain,
            xfm=self.t1w2dwi_xfm,
            bins=None,
            interp="spline",
            dof=6,
            cost="mutualinfo",
            out=None,
            searchrad=True,
            sch=None,
        )
        time.sleep(0.5)
        self.dwi2t1w_xfm = regutils.invert_xfm(self.t1w2dwi_xfm,
                                               self.dwi2t1w_xfm)
        time.sleep(0.5)
        if self.simple is False:
            # Flirt bbr
            try:
                print("Learning a Boundary-Based Mapping from T1w-->DWI ...")
                regutils.align(
                    self.fa_path,
                    self.t1w_brain,
                    wmseg=self.wm_edge,
                    xfm=self.dwi2t1w_bbr_xfm,
                    init=self.dwi2t1w_xfm,
                    bins=256,
                    dof=7,
                    searchrad=True,
                    interp="spline",
                    out=None,
                    cost="bbr",
                    sch="${FSLDIR}/etc/flirtsch/bbr.sch",
                )
                time.sleep(0.5)
                self.t1w2dwi_bbr_xfm = regutils.invert_xfm(
                    self.dwi2t1w_bbr_xfm, self.t1w2dwi_bbr_xfm)
                time.sleep(0.5)
                # Apply the alignment
                regutils.align(
                    self.t1w_brain,
                    self.ap_path,
                    init=self.t1w2dwi_bbr_xfm,
                    xfm=self.t1wtissue2dwi_xfm,
                    bins=None,
                    interp="spline",
                    dof=6,
                    cost="mutualinfo",
                    out=self.t1w2dwi,
                    searchrad=True,
                    sch=None,
                )
                time.sleep(0.5)
            except BaseException:
                # Apply the alignment
                regutils.align(
                    self.t1w_brain,
                    self.ap_path,
                    init=self.t1w2dwi_xfm,
                    xfm=self.t1wtissue2dwi_xfm,
                    bins=None,
                    interp="spline",
                    dof=6,
                    cost="mutualinfo",
                    out=self.t1w2dwi,
                    searchrad=True,
                    sch=None,
                )
                time.sleep(0.5)
        else:
            # Apply the alignment
            regutils.align(
                self.t1w_brain,
                self.ap_path,
                init=self.t1w2dwi_xfm,
                xfm=self.t1wtissue2dwi_xfm,
                bins=None,
                interp="spline",
                dof=6,
                cost="mutualinfo",
                out=self.t1w2dwi,
                searchrad=True,
                sch=None,
            )
            time.sleep(0.5)

        self.t1w2dwi = regutils.apply_mask_to_image(self.t1w2dwi, self.B0_mask,
                                                    self.t1w2dwi)
        return
示例#2
0
    def t1w2mni_align(self):
        """
        A function to perform alignment from T1w --> MNI template.
        """
        import time

        # Create linear transform/ initializer T1w-->MNI
        regutils.align(
            self.t1w_brain,
            self.input_mni_brain,
            xfm=self.t12mni_xfm_init,
            bins=None,
            interp="spline",
            out=None,
            dof=12,
            cost="mutualinfo",
            searchrad=True,
        )
        time.sleep(0.5)
        # Attempt non-linear registration of T1 to MNI template
        if self.simple is False:
            try:
                print(f"Learning a non-linear mapping from T1w --> "
                      f"{self.template_name} ...")
                # Use FNIRT to nonlinearly align T1 to MNI template
                regutils.align_nonlinear(
                    self.t1w_brain,
                    self.input_mni,
                    xfm=self.t12mni_xfm_init,
                    out=self.t1_aligned_mni,
                    warp=self.warp_t1w2mni,
                    ref_mask=self.input_mni_mask,
                )
                time.sleep(0.5)
                # Get warp from MNI -> T1
                regutils.inverse_warp(self.t1w_brain, self.mni2t1w_warp,
                                      self.warp_t1w2mni)
                time.sleep(0.5)
                # Get mat from MNI -> T1
                self.mni2t1_xfm = regutils.invert_xfm(self.t12mni_xfm_init,
                                                      self.mni2t1_xfm)
                time.sleep(0.5)
            except BaseException:
                # Falling back to linear registration
                regutils.align(
                    self.t1w_brain,
                    self.input_mni_brain,
                    xfm=self.mni2t1_xfm,
                    init=self.t12mni_xfm_init,
                    bins=None,
                    dof=12,
                    cost="mutualinfo",
                    searchrad=True,
                    interp="spline",
                    out=self.t1_aligned_mni,
                    sch=None,
                )
                time.sleep(0.5)
                # Get mat from MNI -> T1
                self.mni2t1_xfm = regutils.invert_xfm(self.t12mni_xfm,
                                                      self.mni2t1_xfm)
                time.sleep(0.5)
        else:
            # Falling back to linear registration
            regutils.align(
                self.t1w_brain,
                self.input_mni_brain,
                xfm=self.t12mni_xfm,
                init=self.t12mni_xfm_init,
                bins=None,
                dof=12,
                cost="mutualinfo",
                searchrad=True,
                interp="spline",
                out=self.t1_aligned_mni,
                sch=None,
            )
            time.sleep(0.5)
            # Get mat from MNI -> T1
            self.t12mni_xfm = regutils.invert_xfm(self.mni2t1_xfm,
                                                  self.t12mni_xfm)
            time.sleep(0.5)